_ ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ____ ТЕХНИКА ____

УДК 539.23:621.382.8

ОПЕРАТИВНЫЙ И НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ КАЧЕСТВА ЭПИТАКСИАЛЬНЫХ ПЛЕНОК ФЕРРОГРАНАТОВ

© 2011 г. С. И. Ющук, С. А. Юрьев, П. С. Костюк, В. И. Николайчук

Национальный университет "Львовская политехника" Украина, 79013, Львов, ул. Ст. Бандеры, 12 E-mail: syuryev@mail.ru Поступила в редакцию 11.01.2011 г.

Предложена методика оперативного и неразрушающего контроля качества феррогранатовых эпитаксиальных структур, полученных методом жидкофазной эпитаксии. В основу методики положен подход к намагниченной ферритовой пленке как к колебательной системе в спектрометре ферромагнитного резонанса (ф.м.р.). Данный спектрометр позволяет в диапазоне частот 1.2–4.0 ГГц определять ширину линии ф.м.р. локально по всей поверхности пленок Y₃Fe₅O₁₂ толщиной ≤100 мкм.

Применение монокристаллических пленок феррогранатов в сверхвысокочастотной (с.в.ч.) электронике вместо объемных ферритовых резонаторов позволяет осуществлять миниатюризацию микроволновых приборов за счет использования магнитостатических волн (м.с.в.) и планарной технологии [1]. Магнитостатические волны представляют собой медленные электромагнитные колебания, распространяющиеся в магнитных средах [2]. Характеристики распространения м.с.в. зависят от степени однородности внутреннего магнитного поля в кристалле.

Наиболее перспективными материалами для использования в планарных с.в.ч.-устройствах являются монокристаллические пленки железоиттриевого граната (ЖИГ) $Y_3Fe_5O_{12}$ и некоторых замещенных ферритов-гранатов [3]. Пленки ЖИГ выращивают методом жидкофазной эпитаксии на поверхности подложек определенной кристаллографической ориентации, вырезанных из мо-

нокристалла галлий-гадолиниевого граната [4]. И хотя монокристаллические пленки ЖИГ обеспечивают пространственную однородность среды при распространении м.с.в. не хуже, чем объемные кристаллы, величина потерь при этом непосредственно связана с качеством самих пленок.

Основным параметром феррогранатовых пленок является ширина линии (ΔH) ферромагнитного резонанса (ф.м.р.). Чем меньше ширина линии ф.м.р., тем меньше магнитные потери. Рабочая частота устройств на м.с.в. определяется напряженностью внешнего магнитного поля и намагниченностью насыщения материала ферритовой пленки. Для обеспечения стабильности рабочей частоты необходимо, чтобы ферритовая пленка обладала однородным химическим составом без локальных чужеродных включений и дефектов.

Разброс значений ΔH и возрастание магнитных потерь могут быть обусловлены следующими причинами: а) несоответствием между парамет-

Рис. 1. Конструкция измерительной ячейки в виде двух короткозамкнутых микрополосковых линий: **a** – общий вид; **б** – измерительная ячейка с ф.э.с. 1 – короткозамкнутые м.п.л. шириной 1 мм и сопротивлением 50 Ом; 2 – поликоровая подложка размером 64 × 32 мм; 3 – латунное основание; 4 – разъединитель; 5 – металлизированные торцы; 6 – элемент феррогранатовой ф.э.с.

Рис. 2. Спектры ф.м.р., измеренные по методике [9], для пленок ЖИГ толщиной 4 мкм (*1*) и 8 мкм (2) для ф.э.с. Ø30 мм.

рами кристаллической решетки и коэффициентами теплового расширения в системе пленкаподложка, что приводит к возникновению дислокаций и механических напряжений; б) включениями чужеродных ионов, главным образом Pb²⁺ и Pt⁴⁺, попадающих в пленку из раствора-расплава [5]; в) царапинами и другими дефектами на поверхности подложки, которые во время эпитаксии зарастают пленкой; г) захватом капель растворарасплава и их кристаллизацией на поверхности пленки на конечной стадии роста; д) разной толщиной пленки и разбросом ее магнитных свойств по площади ферритовой эпитаксиальной структуры (ф.э.с.) [6]. Таким образом, качество феррогранатовой пленки определяется шириной линии ф.м.р., которая, в свою очередь, зависит от однородности толщины и магнитных параметров по площади пленки, стабильности этих параметров в интервале рабочих температур.

