ЭЛЕКТРОНИКА И РАДИОТЕХНИКА

УДК 621.373

ВЫСОКОЭФФЕКТИВНЫЙ ИСТОЧНИК МОЩНЫХ ИМПУЛЬСОВ СВЕРХШИРОКОПОЛОСНОГО ИЗЛУЧЕНИЯ НАНОСЕКУНДНОЙ ДЛИТЕЛЬНОСТИ

© 2011 г. Ю. А. Андреев, А. М. Ефремов, В. И. Кошелев, Б. М. Ковальчук, В. В. Плиско, К. Н. Сухушин

Институт сильноточной электроники СО РАН Россия, 634055, Томск, просп. Академический, 2/3 Поступила в редакцию 11.05.2011 г.

Описан источник мощных сверхширокополосных электромагнитных импульсов наносекундной длительности. Биполярный импульс напряжения длительностью 3 нс и амплитудой 90 кВ подается на вход 4-элементной антенной решетки. Получены значения эффективного потенциала излучения $E_p R = 560$ кВ на частоте повторения импульсов 100 Гц.

ВВЕДЕНИЕ

Одним из важных направлений применения мощных импульсов сверхширокополосного (с.ш.п.) излучения является исследование устойчивости радиоэлектронных систем больших объектов в условиях воздействия сильных импульсных электромагнитных полей. Современной тенденцией при разработке мощных источников с.ш.п.-излучения для исследований в данной области является увеличение длительности импульса (>1 нс) и сдвиг нижней границы спектра излучения до 200-300 МГц [1]. Увеличение длительности импульса необходимо для того, чтобы цифровые информационные системы успевали реагировать на воздействие импульса [2]. Расстояние между объектом и источником излучения должно быть порядка максимального размера объекта. Поэтому при облучении больших объектов, например самолетов, предпочтительно использовать с.ш.п.источники с антенными решетками для уменьшения ширины диаграммы направленности излучения и увеличения напряженности поля на объекте.

Ранее был разработан мощный источник с.ш.п.-излучения [3] на основе возбуждения 4-элементной решетки биполярным импульсом напряжения амплитудой 200 кВ и длительностью 3 нс. Длительность импульса излучения была равна ~5 нс, а центральная частота спектра излучения ~300 МГц. Эффективный потенциал излучения, определяемый как произведение пиковой напряженности поля на расстояние в дальней зоне, составил $E_p R \approx 500$ кВ при энергии 13.5 Дж в формирующей линии генератора импульсов напряжения СИНУС-200.

Для получения биполярного импульса в этом с.ш.п.-источнике используется схема Введенско-

го [4] с двумя разрядниками. Недостатком этой схемы является то, что в процессе коммутации ток в обостряющем разряднике меняет свое направление при переходе через ноль. Это ограничивает скорость роста тока второй полуволны вследствие задержки зажигания катодных пятен при смене полярности тока [5] и соответственно пиковую напряженность излученного поля, которая пропорциональна производной тока по времени на входе антенны.

Кроме того, эффективность используемого первого варианта комбинированной антенны [6] была сравнительно низкой, что было обусловлено рядом причин, в том числе и наличием кроссполяризованного излучения. Топология элементов в решетке также была неоптимальной. Следует отметить, что время непрерывной работы источника с.ш.п.-излучения на частоте повторения импульсов 100 Гц [3] было 20 мин.

При последующих наших исследованиях была разработана новая схема формирователя биполярных импульсов (ф.б.и.) [7], в которой ток в обостряющем разряднике не менял свое направление, что позволило формировать биполярные импульсы длительностью до 200 пс [8]. Кроме того, был разработан новый вариант комбинированной антенны с расширенной полосой пропускания и высокой эффективностью [9, 10]. Все это позволило создать мощные источники с.ш.п.излучения [11–14] с эффективным потенциалом излучения 0.3-1.7 МВ при длительности биполярных импульсов напряжения 0.2-2 нс и частоте повторения 100 Гц с использованием генератора импульсов напряжения СИНУС-160 при запасаемой энергии в формирующей линии генератора 3.2 Дж.

