ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2012, № 1, с. 40-43

ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 539.1.074.6

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ИЗОТОПА ¹⁴С В ЖИДКОМ ОРГАНИЧЕСКОМ СЦИНТИЛЛЯТОРЕ НА УСТАНОВКЕ МАЛОГО ОБЪЕМА

© 2012 r. C. Buck*, O. Besida**, C. M. Cattadori***, F. X. Hartmann*,

Th. Lasserre^{**}, D. Motta^{*}, A. di Vacri^{***}, L. Pandola^{***}, S. Schoenert^{*}, U. Schwan^{*}, И. Р. Барабанов, Л. Б. Безруков, Н. А. Данилов^{****}, Е. А. Янович

Институт ядерных исследований РАН Россия, 117312, Москва, просп. 60-летия Октября, 7а *Max Planck Institut fur Kernphysik Saupfercheckweg, 1, D-69117, Heidelberg, Germany **CEA (Commissariat a l'energie atomique)/Saclay F-91191, Gif-sur-Yvette, France ***Laboratory Nazionali del Gran Sasso (LNGS) S.S.17bis km, 18.910, I-67010, Assergy (AQ), Italy ****Институт физической химии и электрохимии им А.Н. Фрумкина РАН Россия, 119991, Москва, Ленинский просп., 31 Поступила в редакцию 07.06.2011 г.

Описана низкофоновая сцинтилляционная установка, которая была расположена в подземной лаборатории Gran Sasso и состояла из девяти идентичных ячеек объемом 2 л каждая. С помощью этой установки было измерено содержание ¹⁴С в сцинтилляторе на основе РХЕ. Полученный результат, $R(^{14}C/^{12}C) = (12.6 \pm 0.4) \cdot 10^{-18}$, может быть использован для более детального исследования возможных каналов образования ¹⁴С в органических сцинтилляторах.

ВВЕДЕНИЕ

Так называемый радиоуглеродный метод, предложенный Либби в 1949 г. [1] и основанный на измерении активности изотопа ¹⁴С в различных органических средах, широко используется для датирования самых различных органических останков. Данная работа посвящена измерению ультрамалых концентраций ¹⁴С в жидких органических сцинтилляторах (ж.о.с.).

Внутренняя активность от распада изотопа ¹⁴С, присущая всем органическим сцинтилляторам, естественным образом ограничивает область регистрации солнечных нейтрино в области низких энергий энергетическим порогом >156 кэВ, а с учетом энергетического разрешения - до 250 кэВ [2]. Впервые с высокой чувствительностью содержание ¹⁴С в жидком органическом сцинтилляторе было измерено на установке СТГ (4.8 м³ сцинтиллятора) [3], являющейся прототипом детектора Borexino [2]. Сцинтиллятор содержал псевдокумол (РС) с растворенной добавкой РРО (1.5 г/л), измеренная концентрация ¹⁴C составила $R(^{14}C/^{12}C) \sim 2 \cdot 10^{-18}$ г/г. На этой же установке была измерена концентрация ¹⁴С в другом сцинтилляторе, РХЕ (фенил-кселилэтан)/p-Tp(2 г/л)/bis-MSB(20 мг/л), содержание ¹⁴С составило *R*(¹⁴C/¹²C) ~ 9.1 · 10⁻¹⁸ г/г [4]. Аналогичные измерения были выполнены на установке

КаmLAND (1000 т ж.о.с. на основе смеси PC-додекан/PPO (2 г/л)), измеренная концентрация 14 C составила ~4 · 10⁻¹⁸ г/г [5].

Эксперименты нового поколения с детекторами на основе ж.о.с. (измерение солнечных *pp*-нейтрино с помощью реакции ve^- рассеяния) требуют разработки сцинтилляторов с ультранизким фоном в области низких энергий. В связи с этим становится актуальной возможность измерения малых активностей ¹⁴С в различных образцах ж.о.с. на установках небольшого объема. Это позволит более детально изучить влияние различных факторов (состава и возраста исходного сырья, а также всего технологического цикла приготовления сцинтиллятора) на качество сцинтиллятора, что важно для разработки ж.о.с. с минимальной концентрацией ¹⁴С.

Ниже приводятся результаты измерения активности ¹⁴С в ж.о.с. с использованием ячейки, содержащей ~2 л ж.о.с. Установка создавалась как прототип индийсодержащего детектора [6], предназначенного для регистрации низкоэнергетических (*pp* и ⁷Be) солнечных нейтрино на основе реакции захвата индием $v_e(^{115}In, ^{115}Sn)e^-$ [7].

