ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 539.125:621.039.55

МЕТОД ОЦЕНКИ ПОГРЕШНОСТИ ОПРЕДЕЛЕНИЯ СПЕКТРОВ ПОЛЕЙ НЕЙТРОНОВ ЯДЕРНО-ФИЗИЧЕСКИХ УСТАНОВОК

© 2011 г. А. С. Кошелев*, В. Д. Севастьянов

ВНИИ физико-технических и радиотехнических измерений Россия, 141570, Московская обл., Солнечногорский р-н, п/о Менделеево *РФЯЦ–ВНИИ экспериментальной физики Россия, 607190, Саров Нижегородской обл., просп. Мира, 37 Поступила в редакцию 17.01.2011 г

Описан метод оценки погрешности расчета спектра нейтронов ядерно-физических установок, основанный на использовании вероятных погрешностей физически обусловленных парциальных спектров, формирующих результирующий спектр нейтронов.

ВВЕДЕНИЕ

Несмотря на определенные достижения в разработке новых методов и средств прямого измерения дифференциальных спектров нейтронов различных ядерно-физических установок (я.ф.у.) [1], в полях мощных источников нейтронного излучения (например, в полях ядерных реакторных установок в присутствии интенсивного γ-излучения) по-прежнему широко используется метод определения спектра нейтронов по результатам измерений с использованием интегральных детекторов различных типов — активационных, делительных, трековых и мультисферных, а также ионизационных камер [1].

Однако эффективные формы поиска спектральных решений по интегральным данным [2] опережают в своем развитии способы оценки их погрешностей (неопределенностей). Из последних информационных сообщений, посвященных вопросам оценки погрешностей спектральных решений, получаемых с применением интегральных детекторов нейтронов, можно отметить только работу [3]. Авторы этой работы анализируют опыт применения метода статистических испытаний для определения коридора неопределенности дифференциального энергетического спектра нейтронов, восстановленного по результатам нейтронно-активационных измерений.

Предлагаемый ниже метод оценки полной погрешности определения спектра нейтронов я.ф.у. основан на использовании вероятных погрешностей физически обусловленных модельных спектров, формирующих итоговое спектральное решение. Метод ориентирован в первую очередь на спектральные решения в энергетическом формате программы КАСКАД для повышения прикладной информационности справочных данных по нейтронным спектрам, представленных в [2]. В процессе разработки и апробации метода была также установлена возможность использования предлагаемого подхода в качестве эффективного метода оценки спектральной эффективности используемого (или планируемого) набора измерительных интегральных детекторов в несколько иной форме, чем рассматриваемого в [4].

ПРЕДСТАВЛЕНИЕ СПЕКТРОВ НЕЙТРОНОВ Я.Ф.У., ВОССТАНАВЛИВАЕМЫХ ПО ПРОГРАММЕ КАСКАД

Анализ итоговых спектральных решений в полях я.ф.у., представленных в работе [2], показывает, что для преимущественного множества рассмотренных конфигураций вполне удовлетворительным итоговым вариантом является решение в виде суперпозиции ограниченного числа физически обусловленных модельных спектров, выраженных в аналитической форме.

Аналитически конкретизированные составляющие итогового суперпозиционного спектрального решения предлагается рассматривать как вариативные элементы спектрального структурирования в формализме поиска неопределенности (погрешности) полного или парциального флюенса в рассматриваемом энергетическом диапазоне спектра.

Параметр $Q_{i,m}$, связующий энергетическое распределение флюенса нейтронов модельного спектра *m*-типа $F_m(E)$ с функционалом нейтронного взаимодействия *i*-типа $\sigma_i(E)$, определим как

$$Q_{i,m} = \int_{E_{\min}}^{E_{\max}} F_m(E)\sigma_i(E)dE.$$
 (1)

В энергетическом формате программы КАСКАД $E_{\min} = 10^{-10} \text{ M}$ эВ, $E_{\max} = 18 \text{ M}$ эВ. Формализм про-