Рис. 1. Внешний вид источника излучения. *1* – генератор монополярных импульсов, *2* – формирователь биполярных импульсов, *3* – антенная решетка.

Рис. 2. Эквивалентная схема генератора биполярных импульсов. $FL_0 - FL_5 -$ коаксиальные линии; $S_0 - S_2 -$ разрядники; $R_0 -$ ограничительное сопротивление; $R_{\rm H} -$ нагрузка; $R_1 -$ дополнительное сопротивление; U_1 , $U_2 -$ точки вывода расчетных импульсов напряжения.

Целью данной работы было создание высокоэффективного источника с.ш.п.-излучения на основе 4-элементной решетки, возбуждаемой биполярным импульсом длительностью 3 нс, и получение импульсов излучения с $E_p R \approx 500$ кВ на генераторе СИНУС-160. При разработке использовались новые схема ф.б.и., комбинированная антенна и топология элементов решетки.

КОНСТРУКЦИЯ ИСТОЧНИКА

Источник (рис. 1) состоит из генератора монополярных импульсов СИНУС-160 (1), ф.б.и. 2, делителя мощности (на рисунке не показан) и 4-элементной антенной решетки 3, возбуждаемой от ф.б.и. через делитель мощности. Импульсы от делителя мощности к элементам решетки передаются по кабелю РК50-17-51 с кордельной изоляцией. Для повышения электрической прочности в кабели закачивался элегаз (SF₆) под давлением 4 атм. Измерение характеристик излучения проводилось в безэховой камере.

ГЕНЕРАТОР БИПОЛЯРНЫХ ИМПУЛЬСОВ

Генератор биполярных импульсов напряжения состоит из генератора монополярных импульсов, в качестве которого использовался генератор высоковольтных импульсов СИНУС-160, и ф.б.и. На эквивалентной схеме (рис. 2) генератор монополярных импульсов представлен формирующей линией FL_0 и разрядником S_0 . Эта линия может заряжаться от вторичной обмотки трансформатора Тесла до напряжения –335 кВ с частотой следования импульсов 100 Гц. Формирователь биполярных импульсов собран по схеме с разомкнутой линией, в состав которой входят линии FL_1-FL_5 ,

Рис. 3. Расчетные импульсы зарядного напряжения U_1 на линии FL_2 (1) и выходного биполярного импульса напряжения U_2 в линии FL_5 (2).

обостряющий S_1 и срезающий S_2 разрядники и нагрузка $R_{\rm H} = 12.5$ Ом.

При коммутации разрядника S_0 импульс зарядного напряжения поступает на линию FL_2 по передающей линии FL_1 через ограничительный резистор R_0 . Использование резистора R_0 позволяет уменьшить осцилляции напряжения в контуре $FL_0-S_0-R_0-FL_1-FL_2-S_1-S_2$ после формирования биполярного импульса и снизить эрозию электродов разрядников.

При срабатывании разрядника S_1 вблизи максимума зарядного напряжения на линии FL_2 , а S_2 – с относительной задержкой, равной двойному пробегу по линии FL_3 , в передающей линии FL_5 , в конце которой установлена нагрузка, формируется биполярный импульс напряжения. Схема моделировалась с помощью программы PSpice. Разрядники имели коммутацию, близкую к идеальной. Дополнительное сопротивление R_1 необходимо только для обеспечения работы программы. Передающая линия FL_1 представляет собой набор линий с волновым сопротивлением от 45 до 88 Ом, который эквивалентен конструкции коаксиального перехода от разрядника S_0 до линии FL_2 .

На рис. 3 приведены расчетные импульсы зарядного напряжения U_1 на линии FL_2 (кривая I) и выходного импульса биполярного напряжения U_2 в линии FL_5 (кривая 2). Максимальное зарядное напряжение на линии FL_2 достигает 206 кВ за время 6.8 нс. Расчетный выходной биполярный импульс U_2 имеет амплитуду 100 кВ и длительность 2.5 нс.

