ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 539.125:621.039.55

АСИММЕТРИЧНОЕ ДЕЛЕНИЕ ЯДЕР ²³⁵U ТЕПЛОВЫМИ НЕЙТРОНАМИ И БЫСТРЫМИ НЕЙТРОНАМИ ИМПУЛЬСНЫХ ЯДЕРНЫХ РЕАКТОРОВ

© 2011 г. В. Д. Севастьянов

ВНИИ физико-технических и радиотехнических измерений Россия, 141570, Московская обл., Солнечногорский р-н, п/о Менделеево Поступила в редакцию 26.10.2010 г.

Измерены весовые вклады нейтронов, излучаемых из шейки гантелеобразных возбужденных делящихся ядер ²³⁵U в момент их деления, в спектр мгновенных нейтронов деления и соотношения этих вкладов при делении ядер тепловыми нейтронами и быстрыми нейтронами импульсных ядерных реакторов.

Энергетический спектр мгновенных нейтронов деления (м.н.д.) ядер трансурановых нуклидов может быть представлен в простой аналитической форме в виде распределения Максвелла (однокомпонентное представление) [1]:

$$F(E) = A\sqrt{E}e^{-\alpha_f E},\tag{1}$$

где α_f — константа деления, E — энергия нейтронов, A — масштабный коэффициент. Для реакции деления ядер ²³⁵U тепловыми нейтронами значение константы α_f составляет 0.780. Представление спектра м.н.д. ядер в виде выражения (1) было найдено эмпирическим путем исходя из экспериментальных данных по измерению спектра нейтронов деления ядер ²³⁵U с применением трековых ядерных фотоэмульсий.

Однако процесс деления ядер трансурановых элементов является сложным многокомпонентным процессом и может быть как асимметричным (на два осколка с различными массами), так и симметричным (на два осколка с равными массами). Соотношение между вероятностями этих двух каналов деления ядер зависит как от типа делящегося нуклида, так и от энергии нейтронов, вызывающих деление. Вероятность симметричного деления ядер ²³⁵U тепловыми нейтронами незначительна – примерно в 300 раз меньше асимметричного. Акт деления ядер ²³⁵U сопровождается испусканием нейтронов. Это м.н.д., которые могут испускаться из возбужденного делящегося ядра до акта деления, в процессе деления и после деления из переобогащенных нейтронами возбужденных ядер-осколков деления [2, 3].

Согласно капельной модели деления, процесс асимметричного деления обусловлен нарушением равновесных колебательных процессов в ядре в результате его возбуждения нейтронами, а орбитальные структуры ядер-осколков деления формируются еще до момента асимметричного деления ядра [4]. Мгновенные нейтроны из шейки гантелеобразного делящегося ядра вылетают в направлении, перпендикулярном направлению разлета осколков деления, а из переобогащенных нейтронами осколков деления — преимущественно в направлении их разлета. Асимметричное деление является сравнительно "медленным" процессом: время испускания мгновенных нейтронов из осколков деления ²³⁵U составляет ~4 · 10⁻¹⁴ с.

Каждый из указанных выше процессов эмиссии нейтронов при делении ядер ²³⁵U является следствием, главным образом, неупругих процессов либо в делящемся ядре, либо в ядрах-осколках деления. Поэтому впервые в работах [5, 6] спектр м.н.д. ядер ²³⁵U тепловыми нейтронами был представлен в виде суперпозиции трех парциальных неупругих испарительных спектров Вайскопфа:

$$F(E) = A_{B_1} E e^{-\alpha_{B_1} E} + A_{B_2} E e^{-\alpha_{B_2} E} + A_{B_3} E e^{-\alpha_{B_3} E}, \quad (2)$$

где $\alpha_{B_1}, \alpha_{B_2}, \alpha_{B_3}$ — константы парциальных спектров Вайскопфа; $A_{B_1}, A_{B_2}, A_{B_3}$ — весовые вклады парциальных спектров, определяемые условием нормировки:

$$\int_{0}^{\infty} F(E)dE = 1.$$
 (3)

Предполагается, что в уравнении (2) первый парциальный спектр (B_1) связан с мгновенными нейтронами, вылетающими из шейки гантелеобразного делящегося ядра в момент деления ядер ²³⁵U, второй парциальный спектр (B_2) формируется нейтронами, вылетающими из переобогащенных нейтронами ядер-осколков деления, а третий парциальный спектр состоит из нейтро-

нов, испаряемых из возбужденного делящегося ядра до момента его асимметричного деления [6].

В работе [7] спектр м.н.д. ядер ²³⁵U тепловыми нейтронами и спонтанного деления ²⁵²Cf представлен уже в виде суперпозиции четырех парциальных спектров:

$$F(E) = A_{B_1} E e^{-\alpha_{B_1} E} + A_{B_2}^1 E e^{-\alpha_{B_2}^1 E} + A_{B_2}^2 E e^{-\alpha_{B_2}^2 E} + A_{B_3} E e^{-\alpha_{B_3} E}.$$
(4)

Это более корректное представление спектра деления (4), здесь автор вместо одного второго парциального спектра нейтронов, вылетающих из обоих осколков деления, включил в расчет уже два парциальных спектра, соответствующие нейтронам из легкого и тяжелого осколков деления.