граммы КАСКАД ориентирован на использование модельных спектров четырех типов: m = 1 – модельный спектр в форме Максвелла вида $F_1(E) = 2\alpha^{3/2}e^{-\alpha E}\sqrt{E/\pi}$; m = 2 – модельный спектр в форме Вайскопфа вида $F_2(E) = \alpha^2 E e^{-\alpha E}$; m = 3 – модельный спектр в форме Ферми вида $F_3 = K_1(E)K_2(E)E^{-\alpha}$, где $K_1(E) = [1 + (10^{-7}/E)^7]^{-1}$, $K_2(E) = [1 + (E/0.2)^2]^{-1}$; m = 4 – модельный спектр в форме Гаусса вида $F_4 = (\sigma\sqrt{2\pi})^{-1}e^{-(E-\alpha)^2/2\sigma^2}$. Параметры α и σ – варьируемые без ограничения количества вариаций.

Определенный в форме (1) параметр $Q_{i,m}$ в физическом смысле представляет собой интегральный отклик детектора *i*-типа, обусловленный флюенсом нейтронов $F_m(E)$.

Спектральное решение программы КАСКАД как композиция из k модельных спектров $F_m(E)$ может быть представлено в виде

$$F(E) = \sum_{1}^{k} a_{m}^{k} F_{m}^{k}(E) = \sum_{1}^{k} a_{k} F_{k}(E), \qquad (2)$$

где коэффициенты $a_m^k = a_k$ в нормировке $\sum_{1}^{k} a_m^k = \sum_{1}^{k} a_k = 1$ определяют относительное долевое содержание *k*-й композиционной составляющей.

С учетом (1) и (2) для интегрального отклика детектора *i*-типа, обусловленного флюенсом нейтронов F(E), имеем

$$Q_i = \sum_{k=1}^{\kappa} a_k Q_{i,k}.$$
 (3)

Определим относительную долю i-го функционального отклика, обусловленного k-й композиционной составляющей, в i-м функциональном отклике, определяемом композиционным спектром, в виде

$$q_{i,k} = a_k Q_{i,k} / Q_i. \tag{4}$$

Аналитическая форма модельных спектров $F_1(E)$, $F_2(E)$, $F_4(E)$ соответствует условию равенства единице результата интегрирования в энергетическом интервале от 0 до ∞ . Для всех практически используемых вариантов модельных спектров указанных типов в рамках работы [2] энергетический интервал программы КАСКАД (от 10^{-10} до 18 МэВ) адекватен по результатам интегрирования интервалу от 0 до ∞ .

Аналитическая форма модельного спектра $F_3(E)$ не соответствует условию равенства единице результата интегрирования в энергетическом интервале от 0 до ∞ . Поэтому при формировании массива групповых флюенсов $F_3(E)\Delta E$ следует использовать соответствующую нормирующую процедуру.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 4 2011

Функционалы нейтронных взаимодействий $\sigma_i(E)$ в энергетическом формате КАСКАД представлены в [2]. Формирование необходимых массивов групповых флюенсов для модельных спектров $F_1(E)$, $F_2(E)$, $F_3(E)$ и $F_4(E)$ в энергетическом формате КАСКАД может быть осуществлено с использованием программного формализма Exell. Определение искомых параметров $Q_{i,m}$ сводится к суммированию по выборке КАСКАД результатов перемножения групповых значений $\sigma_i(\overline{E}_j)$, $F_m(\overline{E}_j)$, ΔE_j (\overline{E}_j , ΔE_j – средняя энергия и ширина *j*-го энергетического интервала используемого формата КАСКАД соответственно).

Итоговый результат спектрального структурирования для рассматриваемой k-композиции может быть представлен в виде двумерного массива данных { $q_{i,k}$, a_k } и его графического отображения в форме диаграммы с фиксацией по оси абсцисс порядкового номера модельного спектра в составе спектральной композиции и соответствующих ему видов интегральных откликов, а по оси ординат соответствующих численных величин $q_{i,k}$ и a_k .