Конструкция ф.б.и. представлена на рис. 4. Внутри латунного корпуса в среде азота под давлением 50–65 атм размещены три коаксиальные линии FL_2 – FL_4 , правая часть линии FL_1 , обостряющий S_1 и срезающий S_2 разрядники. Диаметры внутренних проводников линий FL_2 , FL_3 равны 70 мм, FL_4 – 55 мм. Изолятор линии FL_4 и проходной изолятор линии FL_5 изготовлены из капролона как единое целое. Параметры линий указаны на рис. 2.

Электродами кольцевого разрядника S_1 являются концы внутренних проводников линий FL_2 и FL_3 толщиной 2 мм, а электродами S_2 – диск 2 толщиной 2 мм и вставка I на корпусе. Все электроды разрядников S_1 и S_2 сменные и изготовлены из меди. Зазоры в разрядниках S_1 и S_2 соответственно равны 1.5 и 0.5 мм. Внутренние проводники линий FL_2 – FL_4 соединены между собой индуктивностями утечки 3, назначение которых – снимать остаточный заряд на электродах после срабатывания разрядников.

Зарядный импульс на линию FL_2 поступал по линии FL_1 от генератора СИНУС-160 через капролоновый изолятор, не показанный на рис. 4. При последовательном срабатывании разрядников S_1 , S_2 формировался биполярный импульс напряжения, который выводился через проходной изолятор по согласованной передающей линии FL_5 в нагрузку (на рис. 4 не показана).

Рис. 4. Конструкция формирователя биполярных импульсов. *1* – вставка; *2* – диск; *3* – индуктивности утечки; *FL*₁–*FL*₅ – коаксиальные линии; *S*₁, *S*₂ – разрядники; *D*₁, *D*₂ – делители напряжения.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 6 2011

Рис. 5. Выходной биполярный импульс напряжения при работе генератора 1 ч (*1*) и 5 ч (*2*).

Для регистрации выходного биполярного импульса напряжения в линии FL₅ установлен делитель напряжения D_2 на связанных линиях. Доверительный временной интервал измерения выходного импульса делителем определяется временем двойного пробега волны по линии FL₅ и составляет 4.7 нс. Делитель калибровался путем подачи биполярного импульса напряжения длительностью 3 нс на вход линии FL5 от низковольтного генератора. Осциллографом Tektronix TDS 6604 с полосой пропускания до 6 ГГц регистрировались с помощью аттенюаторов импульсы на выходе линии и ослабленный импульс с выхода делителя. Эксперимент показал хорошее согласие форм импульсов на выходе линии и импульса, восстановленного с коэффициентом ослабления 84, с делителя напряжения D_2 .

Емкостный делитель D_1 служит для регистрации зарядного напряжения на линии FL_2 . Регистрация падающей волны напряжения проводилась емкостным делителем (на рис. 4 не показан), установленным на входе передающей линии FL_1 . Этот делитель не калиброван и использовался для измерения стабильности срабатывания разрядника S_1 .

При указанных выше межэлектродных зазорах и давлении в разрядниках S_1 , S_2 65 атм зарядное напряжение линии FL_2 составило 180 кВ, а время зарядки — 7 нс. Выходной биполярный импульс напряжения (рис. 5, кривая *I*) имеет амплитуду отрицательной U_- и положительной U_+ полуволн —83 и +90 кВ соответственно. Длительность биполярного импульса определялась по уровню $0.1U_+$ и $0.1U_-$ при линейной аппроксимации заднего фронта до пересечения с нулевой линией и составила 3 нс.

Рис. 6. Гистограмма разброса времени срабатывания обостряющего разрядника *S*₁ относительно фронта падающей волны зарядного напряжения.

Амплитуда импульса оказалась меньше расчетной, что обусловлено упрощением процесса коммутации тока в расчетах и срабатыванием разрядников при напряжении ниже максимального зарядного. За импульс в нагрузку передается энергия 0.94 Дж, что составляет 30% от энергии, накопленной в формирующей линии FL_0 . Среднеквадратичное отклонение времени Δt срабатывания разрядника S_1 определялось по разбросу фронта биполярного импульса относительно фронта падающей волны зарядного напряжения и составило ~200 пс, как это видно из гистограммы, приведенной на рис. 6, где N — число импульсов. При этом среднеквадратичное отклонение времени запуска развертки осциллографа не превышало 8 пс.