Цель настоящей работы – определить соотношение между вкладами первого парциального спектра (см. уравнение (4)) в спектры м.н.д. ядер ²³⁵U тепловыми нейтронами и быстрыми нейтронами в центре металлической активной зоны (а.з.) некоторых импульсных ядерных реакторов РФ и США [8]. Для импульсных ядерных реакторов характерно то, что энергетический спектр нейтронов в центре металлической а.з. реактора преимущественно определяется степенью обогащения урана по изотопу ²³⁵U, содержанием молибдена в ядерном топливе (сплав урана и молибдена) и массой а.з. Поле нейтронов в центре а.з. импульсных ядерных реакторов изотропно, а в спектрах нейтронов в центре а.з. (внутри центрального канала (ц.к.)) нет тепловых и эпитепловых нейтронов вследствие экранировки поля нейтронов в центре а.з. от нейтронов, рассеянных в экспериментальном зале реактора самим материалом а.з. Средняя энергия нейтронов в спектрах в центре а.з. исследуемых импульсных реакторов находится в диапазоне от 1.1 до 1.4 МэВ. Средняя энергия нейтронов в спектре м.н.д. ядер ²³⁵U тепловыми нейтронами составляет 1.97 МэВ.

Известно также, что спектр нейтронов F(E) в ц.к. импульсных реакторов [9, 10] представляется достаточно корректно в виде суперпозиции всего двух парциальных спектров: спектра м.н.д. ядер ²³⁵U (см. формулу (1)) и спектра Вайскопфа (спектра неупруго рассеянных м.н.д. на ядрах урана и молибдена, входящих в состав ядерного топлива и конструкционных материалов, находящихся как внутри, так и в непосредственной близости от а.з. реактора):

$$F_{p}(E) = A_{f}\sqrt{E}e^{-\alpha_{f}E} + A_{B}Ee^{-\alpha_{B}E},$$
(5)

где α_f и α_B – константы парциального спектра деления ядер ²³⁵U и испарительного спектра Вайскопфа соответственно, E – энергия нейтронов.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 3 2011

Энергетические спектры нейтронов в центре металлической а.з. импульсных реакторов в данной работе представлены более детально, в виде суперпозиции пяти парциальных спектров Вайскопфа:

$$F(E) = A_{B_1} E e^{-\alpha_{B_1} E} + A_{B_1}^P E e^{-\alpha_{B_1}^F E} + A_{B_2}^1 E e^{-\alpha_{B_2}^F E} + A_{B_2}^2 E e^{-\alpha_{B_2}^2 E} + A_{B_3} E e^{-\alpha_{B_3} E}.$$
(6)

Здесь первые два парциальных спектра содержат мгновенные нейтроны, вылетающие из шейки гантелеобразных возбужденных ядер 235 U в момент их деления. Это нейтроны первого компонента спектра, как не претерпевшие упругого рассеяния (α_{B_1}), так и претерпевшие одно или два ак-

та упругого рассеяния ($\alpha_{B_1}^{P}$) на ядрах материала а.з. реактора. Третий и четвертый парциальные спектры включают главным образом нейтроны, вылетающие из легкого и тяжелого осколков деления ядер ²³⁵U. Пятый парциальный спектр представлен нейтронами, вылетающими до начала деления ядер ²³⁵U, и частично м.н.д., неупруго рассеянными в материале а.з.

Спектры в исследуемых полях нейтронов восстанавливались по стандартизованной программе КАСКАД-176 [11, 12]. Корректность восстановления спектров в исследуемых полях нейтронов оценивалась сравнением расчетных и измеренных интегральных сечений ядерных реакций, происходящих в облучаемых нейтронами активационных и делительных детекторах, используемых при измерениях на конкретном реакторе. Расчет интегральных сечений проводился с использованием восстановленного спектра нейтронов и дифференциальных сечений ядерных реакций, имеющихся в библиотеке программы. Сечения ядерных реакций, используемых при восстановлении спектров нейтронов, приведены в работе [13]. Для исключения возможных систематических погрешностей при восстановлении спектров нейтронов в настоящей работе в расчет принимали только нормированные на одно ядро нуклида-мишени количества (или скорости) ядерных реакций (для исследуемых полей нейтронов ядерных реакторов), полученных как автором настоящей работы, так и специалистами других отечественных и зарубежных научных центров [14–17]. Как правило, для корректного измерения спектра нейтронов в исследуемых полях ядерных реакторов использовали наборы стандартных активационных и делительных детекторов, чувствительность к нейтронам которых охватывает весь диапазон восстанавливаемого спектра [18]. Энергетический диапазон восстанавливаемых спектров составлял 10⁻¹⁰-18 МэВ. При восстановлении спектра нейтронов деления ядер ²³⁵U тепловыми нейтронами