Рис. 1. Принципиальная схема экспериментальной сцинтилляционной ячейки.

КОНСТРУКЦИЯ УСТАНОВКИ

Установка содержала сборку из девяти идентичных сцинтилляционных ячеек, расположенных внутри низкофоновой пассивной защиты [8, 9]. Принципиальная схема сцинтилляционной ячейки представлена на рис. 1.

Ячейки размером $100 \times 5 \times 5$ см с толщиной стенок 2 мм изготовлены из оптического кварца (фирма Heraeus Quartz Glass GmbH, Германия). К торцам ячеек через световоды из органического стекла длиной 50 см подсоединены фотоумножители (ETL 9954B, 2"). Световоды служили для подавления фона в сцинтилляционной ячейке от радиоактивных примесей, главным образом ⁴⁰К, содержащихся в стекле ф.э.у. Для повышения эффективности светосбора боковые поверхности ячейки были обернуты зеркальной отражающей пленкой VM2000.

Сигналы с двух ф.э.у. усиливались с помощью двух быстрых усилителей (LeCroy 612AM), после чего, при превышении порога дискриминатора (CAEN N224), поступали на вход а.ц.п. (LeCroy ADC 2249W). Энергетическая калибровка ячейки в диапазоне энергий до 2.6 МэВ осуществлялась с помощью двух γ-источников (¹³⁷Cs и ²²⁸Th). При

Активность отдельных у-линий фона, измеренная внутри пассивной защиты

Источник	<i>Е</i> , кэВ	Активность, распад/сут
²¹⁴ Pb	352	1.1 ± 0.2
$e^{-}-e^{+}$	511	0.28 ± 0.11
²¹⁴ Bi	609	0.21 ± 0.11
¹³⁷ Cs	662	0.32 ± 0.12
²²⁸ Ac	911	0.18 ± 0.09
⁶⁰ Co	1173	< 0.15
⁶⁰ Co	1333	< 0.10
⁴⁰ K	1461	0.64 ± 0.17
²⁰⁸ T1	2616	0.32 ± 0.12
Диапазон	100-400	69 ± 2
Диапазон	400-2700	26 ± 1

положении источника в середине ячейки (на равном расстоянии от ф.э.у.) амплитуды сигналов с двух ф.э.у. уравнивались.

Установка была расположена в подземной лаборатории Gran Sasso, где интенсивность космических лучей подавлена в ~10⁶ раз. Поток мюонов на этой глубине составляет 1.1 мюон · ч⁻¹ · м⁻². Для подавления внешнего фона, вызванного γ-квантами и нейтронами от окружающих горных пород, использовалась трехслойная пассивная защита: 15 см электролитической меди, 23 см стали и 20 см полиэтилена. Внутренний объем защиты, где размещалась сцинтилляционная сборка, был равен 70 × 70 × 400 см.

Радиационная чистота меди внутреннего слоя защиты в значительной степени определяет внешний фон сцинтиллятора. Ее уровень был измерен с помощью НРGе-детектора, установленного в подземной лаборатории Gran Sasso [10]. Результаты измерений в течение 70.45 дней приведены ниже:

²³⁸ U	<2 · 10 ⁻¹² г/г
²³² Th	<7 · 10 ⁻¹² г/г
естК	<4 · 10 ⁻¹² г/г
⁶⁰ Co	<11 мкБк/кг

Ячейки периодически калибровались капсулированными γ -источниками ¹³⁷Cs и ²²⁸Th (²⁰⁸Tl), которые вводились внутрь установки через 4 фторопластовые трубки. Источник ¹³⁷Cs использовался для калибровки в области низких энергий, а ²²⁸Th — в высокоэнергетической области спектра, линия 2.6 МэВ (²⁰⁸Tl).

Герметичность пассивной защиты обеспечивала возможность удаления воздуха и содержащихся в нем инертных радиоактивных газов (²²²Rn) из внутреннего объема установки путем продувки азотом. Все измерения проводились в условиях непрерывной продувки азотом с расходом ~0.3 м³/ч.

Уровень радиоактивного фона внутри защиты был измерен с помощью HPGe-детектора с массой кристалла 0.9 кг. Полученные результаты в сравнении с измеренным фоном вне защиты представлены на рис. 2. Снижение фона во всей области энергий составило ~10⁵-10⁶ раз. Достиг-

Рис. 2. Спектр фона вне (1) и внутри (2) пассивной защиты.