ИЗЛУЧАЮЩАЯ СИСТЕМА

Излучающая система представляет собой 4-элементную решетку (2 × 2) (см. рис. 1), элементы которой закреплены на диэлектрической пластине и объединены в вертикальные секции по два элемента в каждой. Соседние элементы в вертикальной секции гальванически связаны между собой. Расстояние между секциями равно 50 см. Такая конфигурация является оптимальной [15] для решетки из комбинированных антенн. Апертура решетки составляет 95 × 90 см.

В качестве элемента решетки использовалась комбинированная антенна (рис. 7) размером $45 \times 45 \times 47$ см, близкая по конструкции к описанной в [16]. Для подключения антенны к делителю мощности с помощью кабеля PK50-17-51 была изменена конструкция ввода.

Измерения частотных характеристик элемента решетки проводились в безэховой камере с помощью измерителя комплексных коэффициентов

54

Рис. 7. Внешний вид элемента решетки. *1* – *ТЕМ*-рупор, *2* – активный магнитный диполь, *3* – пассивные магнитные диполи.

передачи Agilent 8719ЕТ с полосой рабочих частот 0.05–13.5 ГГц. На рис. 8 приведена зависимость коэффициента стоячей волны по напряжению (КСВН) в фидере с волновым сопротивлением 50 Ом для элемента решетки от частоты. По сравнению с антенной, описанной в [16], улучшилось согласование на частотах 0.8–0.9 ГГц. КСВН антенны ≤2 в полосе частот 0.13–1.1 ГГц.

Для системы из двух элементов решетки, один из которых работает как передающая антенна, а другой – как приемная, были проведены измерения амплитудно-частотной (АЧХ) и фазочастотной (ФЧХ) характеристик (рис. 9). Изменение АЧХ относительно среднего значения не выходит за пределы ± 1.5 дБ для главного направления ($\phi = 0^{\circ}$, $\delta = 0^\circ$, где ϕ – азимутальный угол, δ – угол места) в диапазоне частот 0.14-0.85 ГГц (рис. 9, кривая 1). Отклонение фазочастотной характеристики от линейной зависимости ($\Delta \Phi YX$) для этого же направления наблюдения не превышает $\pm \pi/16$ в диапазоне частот 0.14–0.9 ГГц (рис. 9, кривая 2). Относительная полоса пропускания, определяемая одновременным выполнением трех критериев: KCBH ≤ 2 , $\Delta A \Psi X \leq \pm 1.5$ дБ и $\Delta \Phi \Psi X \leq \pm \pi/16$, – со-

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 6 2011

ставляет 6.1 : 1 (0.14–0.85 ГГц) для главного направления излучения.

Измерения пространственно-временных характеристик элемента решетки проводились с по-

Рис. 8. КСВН элемента решетки.

Рис. 9. Измеренные AYX(1) и отклонение ΦYX от линейной (2) элемента решетки.

мощью низковольтного генератора биполярных импульсов напряжения длительностью $\tau_p = 3$ нс, амплитудой 117 В и нестабильностью <1.5%. Для регистрации электромагнитного излучения использовалась приемная *TEM*-антенна, представляющая собой половинку *TEM*-рупора над земляной пластиной (рис. 10). Антенна согласована с волновым сопротивлением фидера 50 Ом. Согласно [8], эффективная длина приемной *TEM*-антенны в области низких частот составляет $h_e = H/2$.

Для выявления влияния размеров антенны на искажение принимаемого сигнала было проведено сравнение приемных *TEM*-антенн разных размеров (таблица). Размеры антенн взяты относительно пространственной длительности биполярного импульса напряжения $\tau_p c$ (c – скорость света), совпадающей с центральной длиной волны спектра излучения. Значения пиковой напряженности поля импульса излучения измерены разными *TEM*-антеннами в одной и той же точке наблюдения. При этом полагалось для всех антенн $h_e = H/2$. Из таблицы видно, что при изменении длины антенны *L* в три раза разброс значений пиковой напряженности поля регистрируемого импульса излучения не превышает 8% и обусловлен конструктивными особенностями антенн.