СЕВАСТЬЯНОВ

		Ис	точник нейтро	энов или тип я	дерного реакт	opa	
Ядерная реакция	Деление ²³⁵ U тепловыми нейтронами	GODIVA (ц.к.)	БАРС-1 (ц.к.)	БАРС-5 (ц.к.)	SPR-3 (ц.к.)	БИР-2 (ц.к.)	БР-1 (ц.к.)
1	2	3	4	5	6	7	8
240 Pu(<i>n</i> , <i>f</i>)						$1.50 \cdot 10^{-10}$	
$^{236}{\rm U}(n,f)$			$4.93 \cdot 10^{-11}$				
24 Mg(n, p)	$2.42 \cdot 10^{-13}$	$3.37 \cdot 10^{-17}$		$2.57 \cdot 10^{-13}$	$9.65 \cdot 10^{-15}$		
$^{27}\mathrm{Al}(n,p)$	$6.50 \cdot 10^{-13}$	$9.23 \cdot 10^{-17}$		$9.36 \cdot 10^{-13}$			$9.07 \cdot 10^{-14}$
27 Al (n, α)	$1.15 \cdot 10^{-13}$	$1.60 \cdot 10^{-17}$	$5.84 \cdot 10^{-14}$	$1.73 \cdot 10^{-13}$	$4.77 \cdot 10^{-15}$	$5.96 \cdot 10^{-14}$	$9.07 \cdot 10^{-14}$
$^{32}\mathrm{S}(n,p)$	$1.08 \cdot 10^{-11}$	$1.54 \cdot 10^{-15}$	$5.21 \cdot 10^{-12}$	$1.55 \cdot 10^{-11}$	$4.47 \cdot 10^{-13}$	$5.42 \cdot 10^{-12}$	$8.51 \cdot 10^{-12}$
54 Fe (n, p)	$1.32 \cdot 10^{-11}$	$1.78 \cdot 10^{-15}$	$6.44 \cdot 10^{-12}$	$1.90 \cdot 10^{-11}$	$5.45 \cdot 10^{-13}$		$1.03 \cdot 10^{-11}$
${}^{56}{ m Fe}(n,p)$	$1.71 \cdot 10^{-13}$	$2.63 \cdot 10^{-17}$		$2.51 \cdot 10^{-14}$	$7.24 \cdot 10^{-15}$	$8.85 \cdot 10^{-14}$	$1.34 \cdot 10^{-13}$
58 Ni (n, p)	$1.72 \cdot 10^{-11}$	$2.33 \cdot 10^{-15}$	$8.55 \cdot 10^{-12}$	$2.55 \cdot 10^{-11}$	$7.72 \cdot 10^{-13}$	$8.80 \cdot 10^{-12}$	$1.38 \cdot 10^{-11}$
93 Nb(<i>n</i> , 2 <i>n</i>)	$7.46 \cdot 10^{-14}$		$3.66 \cdot 10^{-14}$	$1.06 \cdot 10^{-13}$		$3.75 \cdot 10^{-14}$	$5.55 \cdot 10^{-14}$
$^{19}F(n, 2n)$				$2.40 \cdot 10^{-15}$			
115 In(<i>n</i> , <i>n</i> ')	$3.18 \cdot 10^{-11}$	$4.40 \cdot 10^{-15}$		4.90 · 10 ⁻¹¹	$1.45 \cdot 10^{-12}$	$1.70 \cdot 10^{-11}$	$2.72 \cdot 10^{-11}$
199 Hg(<i>n</i> , <i>n</i> ')	$3.81 \cdot 10^{-11}$						
199 Hg(<i>n</i> , <i>n</i> ')*				$5.82 \cdot 10^{-11}$			
204 Pb(<i>n</i> , <i>n</i> ')	$3.28 \cdot 10^{-12}$		$1.56 \cdot 10^{-12}$	$4.79 \cdot 10^{-12}$		$2.85 \cdot 10^{-10}$	
237 Np(<i>n</i> , <i>f</i>)	$2.25 \cdot 10^{-10}$	$3.43 \cdot 10^{-14}$	$1.34 \cdot 10^{-10}$	$4.14 \cdot 10^{-10}$	$1.23 \cdot 10^{-11}$	$1.47 \cdot 10^{-10}$	$2.37 \cdot 10^{-10}$
238 U(<i>n</i> , <i>f</i>)	$5.01 \cdot 10^{-11}$	$6.77 \cdot 10^{-15}$	$2.47 \cdot 10^{-11}$	$7.47 \cdot 10^{-11}$	$2.32 \cdot 10^{-12}$	$2.60 \cdot 10^{-11}$	$4.23 \cdot 10^{-11}$
¹⁹⁷ Au(n, g)	$1.38 \cdot 10^{-11}$		$1.78 \cdot 10^{-11}$			$2.20 \cdot 10^{-11}$	$3.78 \cdot 10^{-11}$
$^{197}{\rm Au}(n,g)^*$							$3.78 \cdot 10^{-11}$
$^{235}\mathrm{U}(n,f)$	$2.10 \cdot 10^{-10}$	$4.19 \cdot 10^{-14}$	$1.69 \cdot 10^{-10}$			$2.05 \cdot 10^{-10}$	
235 U(<i>n</i> , <i>f</i>)*				$5.56 \cdot 10^{-10}$	$1.76 \cdot 10^{-11}$		$3.45 \cdot 10^{-10}$
239 Pu(<i>n</i> , <i>f</i>)	$3.09 \cdot 10^{-10}$	$6.19 \cdot 10^{-14}$	$2.43 \cdot 10^{-10}$			$2.94 \cdot 10^{-10}$	$4.91 \cdot 10^{-10}$
239 Pu(<i>n</i> , <i>f</i>)*				$7.92 \cdot 10^{-10}$			$4.91 \cdot 10^{-10}$
103 Rh(<i>n</i> , <i>n</i> ')	$1.24 \cdot 10^{-10}$		6.91 · 10 ⁻¹¹	$2.15 \cdot 10^{-10}$		$7.52 \cdot 10^{-11}$	$1.22 \cdot 10^{-10}$
139 La(<i>n</i> , <i>g</i>)				$4.74 \cdot 10^{-12}$			
241 Am (n, f)	$2.42 \cdot 10^{-10}$					$1.43 \cdot 10^{-10}$	
$^{241}\text{Am}(n, f)^*$				$4.06 \cdot 10^{-10}$			
63 Cu(<i>n</i> , <i>g</i>)		$4.68 \cdot 10^{-16}$	$2.03 \cdot 10^{-12}$	$7.07 \cdot 10^{-12}$		$2.60 \cdot 10^{-12}$	$4.38 \cdot 10^{-12}$
$^{63}Cu(n,g)^{**}$				$6.91 \cdot 10^{-12}$	$2.18 \cdot 10^{-13}$		$4.38 \cdot 10^{-12}$
238 Pu(<i>n</i> , <i>f</i>)			$2.40 \cdot 10^{-10}$			$2.78 \cdot 10^{-10}$	