Рис. 3. Спектр от источника ¹³⁷Cs, полученный для сцинтиллятора на основе РХЕ.

нутые фоновые условия были одними из лучших среди опубликованных в литературе. Для более детальной характеристики фона в таблице приведены интенсивности основных γ-линий спектра.

Был так же измерен фон от используемых в установке фотоумножителей. Активности, мкБк, радиоактивных примесей в ф.э.у. (ETL 9954B, 2"), измеренные HPGe-детектором, представлены ниже [11]:

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Все 9 ячеек были залиты сцинтиллятором на основе РХЕ/р-Тр(2 г/л)/bis-MSB(20 мг/л). На рис. 3 приведен амплитудный спектр от источни-ка ¹³⁷Cs, полученный на одной из ячеек прототипа. Измеренное энергетическое разрешение составило $5.4 \pm 0.2\%$ для энергии 477 кэВ и практически не зависело от местоположения γ -источника относительно ф.э.у. Измерения с источником были выполнены на расстояниях 10, 30, 50 и 70 см от ф.э.у.

Был измерен фон сцинтилляционных ячеек в течение 22 сут. Отбирались события, превышающие порог регистрации 35 кэВ. Скорость счета в

Рис. 4. Фон центральной ячейки установки, заполненной сцинтиллятором PXE/p-Tp(2 г/л)/bisMSB(20 мг/л).

ячейках колебалась в пределах (5–7) · 10⁻³ импульс/с. Масса сцинтиллятора РХЕ в каждой ячейке составляла ~1850 г. Полученный спектр фона идентичен для всех девяти ячеек. На рис. 4 представлен спектр фона центральной ячейки при пороге регистрации 20 кэВ.

Форма спектра в диапазоне энергий меньше 150 кэВ хорошо согласуется с ожидаемым β -спектром от распада ¹⁴С в органическом сцинтилляторе. Суммарный фон центральной ячейки в области 20–200 кэВ составил (4.92 ± 0.07) \cdot 10⁻³ импульс/с. Вклад других фоновых источников в область распада ¹⁴С был учтен с помощью экстраполяции фона из области >200 кэВ. На основе проведенных

измерений было вычислено содержание ¹⁴С в сцинтилляторе – $R({}^{14}C/{}^{12}C) = (12.6 \pm 0.4) \cdot 10^{-18}$.

ЗАКЛЮЧЕНИЕ

Продемонстрирована возможность измерения малых концентраций ¹⁴C (на уровне ~ 10^{-17} – 10^{-18} (¹⁴C/¹²C) на сцинтилляционной ячейке, содержащей ~ 2 л ж.о.с. Полученные результаты являются первым шагом для более детальных исследований механизмов появления ¹⁴C в ж.о.с. и поиска ж.о.с. с более низкой активностью ¹⁴C.

Авторы хотят особенно отметить вклад Dario Motta в обработку и анализ экспериментальных данных β -спектра от распада ¹⁴C.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Libby W.F., Anderson E.C., Arnold J.R.* // Science. 1949. V. 109. № 2827. P. 227.
- Arpesella C., Bellini G., Benziger J. et al. // Phis. Lett. B. 2008. V. 658. P. 101.
- Alimonti G., Angloher G., Arpesella C. et al. // Phys. Lett. B. 1998. V. 422. P. 349.
- 4. *Buck H.O., Balata M., de Bari A. et al.* // Nucl. Instrum. and Methods. 2008. V. A585. № 1–2. P. 48.
- 5. Keefer G. // arXiv:1102.3786v1
- Buck C., Barabanov I., Besida O. et al. // Nucl. Phys. B (Proc. Suppl.). 2005. V. 143. P. 487; Barabanov I., Besida O., Buck C. et al. // Nucl. Phys. B (Proc. Suppl.). 2005. V. 143. P. 559.
- 7. Raghavan R. // Phys. Rev. Lett. 1976. V. 37. P. 259.
- 8. Motta D. // 2004. PhD thesis. Heidelberg.
- 9. *Motta D., Buck C., Hartmann F.X. et al.* // Nucl. Instrum. and Methods. 2005. V. A547. P. 368.
- Neder H. // 2002. Kupfer-Probe fur LENS "CuHD". Auswertung der ersten Messperiode. Memo; http:// www.mpi-hd.mpg.de
- 11. *Laubenstein M.* // 2003. private communication; http:// www.lngs.infn.it