Значения пиковой напряженности поля импульса излучения при измерениях антеннами разных размеров

Антенна	$L/\tau_p c$	$H/\tau_p c$	$W/\tau_p c$	<i>Е</i> _{<i>p</i>} , В/м
TEM_1	0.5	0.05	0.22	0.92
TEM_2	1	0.091	0.44	0.92
TEM ₃	1	0.022	0.11	0.86
TEM ₄	1.67	0.022	0.11	0.85

На рис. 11 представлены нормированные осциллограммы импульсов, принятых антеннами *TEM*₁ и *TEM*₄. Различие форм зарегистрированных импульсов, определяемое по среднеквадратическому отклонению [14], составляет менее 10%. Во всех последующих измерениях использовалась антенна *TEM*₃ с размерами земляной пластины 120×20 см, длиной рупора 90 см и апертурой 10×2 см.

На рис. 12 приведены диаграммы направленности элемента решетки по пиковой мощности в H- и E-плоскостях. Ширины диаграмм на половинном уровне мощности примерно одинаковы и составляют 80° .

По результатам низковольтных измерений коэффициент направленного действия антенны в главном направлении $D_0 = 5$. Эффективность по пиковой напряженности поля, определяемая как $k_E = E_p R/U_g$, где U_g – пиковое значение модуля амплитуды напряжения генератора, равна 2. Энер-

Рис. 10. Внешний вид приемной ТЕМ-антенны. L – длина лепестка рупора; W – ширина, H – высота апертуры антенны.

гетическая эффективность, равная отношению излученной энергии к энергии в импульсе генератора (без учета потерь в передающей антенне), примерно равна 0.93. Методики определения этих параметров приведены в работе [10]. Отметим, что для элемента решетки, использованного в источнике [3], величина $k_E = 0.9$ [17].

Для антенной решетки были проведены измерения диаграммы направленности и зависимости пиковой напряженности поля E_p от расстояния до точки наблюдения. Ширина диаграмм в H- и E-плоскостях на половинном уровне мощности составила ~35° (рис. 13). Коэффициент направленного действия решетки в главном направлении $D_0 = 18$. Эффективность по пиковой напряженности поля для решетки составила 8.3.

Расстояние до границы дальней зоны можно оценить из формулы $R_{\Gamma} = 2D^2/\lambda_0$, где D – максимальный размер решетки, $\lambda_0 = \tau_p c$ – центральная длина волны спектра возбуждающего биполярного импульса напряжения (излучения). В нашем случае $R_{\rm r} \approx 3.8$ м. На рис. 14 приведены зависимости эффективного потенциала излучения $E_p R$ от расстояния между решеткой и приемной антенной для случаев использования в качестве последней *TEM*-антенны (кривая 1) и резистивного диполя [18] (кривая 2). Горизонтальный участок кривых соответствует дальней зоне. Различие в поведении кривых объясняется разными размерами апертур антенн. Теоретическая оценка границы дальней зоны согласуется с результатами измерений. Из рисунка видно, что расстояния >3 м можно считать дальней зоной. Все измерения проводились с помощью ТЕМ-антенны на расстояниях >3.5 м.

Рис. 11. Осциллограммы импульсов напряжения на

выходе антенн: $TEM_1(1)$, $TEM_4(2)$.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 6 2011

ИЗЛУЧЕНИЕ МОЩНЫХ СВЕРХШИРОКОПОЛОСНЫХ ИМПУЛЬСОВ

Были проведены испытания на стабильность и продолжительность работы источника при частоте повторения импульсов 100 Гц. После каждого часа непрерывной работы следовал двухчасовой перерыв для охлаждения генератора монополярных импульсов. В начале испытаний давление азота в разрядниках ф.б.и. установили 62 атм. Далее, для того чтобы скомпенсировать увеличение зазоров в разрядниках вследствие эрозии электродов, давление газа снижали. Изменение величины давления в процессе испытаний показано на рис. 15 (кривая 3). Снижением давления в формирователе в пределах 2–3 атм через каждый час работы удалось поддерживать стабильную работу разрядников.

