ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2011, № 3, с. 126–130

= ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА

УДК 539.1.07

ХАРАКТЕРИСТИКИ ГАЗОВОГО ЭЛЕКТРОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ, НАПОЛНЕННОГО СМЕСЬЮ АРГОН + КСЕНОН

© 2011 г. Д. А. Гоганов*, А. А. Шульц

ООО ЭЛИОН

Россия, 195112, Санкт-Петербург, Малоохтенский просп., 68 *E-mail: imwin@inbox.ru Поступила в редакцию 22.12.2010 г.

Исследованы характеристики газового электролюминесцентного детектора (д.э.л.г.) рентгеновского излучения, наполненного смесью Ar + Xe в диапазоне содержаний Xe от 5 до 100%. Для смеси 80% Ar + 20% Xe обнаружено улучшение энергетического разрешения при повышении давления газовой смеси. Лучший достигнутый результат при давлении 3 ат. составляет 7.25% (Mn K_{α} , 5.9 эB), что на 0.5% абс. выше известных литературных данных. Параметр пик/долина для этой же смеси достигает значения 650 для энергии 5.9 кэB в сравнении со значением 200 для чистого Xe. По уровню достигнутого энергетического разрешения д.э.л.г. пригоден для использования в рентгеновской дифрактометрии для светосильного подавления K_{β} -линий характеристического излучения основных анодов рентгеновских трубок.

1. ВВЕДЕНИЕ

Газовый электролюминесцентный детектор (д.э.л.г., в литературе действует также обозначение ГСПС – газовый сцинтилляционный пропорциональный счетчик) рентгеновского излучения активно разрабатывается и находит применение в энергодисперсионном рентгенофлуоресцентном анализе, рентгеновской астрономии, ядерной физике.

Важнейшим параметром этого детектора является высокое энергетическое разрешение при большой площади входного окна (от единиц до десятков см²). Результат 8.5% для линии 5.9 кэВ был получен португальскими исследователями в 1972 г. [1] и привлек внимание ученых. За прошедшее время благодаря совершенствованию конструкции и технологии изготовления значение разрешения было доведено до 8% [2, 3]. При этом использовался Хе высокой чистоты при давлении от 500 до 1000 Торр. В ряде случаев сообщалось о значении разрешения <8%.

Для удобства дальнейшего изложения остановимся коротко на описании конструкции и характеристиках д.э.л.г. В качестве примера на рис. 1 приведен разрез созданного нами детектора [4]. В керамическом корпусе *I* размещены электроды, делящие объем детектора на две части. Область *I* – область поглощения, формируемая фланцем входного бериллиевого окна 2 и сеткой 3, расстояние между которыми 30 мм. Область *II* – район электролюминесценции, ограниченный сетками № 1 (3) и № 2 (4), расстояние между которыми 10 мм. На

выходе корпуса размещен фланец с окном из MgF_2 (5) для выпуска ультрафиолетового излучения, возникающего в районе II.

Конструкция собирается с помощью твердых припоев и лазерной сварки, а затем прогревается до 300°С при безмасляной откачке. Газовое наполнение — Хе при давлении от 500 до 1000 Торр.

Регистрируемое рентгеновское излучение попадает в объем детектора через входное бериллиевое окно. Облако первичных электронов, возникших при поглощении рентгеновских квантов, устремляется к сетке № 1 под действием потенциа-

Рис. 1. Разрез детектора: 1 -керамический корпус; 2 -бериллиевое окно; 3 и 4 -сетки № 1 и № 2; 5 -окно из MgF₂.

ла ~2 кВ. Далее эти электроны проникают в район *II* под действием высокого межсеточного потенциала (~5 кВ). При прохождении межсеточного промежутка электроны в процессе столкновений возбуждают атомы Xe. В процессе тройных столкнове-

ний возникают эксимерные молекулы Xe_2^+ , при распаде которых возникают ультрафиолетовые кванты с длиной волны 173 нм (порядка 500 квантов на 1 электрон на пути 1 см). Напряженность поля между сетками такова, что ионизации молекул газа не возникает. Возникающий свет регистрируется с помощью фотоэлектронного умножителя (ф.э.у.).