Таблица 1. Нормированные значения скоростей (или числа) дозиметрических ядерных реакций при облучении детекторов в исследуемых полях нейтронов

* Облучение нейтронами активационного детектора в цилиндрическом полом экране из кадмия с толщиной стенки 1.0 мм. ** Облучение нейтронами активационного детектора в цилиндрическом полом экране из кадмия с толщиной стенки 0.55 мм.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 3 2011

	Характери-	стики актив- ной зоны: содержание 23511.00000	о, содер- жание Мо, %; масса актив- ной зоны, кг	13			93.5; 1.5; 66		90.5; 3.0; 88.5		90.96; 10; 146		93.2; 10; 252		85.0; 6.0; 121		90.1; 90; 173	
	Вклад м.н.д. из шейии	из шсими гантелеобраз- ного деляще-	$(A_{\mathrm{B}_{\mathrm{I}}}+A_{\mathrm{B}_{\mathrm{I}}}^{p}),$	12		8.71		13.42		13.22		12.84		12.28		12.29		12.00
			$\frac{\alpha_{\rm B_3}(A_{\rm B_3}, \mathscr{H})}{E, {\rm M} \Im {\rm B}}$	11		$\frac{4.0(16.30)}{0.550}$	5.0(29.54)	$\frac{4.4(44.14)}{0.446}$	5.0(36.56)	$\frac{4.3(51.60)}{0.465}$	5.0(41.81)	$\frac{4.3(56.12)}{0.465}$	5.0(42.86)	$\frac{4.3(57.46)}{0.465}$	5.0(45.09)	$\frac{4.4(57.85)}{0.446}$	5.0(48.74)	$\frac{4.4(60.22)}{0.446}$
		скопфа	$\frac{\alpha_{\mathrm{B}_2}^2(A_{\mathrm{B}_2}^2, \mathscr{H})}{E, \mathrm{M} \ni \mathrm{B}}$	10		$\frac{0.96(40.09)}{2.084}$		$\frac{0.96(23.36)}{2.084}$		$\frac{0.96(18.90)}{2.084}$		$\frac{0.96(17.16)}{2.084}$		$\frac{0.96(16.79)}{2.084}$		$\frac{0.96(16.08)}{2.084}$		$\frac{0.96(15.06)}{2.084}$
	ьные спектры	ительные Вай	$\frac{\alpha_{\rm B_2}^1(A_{\rm B_2}^1,\%)}{E,{\rm M}_{\rm 3}{\rm B}}$	6		$\frac{0.92(34.90)}{2.174}$		$\frac{0.92(19.11)}{2.174}$		$\frac{0.92(16.32)}{2.174}$		$\frac{0.92(14.60)}{2.174}$		$\frac{0.92(13.50)}{2.174}$		$\frac{0.92(13.82)}{2.174}$		$\frac{0.92(12.76)}{2.174}$
	Парциал	Испарі	$\frac{\alpha_{\mathrm{B}_{\mathrm{I}}}^{p}(A_{\mathrm{B}_{\mathrm{I}}}, \mathscr{H})}{E, \mathrm{M} \Im \mathrm{B}}$	8				$\frac{0.80(9.24)}{2.470}$		$\frac{0.81(19.39)}{2.470}$		$\frac{0.82(8.69)}{2.241}$		$\frac{0.86(9.39)}{2.326}$		$\frac{0.83(8.91)}{2.241}$		$\frac{0.85(8.99)}{2.352}$
івной зоной			$\frac{\alpha_{\mathrm{B_{l}}}(A_{\mathrm{B_{l}}}, \%)}{E, \mathrm{M} \Im \mathrm{B}}$	7		$\frac{0.69(8.71)}{2.898}$		$\frac{0.69(4.18)}{2.898}$		$\frac{0.69(3.83)}{2.898}$		$\frac{0.69(3.47)}{2.898}$		$\frac{0.69(2.89)}{2.898}$		$\frac{0.69(3.38)}{2.898}$		$\frac{0.69(3.00)}{2.898}$
кой акти		Дели- тельный	$lpha_f^{lpha_f}(A_f,\%)$	9	0.780 (100.00)		0.780 (70.49)		0.786 (63.48)		0.786 (58.22)		0.803 (57.18)		0.786 (54.95)		0.786 (51.30)	
галличес	Connad	средния энергия нейтро-	нов в спектре, МэВ	5	1.892	1.928	1.474	1.455	1.373	1.331	1.278	1.248	1.240	1.213	1.229	1.211	1.174	1.164
оров с ме		С.к.о., % (число	реакций)	4	2.13 (18)	1.11 (18)	3.27 (13)	2.90 (13)	2.39 (15)	1.55 (15)	3.19 (21)	1.92 (21)	2.60 (10)	3.23 (11)	1.74 (16)	1.36 (16)	1.11 (18)	1.83 (18)
ерных реакто		Флюенс нейтронов,	cM^{-2}	3	$1.725\cdot 10^{14}$	$1.722 \cdot 10^{14}$	$3.378 \cdot 10^{10*}$	$3.385 \cdot 10^{10*}$	$1.373\cdot 10^{14}$	$1.383\cdot 10^{14}$	$4.513 \cdot 10^{14}$	$4.568 \cdot 10^{14}$	$1.395\cdot 10^{14}$	$1.411 \cdot 10^{14}$	$1.645\cdot 10^{14}$	$1.662 \cdot 10^{14}$	$2.745 \cdot 10^{14}$	$2.781 \cdot 10^{14}$
сных яде	Тип	априор- ного спектра	(номер форму- лы)	2	(1)	(4)	(5)	(9)	(5)	(9)	(5)	(9)	(5)	(9)	(5)	(9)	(5)	(9)
нами импуль		Нейтронный источник,	тип ядерного реактора		Деление ²³⁵⁵ U тепло-	выми нейтронами	GODIVA (II.K.)		БАРС-1 (ц.к.)		БАРС-5 (ц.к.)		SPR-3 (ц.к.)		БИР-2 (ц.к.)		БР-1 (ц.к.)	
троі		Ž	п/п	1	-		2		3		4		5		9		٢	

АСИММЕТРИЧНОЕ ДЕЛЕНИЕ ЯДЕР

Таблица 2. Обобщенные результаты восстановления спектров мгновенных нейтронов деления ядер ²³⁵U при делении их тепловыми и быстрыми ней-