Измерение параметров ф.м.р. на пленочных образцах феррогранатов без нарушения их целостности вызывает определенные трудности. Например, типичный диаметр ферритовых эпитаксиальных структур составляет 30-60 мм. Для устройств на м.с.в. используются высококачественные ф.э.с. указанных размеров, имеющие узкие линии ф.м.р. При резонансных измерениях в образцах с малым значением ΔH возбуждается набор магнитостатических колебаний, которые в случае больших линейных размеров ф.э.с. находятся в узком частотном интервале, что делает практически невозможным наблюдение однородного ф.м.р. из-за наложения резонансных кривых, соответствующих различным модам. Узкая линия ф.м.р. также становится препятствием при измерении ΔH на образцах больших размеров вследствие сильной связи образца с измерительной системой. Поэтому измерение пара-

Рис. 3. Блок-схема ф.м.р.-спектрометра на микрополосковых линиях. 1 -с.в.ч.-генератор качающейся частоты с электронной перестройкой; 2 - частотомер; 3 - вентиль; 4, 9 - направленные ответвители; 5, 8 - коаксиальные переходы; 6 - измерительная ячейка; 7 - калибровочный переход; 10 - согласованная нагрузка; 11 - индикатор к.с.в.н.; 12 - постоянный магнит с шунтом; 13 - измеритель магнитной индукции. Блоки в выделенном штриховой линией контуре входят в состав панорамного измерителя к.с.в.н. и затуханий P2-53.

метров ф.м.р. большого образца как целого связано со значительной погрешностью.

В работе [7] был предложен метод измерения параметров ф.м.р. на образцах-спутниках диаметром 1–3 мм, которые отделялись от ф.э.с. механическим способом. Спектры ф.м.р. образцовспутников измеряли подобно сферическим образцам из монокристаллов ЖИГ с помощью волноводной методики [8]. Метод измерений ΔH ф.м.р. на образцах-спутниках, будучи достаточно точным, имеет существенные недостатки, связанные с трудоемкостью, большой затратой времени и частичным разрушением ф.э.с.

Для получения высококачественных феррогранатовых пленок с целью корректирования технологических режимов в процессе их выращивания необходим оперативный и неразрушающий контроль параметра ΔH по всей площади ф.э.с. С этой целью нами исследовалась методика, предложенная авторами [9]. В основу этой методики положен подход к намагниченной ферритовой пленке как к колебательной системе, осуществляющей переизлучение из одного короткозамкнутого отрезка микрополосковой линии (м.п.л.) в другой. Система двух короткозамкнутых отрезков м.п.л. (рис. 1а) является по существу полоснопропускающим фильтром при наличии ферритового элемента в виде ф.э.с. над местом схождения м.п.л. (рис. 1б) [10].

Соединение основного токонесущего проводника с экранной пластиной осуществляется через металлизированный торец поликоровой подлож-

Рис. 4. Спектр ф.м.р., измеренный на нашей установке, от пленки ЖИГ толщиной 7 мкм и Ø ф.э.с. 25 мм.

ки. Изготовленные таким образом микрополосковые платы плотно соприкасаются металлизированными торцами, причем отрезки микрополосковых линий обеих плат взаимно продолжают друг друга.

Минимальные потери такого полосно-пропускающего фильтра зависят от собственных потерь в ферритовой пленке и коэффициентов связи пленки с микрополосковыми короткозамкнутыми отрезками. Потери в пленке характеризуются шириной линии ф.м.р. Коэффициенты связи пленки с короткозамкнутыми отрезками м.п.л. равны между собой вследствие идентичности элементов связи. Исследования показали, что площадь участка ферритовой пленки, переизлучающей энергию из одного отрезка м.п.л. в другой, не превышает 1 мм² и находится над местом схождения короткозамкнутых отрезков м.п.л., а остальная часть площади пленки практически не принимает участия в работе фильтра.

Характеристика фильтра полностью определяется резонансными свойствами ферритовой структуры. Измерительная ячейка с ф.э.с. помещается в сильно неоднородное постоянное магнитное поле, что позволяет наблюдать резонансы м.с.в. в широком диапазоне частот [11, 12].