Энергетическое разрешение д.э.л.г. записывается в следующем виде:

$$R, \% = 236 \frac{\sigma A}{\overline{A}} = 236 \sqrt{\frac{F\omega}{E} + \frac{C}{\overline{A}}}, \qquad (1)$$

где $\sigma A/\overline{A}$ — относительная среднеквадратическая флуктуация амплитуды импульса \overline{A} ; F — фактор Фано, характеризующий процесс диссипации энергии в данном газе и определяемый из выражения $(\sigma N/\overline{N})^2 \equiv F/\overline{N} (\sigma N/\overline{N})$ — относительная среднеквадратическая флуктуация числа первичных электронов N относительно среднего значения \overline{N}); $\omega = E/\overline{N}$ — средняя энергия на пару носителей заряда; E — энергия измеряемого рентгеновского кванта; C — константа, не зависящая от A и определяемая шумами ф.э.у. и электронного тракта.

При этом под корнем в выражении (1) пренебрегли относительной среднеквадратической флуктуацией процесса генерации электролюминесценции из-за ее малости: эта величина примерно в 100 раз меньше в сравнении с флуктуацией коэффициента газового усиления в пропорциональном счетчике [5], именно поэтому энергетическое разрешение пары д.э.л.г. – ф.э.у. почти в два раза выше, чем для газового пропорционального счетчика.

За счет повышения светосилы сбора ультрафиолетового излучения при использовании новых фотосенсоров — микростриповых плат и фотодиодов большой площади — удалось достичь разрешения 7.8% [2]. Нами был создан и испытан электролюминесцентный детектор со встроенным и находящимся в вакуумном объеме непосредственно за окном MgF_2 фотокатодом [6], что позволило получить энергетическое разрешение 7.5% за счет повышения светосилы устройства.

Ставя перед собой задачу создания высокоэффективного счетчика для использования в рентгеновском анализе, следовало вести дальше работу по повышению энергетического разрешения д.э.л.г. Уже имеющегося разрешения было достаточно для разделения характеристических линий элементов Z, Z + 2 в системе Менделеева при рентгенофлуоресцентном анализе. Для дискриминации K_{β} -линий в рентгеноструктурном анализе необходимо разрешение ~7% для энергии 5.9 кэВ [7].

2. ЭНЕРГЕТИЧЕСКОЕ РАЗРЕШЕНИЕ Д.Э.Л.Г. С ГАЗОВОЙ СМЕСЬЮ Ar + Xe

С целью дальнейшего повышения энергетического разрешения д.э.л.г. была предпринята попытка по использованию газовой смеси Ar + Xe.

Из литературы известно, что смеси благородных газов, в частности Ar + Xe, Kr + Xe и другие, при взаимодействии с ионизирующим излучением обеспечивают величину ионизации, большую, чем для каждой компоненты в отдельности. Так, из работы [8] следует, что для смеси Ar + Xe при малых содержаниях Xe (5–30%) число возникающих первичных зарядов возрастает в сравнении с данными для чистого Xe (возбуждение α -частицами). Поскольку метастабильный процесс Пеннинга в данных смесях невозможен, автор объясняет возникающую дополнительную ионизацию как результат неметастабильного (короткоживущего [8]) пеннинговского процесса.

Возникновение дополнительной ионизации должно привести к повышению энергетического разрешения за счет роста числа первичных зарядов N и уменьшения фактора Фано. Именно за счет этих факторов в [9] удалось получить разрешение 12% для линии 5.9 кэВ вместо обычных 14% для пропорционального счетчика и смеси 20% Хе + 80% Аг. Следует отметить существенное улучшение энергетического разрешения, несмотря на маскирующий эффект статистики газового усиления и шумов электроники.