25

* Плотность потока, см $^{-2} \cdot c^{-1}$

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 3 2011

Таблица 3.	Измє	еренн	Hble 3	наче	1 КИН	инте	гралі	ыных	сече	ний (д (о)	ернь	их реакі	ций в і	1сследує	XIANS	впоп	іх неі	нодті	ов и	то хи	иниц	e or p	ассч	итані) XIAH	∆ σ)	
													Исследу	емые п	оля нейт	ронс	B											
Ядерная реакция	Ļ	23 (дел теплс тейтро	5U Іение Івымі онамі	и)		(1 05	DIVA I.K)			БА (ш	PC-1			БАР [,] (ц.)	C-5 c.)			SPR (II.K				БИР. (ц.к.	· · ·			БР-1 (ц.к.)		
	α, M6 (1)	Δ α , %	α, Mб (4)	Δ α , %	α, Mб (5)	Δa, %	α, MŐ (6)	% ^α ,	, α, (5)	Δa, %	α, M6 (6)	Δa, %	σ, мб (5)	Δ α , %	σ, мб (6)	Δσ, %	а, Мб (5)	Δσ, %	α, Mố (6)	%¢	α, MG (5)	%, %, %,	α, M6 (6)	<u>ک</u> کر %و	α, α 46 Δ	ريم ت ريم ت	ي. 65ئ 2	ő,%
-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 2	26 2	27 2	8	59
$^{240}\mathrm{Pu}(n,f)$																					912	1.8	1 206	0.				
$^{236}U(n,f)$									359	2.0	357	-2.4																
$^{24}\mathrm{Mg}(n,p)$	1.40	1.6	1.41	-0.2	1.00	0.7	1.00) 2.0					0.79	6.0	0.78	2.5	0.69	1.4	, 89.0	4.7								
$^{27}\mathrm{Al}(n,p)$	3.77	-3.5	3.78	-1.8	2.73	-9-	1 2.73	.4-	-				2.07	-0.3	2.05	0.9												
$^{27}\mathrm{Al}(n,\alpha)$	0.67	2.8	0.67	0.8	0.47	2.0	0.47	7 3.2	0.43	1.5	0.42	2.1	0.38	-0.1	0.38	1.7	0.34	-2.1	0.34	1.5 ().36 -	-0.2 0	.36 2	.6 0.	.33 2		33 2	4
$^{32}\mathrm{S}(n,p)$	62.4	-3.4	62.5	-0.5	45.6	-7.2	2 45.5	2 -6	3 37.9	0.4	1 37.7	-0.8	34.3	0.9	33.9				31.7	1.3	33.0 -	-0.7 3	32.6 -	0.6 3.	1.0 -	1.5 3(0.9
54 Fe (n, p)	76.7	-2.2	76.8	0.4	52.7	0.3	52.6	5 1.5	46.9	0.0	46.6	0.2					39.0	3.5		3.1				3.	7.5 1	.1 33	7.0 1	6
54 Fe $(n, p)^*$													42.1	2.2	41.6	1.2			38.6									
$^{56}\mathrm{Fe}(n,p)$	0.99	1.7	0.99	1.0	0.78	2.4	0.78	3 4.2									0.52	-3.0	0.51	0.4 (.54 -	-0.6 0	.53 2	3 0.	.49 2	.3 0.	48 3	.3
56 Fe $(n, p)^*$													0.56	1.8	0.55	3.4												
$^{58}\mathrm{Ni}(n,p)$	99.7	-1.6	99.8	0.8	69.0	0.3	68.8	3 1.1	62.3	3 -1.3	8 61.8	-1.6	56.5	-0.2	55.8	_ 1.5	55.3	-4.1	54.7 -	-5.0 5	53.5 -	-0.5 5	3.0 -	0.3 51	0.2 -	0.9 49).5	0.4
$^{93}\mathrm{Nb}(n,2n)$	0.43	2.8	0.43	1.2					0.27	, -7.6	0.27	0.4	0.24	-2.7	0.23	1.4).23 -	-5.7 0	.23 –	0.7 0.	.20 -	0.3 0.	20	0.3
$^{19}\mathrm{F}(n,2n)$													$5.3 \times \times 10^{-3}$	-12.6	$5.25 \times \\ \times 10^3$	_ 1.4												