АЛГОРИТМ ОЦЕНКИ ПОГРЕШНОСТЕЙ ОПРЕДЕЛЕНИЯ СПЕКТРА НЕЙТРОНОВ

Для любого модельного спектра флюенс нейтронов может быть определен по соотношению $F_m = Q_{i,m}/\sigma_{i,m}$, где $\sigma_{i,m}$ – интегральное сечение нейтронного взаимодействия детектора *i*-типа для спектра *m*-типа. Соответственно относительная погрешность $\delta(F_m)$ может быть определена (см., например, [4]) по соотношению $\delta(F_m) = \delta_{i,m} =$ $= \sqrt{\delta^2(Q_{i,m}) + \delta^2(\sigma_{i,m})}$, где $\delta(Q_{i,m})$ – погрешность измерения интегрального отклика $Q_{i,m}$, а $\delta(\sigma_{i,m})$ – погрешность расчета с использованием элементарных констант интегрального сечения $\sigma_{i,m}$ на интервале определения модельного спектра *m*-типа.

Флюенс нейтронов модельного спектра *m*-типа в *k*-элементной спектральной композиции с установленными значениями $a_m^k = a_k$ в рамках вышесказанного может быть определен по соотношению

$$F_m^k = F_k = a_k Q_{i,k} / \sigma_{i,k}.$$
⁽⁵⁾

Очевидно, что использование части интегрального отклика $Q_{i,k}$ может повлечь за собой возрастание погрешности F_k и тем большее, чем меньше a_k . Для единичного интегрального отклика, допускающего определение F_k по соотношению (5), можно ожидать увеличения погрешности $\delta_{i,k}$ в $\sim 1/q_{i,k}$ раза.

В случае определения F_k как среднего по выборке данных $Q_{i,k}$ погрешности $\delta_{i,k}$ следует рассматривать как статистически независимые, следствием чего должно быть уменьшение совокупной погрешности F_k .

При наличии выборки из n разновеликих, как правило, значений $q_{i,k}$, сформированной для k-й составляющей композиционного спектра, погрешность δ_k предлагается определять (оценивать) по соотношению

$$\delta_{k} = \sqrt{\sum_{i=1}^{n} (\delta_{i,k}/q_{i,k})^{2} / \left(\sum_{i=1}^{n} w_{i,k}\right)^{2}}, \qquad (6)$$

где параметр $w_{i,k} = q_{i,k}/(q_{i,k})_{\text{max}}$ представляет собой парциальный "вес" *i*-го интегрального отклика в нормализованной выборке $q_{i,k}$ по условию $(q_{i,k})_{\text{max}} = 1$.

Опыт практической апробации оценки погрешности с использованием выражения (6) показывает, что в случае равенства значений $q_{i,k}$ имеет место монотонное уменьшение величины δ_k с увеличением количества используемых интегральных откликов *n*.

В случае неравенства значений $q_{i,k}$ имеет место функциональная зависимость величины δ_k от *n* с выраженным ростом погрешности δ_k при использовании $q_{i,k} \ll (q_{i,k})_{\text{max}}$ ($w_{i,k} \ll 1$). Поэтому количество используемых значений $q_{i,k}$ для определения δ_k по соотношению (6) в общем случае целесообразно ограничивать по критерию минимизации $\delta_k(n)$.

Для оценки погрешности флюенса нейтронов в энергетических границах определения спектрального решения из k модельных спектров с использованием генеральной выборки погрешностей комплектующих δ_k предлагается следующий формализм:

— выборка значений δ_k преобразуется в выборку значений $a_k \delta_k$;

— погрешность определения флюенса композиционного спектра в энергетических границах определения (в формате КАСКАД от 10⁻¹⁰ до 18 МэВ) оценивается по соотношению

$$\delta = \sqrt{\sum_{k} (a_k \delta_k)^2 / \left(\sum_{k} w_k\right)^2}, \qquad (7)$$

где $w_k = a_k \delta_k / (a_k \delta_k)_{\text{max}}.$

Для оценки погрешности флюенса нейтронов в избранных энергетических границах в пределах энергетических границ определения спектрального решения из *k* модельных спектров (тепловые нейтроны, быстрые нейтроны с установленным энергетическим порогом и т.п.) с использованием генеральной выборки погрешностей комплектующих δ_k предлагается следующий формализм:

— флюенс на интервале $\Delta E_{ab} = E_b - E_a$ как результат суммирования долевых вкладов модельных спектров представляется в виде

$$F(\Delta E_{ab}) = \sum_{k} a_k b_k (\Delta E_{ab}) F_k , \qquad (8)$$

где множители $b_k(\Delta E_{ab})$ определяют относительную долю единичного модельного спектра F_k , соответствующую интервалу ΔE_{ab} ;