Неоднородность с.в.ч.-поля в плоскости пленки приводит к возбуждению всевозможных типов магнитостатических колебаний и волн. Подтверждением этого служит зависимость ширины спектра возбуждения от толщины пленки. С ее ростом спектр расширяется и практически совпадает с типовым для спектра м.с.в., что хорошо видно из сравнения спектров ф.м.р. от пленок ЖИГ толщиной 4 мкм (рис. 2, спектр *I*) и 8 мкм (спектр *2*) при одинаковых размерах ф.э.с. круглой формы Ø30 мм.

С помощью измерительной схемы, представленной на рис. 3, удается разделить спектр и выделить из него отдельные резонансные линии, соответствующие одному типу колебаний.

Рис. 5. Значения ширины ΔH линии ф.м.р. для пленки ЖИГ вдоль диаметра L ф.э.с. 1 – область единичных дефектов; 2 – область скопления дефектов.

Измеритель коэффициента стоячей волны по напряжению (к.с.в.н.) и затуханий P2-53 сравнивает сигнал, поступающий на измерительную ячейку *6*, с сигналом, прошедшим через нее, в результате чего на индикаторе *11* наблюдается амплитудно-частотная характеристика. Связь генератора *1* с индикатором необходима для синхронизации разверток генератора качающейся частоты ГКЧ-52 и индикатора.

Типичный спектр ф.м.р. из числа полученных нами на пленках ЖИГ различных толщин и диаметров приведен на рис. 4. Необходимо отметить, что для тонких пленок ЖИГ результаты этих измерений хорошо коррелируют с данными наших исследований с помощью волноводной методики [7].

На рис. 5 приведен график зависимости ширины линии ф.м.р. для пленки ЖИГ, локально измеренной вдоль диаметра ф.э.с. круглой формы с толщиной пленки 7 мкм.

Как видно из рис. 5, в бездефектных областях ширина линии ф.м.р. ΔH составляет 80 ± 10 А/м. В областях с единичными дефектами ΔH равно 200–300 А/м, а на участках скоплений дефектов ширина линии ф.м.р. превышает 400 А/м. Разрыв на графике в области скопления дефектов объясняется тем, что спектрометр не позволяет измерять ширину линии ф.м.р. больше 400 А/м.

Данным спектрометром можно определять локально ширину линии ф.м.р. на ф.э.с. произвольной формы и размеров, которые соответствуют размерам подложки с толщиной ферритовой пленки ≤ 100 мкм в диапазоне частот 1.2—4.0 ГГц. Методика позволяет исследовать однородность ферритовой пленки по параметру ΔH по всей площади ф.э.с. и влияние дефектов на ф.м.р.-спектр.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ющук С.И., Юрьев С.А., Костюк П.С., Бондар В.И. // Технология и конструирование в электронной аппаратуре. 2005. № 3(57). С. 22.
- 2. *Гуревич А.Г., Мелков Г.А.* Магнитные колебания и волны. М.: Наука, 1994.

2011

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 5

- 3. *Ющук С.И.* // Технология и конструирование в электронной аппаратуре. 1998. № 1. С. 35.
- 4. Балбашов А.М., Червоненкис А.Я. Магнитные материалы для микроэлектроники. М.: Энергия, 1979.
- 5. *Ющук С.И.* // Укр. физ. журн. 1999. Т. 44. № 9. С. 1099.
- Костюк П.С., Кузьмик А.Г., Матковский А.О. и др. // Физическая электроника. Львов: Изд-во Львов. ун-та, 1987. Вып. 35. С. 100.
- 7. Ющук С.И., Костюк П.С. // ПТЭ. 1996. № 6. С. 91.
- 8. *Яковлев Ю.М., Генделев С.М.* Монокристаллы ферритов в радиоэлектронике. М.: Сов. радио, 1975.
- Бакаленко И.Ю., Гуревич А.Г., Краснов Е.С. // Вопросы радиоэлектроники. Сер. Технология производства и оборудование. 1978. Вып. 7. С. 23.
- Бакаленко И.Ю., Гуревич А.Г., Костюк П.С., Краснов Е.С. // Вопросы радиоэлектроники. Сер. Технология производства и оборудование. 1981. Вып. 2. С. 45.
- 11. Боков В.А. Физика магнетиков. СПб.: Невский диалект, 2002.
- Ильченко М.Е., Кудинов У.В. Ферритовые и диэлектрические резонаторы СВЧ. Киев: Изд-во Киевск. ун-та, 1973.