$^{115}\mathrm{In}(n,n')$	184	-0.9	185	-1.4	. 130	1.0	130) -2.1	5				109	1.1	107	3.4	104	2.6	102 -	-1.9	103	0.7	102 -	2.6 9	9.1 -	1.2 93	7.8 -	3.3

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 3 2011

26

СЕВАСТЬЯНОВ

АСИММЕТРИЧНОЕ ДЕЛЕНИЕ ЯДЕР

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
3.3 164 -1.6 166 -0.8 164 -6.0 158 2.3 156 -1.8 152 -4.5 3.3 164 -1.6 166 -0.8 164 -6.0 134 -0.3 132 -0.2 136 -1.0 1.5 1217 1.9 1258 -0.5 1243 0.5 1234 0.9 1257 -0.1 136 -1.0 1.5 1217 1.9 1258 -0.5 1243 -0.2 138 -0.2 136 -1.0 0.9 471 1.9 1258 -0.5 1243 -0.2 1264 0.8 2.1 1734 2.9 1 176 0.7 1788 -0.2 1764 0.7 0.9 471 -0.8 1 1769 0.7 1788 -0.2 1764 0.7 0.9 10.4 1.2 453 0.0 444 -0.4
3.3 164 -1.6 166 -0.8 164 -6.0 134 -0.6 138 -0.2 136 -0.0 1.5 1.21 1.9 1.58 -0.5 134 -0.3 132 -0.6 138 -0.2 136 -1.0 1.5 1217 1.9 1258 -0.5 1243 0.5 1234 0.9 1257 -0.1 1240 0.4 1.5 1217 1.9 1258 -0.5 1243 0.5 1234 0.9 1257 -0.1 1240 0.4 0.9 471 1.9 1258 -0.5 1243 -0.2 138 -0.3 1764 0.7 0.9 471 -0.8 1.1 1764 0.7 1788 -0.3 1764 0.7 0.9 471 10.8 1.1 1669 0.7 1788 -0.3 1764 0.7 10.4 10.4 1.2 457 1.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
1.5 1217 1.9 1258 -0.5 1243 0.5 1257 -0.1 1240 0.4 1.5 1217 1.9 1258 -0.5 1243 -0.2 2 1240 0.4 2.1 1.9 1258 -0.5 1243 -0.2 2 1240 0.4 2.1 1.9 1258 -0.5 1243 -0.2 1244 0.7 2.1 1734 2.9 -1.3 -1.3 -1.2 -1.2 -1.2 -1.2 -0.3 1764 0.7 -0.8 10.4 -1.3 -1.3 -1.3 -1.5 -1.2 -1.44 -0.44 -0.44 -0.44 -0.3 -0.32 -0.34 -0.3 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34
1.5 1217 1.9 1258 -0.5 1243 -0.2 1243 -0.2 1240 0.4 2.1 1.7 2.9 1 1787 0.1 1769 0.7 1788 -0.2 1764 0.8 2.1 1734 2.9 1 1 457 1.2 453 0.0 444 -0.4 438 -0.3 0.9 471 -0.8 1 1 457 1.2 453 0.0 444 -0.4 438 -0.3 0.9 471 -0.8 1 1 861 1.1 88 -0.3 1764 0.7 0.9 471 -0.8 1 1 861 -1.6 1 -0.4 -0.3 1764 0.7 -0.8 10.4 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 1 1
2.1 1734 2.9 1787 0.1 1769 0.7 1788 -0.2 1764 0.8 0.9 471 -0.8 1 457 1.2 453 0.0 444 -0.4 438 -0.3 0.9 471 -0.8 1 457 1.2 453 0.0 444 -0.4 438 -0.3 -0.8 10.4 -1.3 1 869 1.1 861 -1.6 1 1<861
2.1 1734 2.9 \sim 457 1.2 453 0.0 444 -0.3 1764 0.7 0.9 471 -0.8 \sim 457 1.2 453 0.0 444 -0.4 438 -0.3 -0.8 10.4 -1.3 \sim \sim 457 1.2 453 0.0 444 -0.4 438 -0.3 -0.8 10.4 -1.3 \sim \sim 869 1.1 861 -1.6 \sim
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
0.7 15.1 0.7 15.1 0.7 15.8 0.9 15.8 0.4 1 1 1 1 1 1 1 1 1
1690 0.3 1673 0.9