— относительная доля (парциальный вклад) модельного спектра F_k в составе композиционного решения, соответствующая интервалу ΔE_{ab} , с учетом (8) переопределяется с использованием соотношения

$$a_k(\Delta E_{ab}) = a_k b_k(\Delta E_{ab}) / \sum_k a_k b_k(\Delta E_{ab}); \qquad (9)$$

— погрешность определения флюенса композиционного спектра в энергетическом интервале ΔE_{ab} с учетом (9) оценивается по соотношению

$$\delta(\Delta E_{ab}) = \sqrt{\sum_{k} \left[a_{k}(\Delta E_{ab})\delta_{k}\right]^{2}} / \left(\sum_{k} w_{k}(\Delta E_{ab})\right)^{2}, \quad (10)$$

где $w_k(\Delta E_{ab}) = a_k(\Delta E_{ab})\delta_k / [a_k(\Delta E_{ab})\delta_k]_{\max}.$

Следующее из выражения (10) распространение ошибки δ_k модельного спектра F_k на его долю в интервальной композиции обусловлено одинаковостью погрешностей целого и части в рамках принятого определения $F_k(E)$ в фиксированной аналитической форме.

АПРОБАЦИЯ МЕТОДА ОЦЕНКИ ПОГРЕШНОСТИ ОПРЕДЕЛЕНИЯ СПЕКТРА НЕЙТРОНОВ

Для апробации изложенного метода были выбраны 2 спектра из работы [2]:

- спектр реактора АРГУС (графитовый замедлитель (г.з.) в экспериментальном канале ЭК-2 на высоте 200 мм от дна канала) [2, с. 542]: восемь модельных спектров $F_2(E) = \alpha^2 E e^{\alpha E}$ со значениями α , равными $3.52 \cdot 10^7$, 8, 4, 2, 1.333, 1, 0.8, 0.4 МэВ⁻¹; один модельный спектр $F_3 = K_1(E)K_2(E)E^{-\alpha}$ с $\alpha =$ = -1.0; шесть реакций активации: ¹⁷⁶Lu(*n*, γ), ¹⁹⁷Au(*n*, γ), ⁶³Cu(*n*, γ), ¹¹⁵In(*n*, *n*'), ⁵⁸Ni(*n*, *p*), ²⁷Al(*n*, α) – все без поглощающих фильтров (б/ф);

– спектр реактора АРГУС* (графитовый замедлитель (г.з.) в экспериментальном канале ЭК-2 на высоте 200 мм от дна канала) [2, с. 546]: четыре модельных спектра $F_2(E) = \alpha^2 E e^{\alpha E}$ со значениями α , равными 3.445 · 10⁷, 5, 0.97, 0.69 МэВ⁻¹; один модельный спектр $F_3 = K_1(E)K_2(E)E^{-\alpha}$ с $\alpha = -0.97$;

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 4 2011

Рис. 1. Итоговое решение и композиционные составляющие для спектров АРГУС (а) и АРГУС* (б).

пять реакций активации: 176 Lu(*n*, γ), 197 Au(*n*, γ), 63 Cu(*n*, γ), 58 Ni(*n*, *p*), 27 Al(*n*, α) – все б/ф.

Выбор спектров в первую очередь продиктован особенностями итоговых спектральных решений КАСКАД, позволяющих наглядно продемонстрировать возможности предлагаемого подхода к оценке погрешности как на всем интервале определения, так и в избранных энергетических границах.

Для придания количественного характера оцениваемым погрешностям спектрального решения

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 4 2011

все погрешности $\delta_{i,m} = \delta_{i,k}$, связанные с исходными данными, были принятыми равными 5%.

Итоговые спектральные решения АРГУС и АРГУС* и составляющие их модельные спектры в графической форме иллюстрируют рис. 1.