Смесь Ar + Xe уже использовалась при работе с д.э.л.г. Так, в работе [10] при изучении широкого набора составов смесей Ar + Xe были получены минимальные значения F для смесей с 5% и 20% Xe, однако эти значения были того же порядка, что и для чистого Xe. В недавних работах [11–13] были повторены эти результаты, лучшее значение разрешения для смеси Ar + Xe (20%) составило 7.8%.

Нами также была проведена работа по использованию смеси Ar + Xe в д.э.л.г. Использовался типичный д.э.л.г. нашей конструкции [4] с применением ФЭУ-39А с фотокатодом Ø38 мм. Обычно лучший результат такого блока детектирования с д.э.л.г. составлял ~8% для линии 5.9 кэВ при давлении Xe 1 ат. Существенное отличие нашей конструкции состоит в возможности работы с давлением газа-наполнителя несколько атмосфер.

На рис. 2 приведена зависимость энергетического разрешения д.э.л.г. от содержания Ar и Xe при суммарном давлении 700 Торр. Измерения были выполнены при диаметре засветки входного окна 10 мм, каждое из значений было получено

Рис. 2. Зависимость энергетического разрешения д.э.л.г. от содержания Xe в смеси Ar + Xe. Давление P = 700 Торр, диаметр пучка 10 мм.

Рис. 3. Зависимость энергетического разрешения д.э.л.г. с ксеноновым наполнением от давления. Диаметр пучка 10 мм.

Рис. 4. Зависимость энергетического разрешения д.э.л.г. от давления смеси 20% Xe + 80% Ar. Диаметр пучка 2 мм.

после откачки и перенаполнения одного и того же детектора. Для чистого Xe разрешение составило 8%, а для смеси 20% Xe + 80% Ar – ~8.3%. Полученный результат близок к данным [11], по крайней мере, в случае больших содержаний Xe в смеси. Следует учитывать существенную разницу

в диаметре фотокатода – у нас 38 мм, в работе [11] 52 мм, что и должно приводить к несколько лучшим результатам в разрешении.

Ожидаемого улучшения разрешения не было получено, хотя по всем данным в зоне І детектора при использовании смеси Ar + Xe должен выделяться при поглощении рентгеновских квантов дополнительный заряд и должно улучшаться энергетическое разрешение. В зоне *II*, как уже говорилось, осуществляется генерация ультрафиолетовых квантов электролюминесценции. и интенсивность этого излучения зависит от количества высвечивающих компонентов. В нашем случае мы можем регистрировать только линию Хе (кварцевое окно ф.э.у., некоторый воздушный зазор между окнами д.э.л.г. и ф.э.у. поглощают более жесткое излучение Ar), и от количества Хе зависят амплитуда сигнала и энергетическое разрешение. Следует учитывать уменьшение количества Хе при использовании смеси Ar + Xe, особенно при малых концентрациях Хе.

Для проверки вышесказанного была снята зависимость энергетического разрешения детектора для квантов 5.9 кэВ от давления чистого Хе. На рис. 3 видно, что насыщение графика энергетического разрешения достигается при давлении ~600-800 Торр, где обычно и реализуется разрешение ~8%. Ниже этого диапазона давления энергетическое разрешение заметно ухудшается, выше – плавно улучшается. Таким образом, должно быть минимально необходимое содержание Хе, чтобы добиться энергетического разрешения, основа которому заложена при поглощении рентгеновских квантов в зоне *I*, причем фактически при любых давлениях Хе выше ~100 Торр (для линии 5.9 кэВ).

На основании этого эксперимента был повторен опыт со смесью 20% Хе + 80% Аг с тем, чтобы парциальное давление Хе было не менее 600– 800 Торр. Результат виден на рис. 4. По мере возрастания давления газовой смеси энергетическое разрешение улучшается от ~8.2 до 7.25%, измерения проводились при диаметре рабочего пучка 2 мм. Повторяемость измерений на уровне 0.1% абс. При давлении 3 ат было достигнуто парциальное давление Хе ~ 450 Торр, т.е. можно ожидать с ростом давления смеси и дальнейшего улучшения энергетического разрешения.