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 3 2011

Таблица 3. Окончание

при расчете использовали дифференциальные сечения ядерных реакций библиотеки ENDF/B-V и оцененные значения NBS [19].

В табл. 1 приведены нормированные значения скоростей (или количество) дозиметрических ядерных реакций в стандартных активационных и делительных детекторах при облучении их нейтронами в исследуемых полях реакторов. При измерениях спектров нейтронов были преимущественно использованы ядерные реакции первой категории, сечения которых известны с наивысшей точностью. Измерения наведенной активности в облученных нейтронами детекторах проводили на "эталонированных" γ -спектрометрах с полупроводниковыми блоками детектирования. Погрешность измерения наведенной активности радионуклидов в активационных детекторах лежала в диапазоне от 2 до 4% (P = 0.95).

В табл. 2 представлены обобщенные результаты восстановления спектров нейтронов в исследуемых полях нейтронов. Для повышения достоверности измерений спектр нейтронов в каждом из полей восстанавливался двумя разными методами с использованием априорных спектров по формулам (1), (4)-(6). Результаты восстановления спектра каждого поля нейтронов с представлением двухкомпонентного априорного спектра по формуле (5) позволили оценить вклады спектра м.н.д. ядер ²³⁵U и испарительного спектра Вайскопфа в результирующий спектр нейтронов каждого реактора. Из табл. 2 видно, что с уменьшением степени обогащения урана по изотопу ²³⁵U и увеличением массы а.з. реактора вклад делительного компонента (A_f) в спектр (табл. 2, столбец 6) уменьшается от 70.49% для реактора GODIVA до 51.30% для реактора БР-1 и, наоборот, вклад неупруго рассеянных нейтронов (столбец 11) в материале а.з. (АВ,) увеличивается с 29.54% для GODIVA до 48.74% для реактора БР-1.

Представление априорных спектров реакторов в пятикомпонентной форме (6) позволило корректно определить вклад нейтронов первого компонента спектра, излучаемых из шейки гантелеобразных ядер в момент их деления (табл. 2, столбец 12), в результирующий спектр нейтронов исследуемых реакторов, а также вклады нейтронов первого компонента спектра, как не испытавших упругого рассеяния (табл. 2, столбец 7), так и испытавших его (табл. 2, столбец 8) в материале а.з. Из данных табл. 2 (столбцы 7 и 8) следует, что средняя энергия нейтронов в первых парциальных спектрах асимметричного деления ядер, претерпевших упругое рассеяние, уменьшается от 2.898 МэВ (для поля ²³⁵U, деление тепловыми нейтронами) до 2.352 МэВ для поля БР-1. Вклад нейтронов первого компонента спектра деления (столбец 12 табл. 2) в результирующий спектр нейтронов реактора максимален для поля реактора GODIVA и составляет 13.42% (средняя энергия нейтронов в спектре 1.455 МэВ) и минимален для реактора БР-1 – 12.0% (средняя энергия нейтронов в спектре 1.164 МэВ). Из табл. 2 также видно, что вклад нейтронов первого компонента спектра при делении ядер ²³⁵U тепловыми нейтронами составляет 8.71% (пункт № 1, столбец 12 табл. 2), что существенно меньше вкладов первого компонента в спектры шести исследуемых импульсных реакторов (12.0–13.42%).