Выборки параметров $q_{i,k}$ для спектральных решений АРГУС и АРГУС^{*} представлены в табл. 1 и 2 соответственно, а их графические отображения в диаграммной форме — на рис. 2. По оси абсцисс цифрами отмечены порядковые значения k, соот-

КОШЕЛЕВ, СЕВАСТЬЯНОВ

k	т	α_m	$q_{i, k}$						
			176 Lu(n, γ)	¹⁹⁷ Au(n, γ)	63 Cu (n, γ)	115 In(<i>n</i> , <i>n</i> ')	58 Ni (n, p)	27 Al (n, α)	
1	2	3.52 + 7	0.8936*	0.4784	0.8988*	0.0000	0.0000	0.0000	0.4828
2	3	-1.0	0.1064	0.5214*	0.1002	0.0097	0.0059	0.0000	0.3967
3	2	8	0.0000	0.0001	0.0004	0.0040	0.0000	0.0000	0.0332
4	2	4	0.0000	0.0000	0.0001	0.0132*	0.0014	0.0000	0.0093
5	2	2	0.0000	0.0000	0.0001	0.0991*	0.0381	0.0000	0.0150
6	2	1.333	0.0000	0.0000	0.0002	0.3046*	0.2246*	0.0298	0.0267
7	2	1	0.0000	0.0000	0.0001	0.3497*	0.3868*	0.2057	0.0236
8	2	0.8	0.0000	0.0000	0.0001	0.2035	0.2977*	0.3724*	0.0119
9	2	0.4	0.0000	0.0000	0.0000	0.0162	0.0456	0.3034*	0.0008

Таблица 1. Выборка параметров $q_{i, k}$ для спектрального решения АРГУС

* Данные, использованные для определения δ_k по соотношению (6).

Таблица 2. Выборка параметров $q_{i, k}$ для спектрального решения АРГУС*

k	т	α_m		a				
			176 Lu(n, γ)	¹⁹⁷ Au(n, γ)	63 Cu(n, γ)	${}^{58}{ m Ni}(n,p)$	27 Al (n, α)	u_k
1	2	3.445 + 7	0.8803*	0.4697	0.8806*	0.0000	0.0000	0.2066
2	3	-0.97	0.1192	0.5269*	0.1049	0.0000	0.0000	0.1931
3	2	5	0.0005	0.0034	0.0144	0.0002	0.0000	0.5798
4	2	0.97	0.0000	0.0000	0.0002	0.6925*	0.4740*	0.0173
5	2	0.69	0.0000	0.0000	0.0000	0.2325	0.5260*	0.0032

* Данные, использованные для определения δ_k по соотношению (6).

Таблица 3. Пример подготовки данных для расчета погрешностей δ и $\delta(\Delta E_{ab})$ в интервале от 0.1 до 18 МэВ для спектральных решений АРГУС и АРГУС*

k	a_k	$\delta_k, \%$	$a_k \delta_k, \%$	w _k	b_k	$a_k b_k$	$a_k(\Delta E_k)$	$a_k(\Delta E_k)\delta_k, \%$	$w_k(\Delta E_{ab})$
Спектральное решение АРГУС									
1	0.4828	3.97	1.92	0.504	0.0000	0.0000	0.0000	0.00	0.000
2	0.3967	9.59	3.80	1.001	0.0554	0.0220	0.1579	1.51	0.061
3	0.0332	0.00	0.00	0.000	0.9379	0.0311	0.2237	0.00	0.000
4	0.0093	379	3.52	0.928	0.9826	0.0091	0.0657	24.9	1.000
5	0.0150	50.4	0.76	0.199	0.9920	0.0149	0.1069	5.39	0.217
6	0.0267	15.9	0.42	0.112	0.9954	0.0266	0.1910	3.04	0.122
7	0.0236	10.1	0.24	0.063	0.9970	0.0235	0.1691	1.71	0.069
8	0.0119	18.4	0.22	0.058	0.9931	0.0118	0.0849	1.56	0.063
9	0.0008	16.5	0.01	0.003	0.1360	0.0001	0.0008	0.01	0.001
Спектральное решение АРГУС*									
1	0.2066	4.02	0.83	0.004	0.0000	0.0000	0.0000	0.00	0.000
2	0.1931	9.49	1.83	0.009	0.0683	0.0132	0.0235	0.22	0.001
3	0.5798	347	201	1.001	0.9088	0.5269	0.9400	326	1.001
4	0.0173	7.22	0.12	0.001	0.9956	0.0172	0.0307	0.22	0.001
5	0.0032	9.51	0.03	0.000	0.9977	0.0032	0.0057	0.05	0.000

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 4 2011

-

Рис. 2. Графическое представление выборки параметров q_{*i*, *k*} для спектральных решений АРГУС (а) и АРГУС* (б).