В эксперименте одновременно измерялись зависимости амплитуд положительной U_+ и отрицательной U_- полуволн биполярного импульса напряжения (рис. 15, кривые 1, 2), а также амплитуды электромагнитного импульса ($E_p R$) и ее среднеквадратичного отклонения (рис. 16) от числа импульсов. Во всех измерениях усреднение проводилось по 100 импульсам.

Среднеквадратичные отклонения амплитуд биполярного импульса U_+ и U_- за пять часов работы составили 3% и 1.6% соответственно. При среднеквадратичном разбросе амплитуды падающей волны зарядного напряжения за 100 импульсов 1% среднеквадратичный разброс амплитуд положительной и отрицательной полуволн биполярного импульса составил 3.5–5%.

Рис. 12. Диаграммы направленности элемента решетки в плоскостях *H* (*1*) и *E* (*2*).

Рис. 13. Диаграммы направленности решетки в плоскостях H(1) и E(2).

Длительность биполярного импульса за время работы уменьшилась до 2.7 нс (рис. 5, кривая 2), что обусловлено срабатыванием срезающего разрядника S_2 при временах задержки меньше оптимальных. Среднеквадратичное отклонение времени срабатывания разрядника S_1 относительно фронта падающей волны зарядного напряжения за время работы менялось в пределах 180–250 пс.

Анализ рис. 16 (кривая 2) показывает, что для выхода на уровень стабильной работы при среднеквадратичном отклонении $\sigma < 5\%$ амплитуды электромагнитного импульса ($E_p R$) в начале каждого часа требуется время 5–10 мин. Средняя величина $E_p R$ за пять часов работы равна 530 кВ при среднем значении среднеквадратичного отклонения $\sigma = 5.5\%$. Эффективность по пиковой напряженности поля источника с.ш.п.-излучения составила 6.2. Отличие значений k_E , полученных

Рис. 14. Зависимости эффективного потенциала излучения от расстояния при использовании *TEM*-антенны (*1*) и резистивного диполя (*2*).

при низковольтных и высоковольтных измерениях, обусловлено тем, что при низковольтных измерениях не учитывались потери в четырехканальном делителе мощности и фидерах между делителем и входами антенн.

На рис. 17 представлены осциллограммы электромагнитных импульсов, излученных антенной решеткой во время первого (кривая *I*) и пятого (кривая *2*) часов работы источника. Из рисунка видно, что форма импульса излучения хорошо сохраняется при количестве импульсов практически до двух миллионов.

Рис. 15. Зависимости амплитуд положительной $U_+(1)$, отрицательной $U_-(2)$ полуволн биполярного импульса, а также давления в разрядниках (3) от числа импульсов.

Рис. 16. Зависимости эффективного потенциала излучения (*1*) и его среднеквадратичного отклонения (*2*) от числа импульсов.

выводы

Разработанный источник с.ш.п.-излучения на основе четырехэлементной решетки комбинированных антенн, возбуждаемой генератором биполярных импульсов со средним значением амплитуды 85 кВ, длительностью 3 нс и выходным сопротивлением 12.5 Ом, позволяет получать импульсы со средним значением эффективного потенциала 530 кВ при частоте повторения 100 Гц. Ресурс работы источника без смены электродов разрядников формирователя составляет ≥5 ч. При этом изменение амплитуды импульса напряжения не

Рис. 17. Осциллограммы импульсов, излученных антенной решеткой во время первого (*1*) и пятого (*2*) часов работы источника.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 6 2011

превышает 11%, а эффективного потенциала излучения – 17%.

По сравнению с с.ш.п.-источником, описанным в [3], при близких значениях эффективности преобразования энергии, запасенной в формирующих линиях генераторов монополярных импульсов, в энергию биполярных импульсов напряжения эффективность данного источника по пиковой напряженности поля увеличена в 2.5 раз. Это достигнуто благодаря увеличению эффективности по полю используемых комбинированных антенн в 2.2 раза, оптимальной компоновке решетки и уменьшению времени перепада напряжения биполярного импульса в 1.5 раза. Последнее обусловлено отсутствием задержки зажигания катодных пятен при переходе полярности тока через ноль в разрядниках формирователя биполярных импульсов. При близких значениях полученных эффективных потенциалов излучения энергия в формирующей линии данного источника снижена в 4 раза, а время непрерывной работы возросло в 3 раза по сравнению с ранее разработанным.