В табл. 3 представлены результаты согласования измеренных и рассчитанных интегральных сечений ядерных реакций в исследуемых полях нейтронов. Высокий уровень согласия (в пределах нескольких процентов) интегральных сечений ядерных реакций (табл. 3), а также малые значения среднеквадратического отклонения (с.к.о.) по всей совокупности интегральных сечений ядерных реакций (табл. 2, столбец 4), используемых при восстановлении каждого спектра реактора, свидетельствуют о высокой достоверности восстановленных спектров.

Таким образом, можно сделать следующие выводы.

1. При делении ядер ²³⁵U как тепловыми, так и быстрыми нейтронами импульсных реакторов имеет место преимущественно асимметричное деление ядер.

2. Вклад первого компонента спектра деления в спектр м.н.д. ядер ²³⁵U тепловыми нейтронами составил 8.71% (см. табл. 2, п. № 1, столбец 12).

3. Значения вкладов первого компонента спектра деления ядер²³⁵U в спектры быстрых нейтронов в центре а.з. импульсных реакторов со средней энергией в спектрах от 1.164 МэВ (реактор БР-1) до 1.474 МэВ (реактор GODIVA) возрастает на 11.8% (от 12.00 до 13.72%), что в 1.3–1.6 раза превышает значения первого компонента спектра деления ядер²³⁵U тепловыми нейтронами (см. столбец 12 табл. 2).

4. Средняя энергия нейтронов первого компонента в спектрах м.н.д. ядер ²³⁵U как при делении их тепловыми, так и быстрыми нейтронами импульсных реакторов практически одинакова и составляет 2.898 МэВ (наблюдается только некоторое смягчение спектра части нейтронов первого компонента спектра деления за счет упругого рассеяния в материале а.з. (см. столбцы 7, 8 табл. 2)). Это означает, что механизм генерации нейтронов асимметричного деления ядер ²³⁵U при делении их как тепловыми, так и быстрыми нейтронами импульсных реакторов остается идентичным.

СПИСОК ЛИТЕРАТУРЫ

- 1. Горбачев В.М., Замятнин Ю.С., Лбов А.А. Взаимодействие излучений с ядрами тяжелых элементов и деления ядер. Справочник. М.: Атомиздат, 1976. С. 382.
- Физический энциклопедический словарь / Под ред. А.М. Прохорова. М.: Советская энциклопедия, 1984. С. 147.
- 3. Мухин К.Н. Введение в ядерную физику. М.: Атомиздат, 1965. С. 391.
- Протопово А.Н. // Асимметрия деления. Физика деления атомных ядер. Сборник статей / Под. ред. Н.А. Перфилова, В.П. Эйсмонта. М.: Атомиздат, 1962. С. 29.
- 5. Севастьянов В.Д., Кошелев А.С., Маслов Г.Н. // ПТЭ. 2003. № 4. С. 5.
- 6. Севастьянов В.Д., Кошелев А.С., Маслов Г.Н. // Атом. энергия. 2001. Т. 91. Вып. 3. С. 206.
- 7. Севастьянов В.Д. // ПТЭ. 2010. № 6. С. 11.
- Колесов В.Ф. Апериодические импульсные реакторы. Саров: Издательство РФЯЦ-ВНИИЭФ, 1999.
- 9. Севастьянов В.Д., Кошелев А.С., Маслов Г.Н. // Атом. энергия. 1994. Т. 76. Вып. 1. С. 55.
- Севастьянов В.Д., Кошелев А.С., Маслов Г.Н., Одинцов Ю.М. //Атом. энергия. 1995. Т. 79. Вып. 2. С. 107.

- МИ 2804-2003. Метод расчета спектра нейтронов по результатам измерений с интегральными детекторами. М.: Изд-во ФГУП "ВНИИФТРИ", 2003.
- Маслов Г.Н., Севастьянов В.Д., Кошелев А.С. // Измер. техника. 2003. № 5. С. 58.
- 13. Севастьянов В.Д., Кошелев А.С., Маслов Г.Н. Характеристики полей нейтронов. Источники мгновенных нейтронов деления и 14 МэВ-генераторы нейтронов, исследовательские и энергетические реакторы, специальные конвертирующие нейтронное излучение устройства. Справочник. Менделеево: Изд-во ФГУП ВНИИФТРИ, 2007.
- Kelly J., Griffin P., Fan W. // IEEE Trans. Nucl. Sci. 1993. V. 40. № 6. P. 1418.
- 15. *Mc. Elroy W., Armani R., Tochilin E. //* Nucl. Scie. Engny. 1972. V. 48. P. 51.
- Литвин В.И. Автореферат дис. ... канд. техн. наук. Снежинск: РФЯЦ–ВНИИТФ, 1999.
- Литвин В.И. //ВАНТ. Сер. Физика ядерных реакторов. 2001. Вып. 1/2. С. 44.
- 18. Севастьянов В.Д., Кошелев А.С., Маслов Г.Н. // Атом. энергия. 2002. Т. 92. Вып. 6. С. 466.
- 19. JAERI 1325. JENDL Dosimetry File. JAERI. Japan Atomic Energy Research Institute, 1992. P. 24.