ветствующие приведенным в упомянутых таблицах значениям.

Диаграммная форма представления параметров $q_{i,k}$ совместно с параметрами a_k наглядно иллюстрирует репрезентативность использованного набора измерительных интегральных детекторов для анализируемого спектрального решения. Анализ рис. 26 показывает, что для энергетического интервала определения модельного спектра k = 3 практически нет экспериментальных показаний интегральных детекторов.

Недостаточная информационная репрезентативность измерительного набора интегральных детекторов может напрямую влиять на вероятность увеличения погрешности спектрального решения и не только в диапазоне спектральной нечувствительности детекторов, но и во всем спектральном диапазоне в целом. Количественный уровень вариативности вероятностных погрешностей иллюстрируют данные, представленные в табл. 3.

Подстановка соответствующих данных из табл. 3 в соотношения (7) и (10) позволяет получить следующие значения полной и интервальной погрешностей для рассматриваемых спектральных решений:

- для спектра АРГУС - $\delta = 1.95\%$, $\delta(\Delta E_{ab}) = 16.8\%$;

- для спектра АРГУС* - $\delta = 198\%$, $\delta(\Delta E_{ab}) = 326\%$.

По схеме, аналогичной представленной в табл. 3, и соотношениям (7), (10) для компоненты тепловых нейтронов рассмотренных спектральных

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 4 2011

представлений получены значения $\delta = 3.97\%$ (АРГУС) и $\delta = 4.02\%$ (АРГУС*).

Приведенные выше данные показывают прямую зависимость между информационной репрезентативностью набора измерительных интегральных детекторов и оцениваемыми погрешностями итогового спектрального решения КАСКАД (как в целом, так и поинтервально), величина которых, при отсутствии соответствующего анализа спектральной чувствительности измерительного набора, может оказаться весьма значительной.

ЗАКЛЮЧЕНИЕ

Предлагаемый метод оценки погрешности спектра флюенса нейтронов ориентирован на поиск спектрального решения по программе КАСКАД в виде суперпозиционной композиции ограниченного числа физически обусловленных модельных спектров различных типов.

Практическая апробация предлагаемого подхода в целом подтвердила возможность достижения физически правдоподобной количественной оценки погрешности как для спектрального решения на всем энергетическом интервале определения, так и на избранных энергетических интервалах.

Кроме того, установлена также возможность использования предлагаемого метода в качестве эффективного способа оценки спектральной репрезентативности набора интегральных детекто-

ров, использованных для получения необходимых экспериментальных данных. Реализованная форма оценки спектральной репрезентативности может быть использована как на заключительной стадии (после проведения измерений и поиска спектрального решения по сформированной выборке экспериментально установленных интегральных данных), так и на стадии планирования эксперимента. Необходимая оценка может быть выполнена либо с использованием данных расчетной оценки, аппроксимированных соответствующими модельными спектрами, либо с использованием близких спектральных аналогий в полях известной (представимой) физической трансформации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Колеватов Ю.И., Семенов В.П., Трыков Л.А. Спектрометрия нейтронов и гамма-излучения в радиационной физике. М.: Энергоатомиздат, 1991.
- Севастьянов В.Д., Кошелев А.С., Маслов Г.Н. Характеристики полей нейтронов. Источники мгновенных нейтронов деления, генераторы 14 МэВ нейтронов, исследовательские и энергетические реакторы, устройства, конвертирующие нейтронное излучение. Справочник / Под ред. В.Д. Севастьянова. Менделеево: ВНИИФТРИ, 2007.
- 3. Григорьев Е.И., Трошин В.С., Ярына В.П. // Измер. техника. 2002. № 1. С. 66.
- Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. Л.: Энергоатомиздат, 1991.