Работа выполнена в рамках программы фундаментальных исследований Президиума РАН "Проблемы физической электроники, пучков заряженных частиц и генерация электромагнитного излучения в системах большой мощности", проект "Исследования эффективных механизмов генерации сверхмощных электромагнитных импульсов наносекундной длительности и их взаимодействия с веществом".

СПИСОК ЛИТЕРАТУРЫ

- Morton D., Banister J., DaSilva T. et al. // Book of Abstracts. Inter. Power Modulator and High Voltage Conf. GA, USA, Atlanta: IEEE, May 23–27 2010. P. 193.
- Sabath F., Romer B. // Book of Abstracts. EURO-EM'2008. European Electromagnetics. Switzerland, Lausanne: Swiss Federal Institute of Technology, July 21–25 2008. P. 30.
- 3. Андреев Ю.А., Буянов Ю.И., Визирь В.А. и др. // ПТЭ. 2000. № 2. С. 82.
- 4. *Введенский Ю.В.* // Изв. вузов СССР. Радиотехника. 1959. № 2. С. 249.
- Efremov A.M., Korolev Yu.D., Kovalchuk B.M. // Proc. 16 Inter. Symposium on High Current Electronics. Russia, Tomsk: Institute of High Current Electronics SB RAS, September 19–24 2010. P. 308.
- 6. Андреев Ю.А., Буянов Ю.И., Визирь В.А. и др. // ПТЭ. 1997. № 5. С. 72.
- 7. Andreev Yu.A., Gubanov V.P., Efremov A.M. et al. // Laser and Particle Beams. 2003. V. 21. № 2. P. 211.
- Andreev Yu.A., Efremov A.M., Koshelev V.I. et al. // Proc. 15 Inter. Symposium on High Current Electronics. Russia, Tomsk: Institute of High Current Electronics SB RAS, September 21–26 2008. P. 447.
- Koshelev V.I., Buyanov Yu.I., Andreev Yu.A. et al. // Proc. IEEE Pulsed Power Plasma Science Conf. USA, Nevada, Las Vegas: June 17–22 2001. V. 2. P. 1661.

- 10. Андреев Ю.А., Буянов Ю.И., Кошелев В.И. // РЭ. 2005. Т. 50. № 5. С. 585.
- Губанов В.П., Ефремов А.М., Кошелев В.И. и др. // ПТЭ. 2005. № 3. С. 46.
- Ефремов А.М., Кошелев В. И., Ковальчук Б.М. и др. // РЭ. 2007. Т. 52. № 7. С. 813.
- Plisko V.V., Andreev Yu.A., Efremov A.M. et al. // Proc. 16 Inter. Symposium on High Current Electronics. Russia, Tomsk: Institute of High Current Electronics SB RAS, September 19–24 2010. P. 485.
- Ефремов А.М., Кошелев В. И., Ковальчук Б.М. и др. // ПТЭ. 2011. №. 1. С. 77.
- Koshelev V.I., Plisko V.V. // Proc. 14 Inter. Symp. on High Current Electronics. Russia, Tomsk: Institute of High Current Electronics SB RAS, September 10–15 2006. P. 413.
- Koshelev V.I., Andreev Yu.A., Efremov A.M. et al. // Proc. 16 Inter. Symposium on High Current Electronics. Russia Tomsk: Institute of High Current Electronics SB RAS, September 19–24 2010. P. 415.
- Андреев Ю.А., Буянов Ю.И., Кошелев В.И. // Журнал Радиоэлектроники. 2006. (электронный журнал). 2006. № 4; http://jre.cplire.ru/mac/apr06/1/text.html
- Балзовский Е.В., Буянов Ю.И., Кошелев В. И. // РЭ. 2004. Т. 49. № 4. С. 460.