Если продемонстрированный результат и его объяснение справедливы, то в случае 5% Хе в смеси улучшение разрешения может быть достигнуто при еще более высоком давлении газовой смеси, конечно, при той же геометрии детектора (эксперимент с давлением можно вероятно заменить увеличением глубины зоны *II*). Следует отметить, что результат зависит от характеристик использованных фотосенсоров, и значение 7% для линии 5.9 кэВ кажется вполне достижимым.

Рис. 5. Зависимость параметра пик/долина для д.э.л.г. с чистым ксеноном от давления: *1* – 0.9 от амплитуды, *2* – 0.7, *3* – высшее значение в интервале амплитуд. Диаметр пучка 2 мм.

3. ПАРАМЕТР ПИК/ДОЛИНА

Одновременно было рассмотрено поведение параметра пик/долина в зависимости от состава и давления газовой смеси Ar + Xe. Из литературы известно [14] использование в д.э.л.г. смеси 20% Xe + 80% Ar вместо чистого Xe при регистрации рентгеновского излучения легких элементов. За счет увеличения среднего пробега квантов удалось уменьшить низкоэнергетический фон и зарегистрировать линии легких элементов, начиная от бериллия. Детальный анализ влияния состава смеси Ar + Xe на параметр пик/долина при наблюдении спектров легких элементов выполнен в [13].

По нашим данным [4] для д.э.л.г. с давлением газового наполнения Xe 1 ат значение пик/долина составляет для энергии 5.9 кэВ величину 200–250,

Рис. 6. Зависимость параметра пик/долина для д.э.л.г. со смесью 20% Xe + 80% Ar от давления смеси: 1 - 0.9 от амплитуды, 2 - 0.7, 3 - высшее значение в интервале амплитуд. Диаметр пучка 2 мм.

определяемую обратным рассеянием электронов при поглощении рентгеновских квантов вблизи входного окна. Для более жесткого излучения (~22 кэВ), как показано в [4], значение параметра пик/долина значительно ниже — 40—50. Причиной этого является поглощение части квантов больших энергий в межсеточном промежутке. В последнем случае недостаток можно устранить путем осуществления электронной селекции по фронтам нарастания — импульсы, отвечающие квантам, поглощенным в межсеточном пространстве, имеют более короткие фронты. При этом достигается значение пик/долина — 500.

На рис. 5 приведены зависимости пик/долина от давления чистого Хе. Максимальное полученное значение для давления 1000 Торр — 200, что соответствует ранее упомянутым данным [4]. Резуль-

Рис. 7. Спектр д.э.л.г. со смесью 20% Xe + 80% Ar. Давление 3 ат, диаметр пучка с энергией 5.9 кэВ – 10 мм, использован в-фильтр. Отчетливо видны пики вылета Xe и Ar.

таты получены при диаметре входного окна 2 мм. При измерениях параметра пик/долина в зависимости от содержания смеси Ar + Xe при суммарном давлении 700 Торр максимальное значение было получено при 100% Xe. Наконец, на рис. 6 приведены зависимости пик/долина от давления газовой смеси 20% Xe + 80% Ar. Максимальное значение ~650 получено при давлении 3 ат и диаметре входного окна 2 мм.

Типичный спектр д.э.л.г. со смесью 20% Xe + + 80% Ar представлен на рис. 7, диаметр входного окна 10 мм, линия 5.9 кэВ, β-линия отфильтрована.

4. ЗАКЛЮЧЕНИЕ

Исследованы характеристики д.э.л.г. с наполнением газовой смесью Ar + Xe при содержаниях Xe от 5 до 100%. Для смеси 80% Ar + 20% Xe было получено повышенное энергетическое разрешение 7.25% при давлении 3 ат вместо 8% для чистого Xe. При этом параметр пик/долина достиг уровня 650. Имеется возможность дальнейшего улучшения энергетического разрешения за счет повышения давления газовой смеси, использования более светосильного фотосенсора, а также других пеннинговских смесей. По уровню достигнутых характеристик д.э.л.г. уже пригоден для использования в рентгеновской дифрактометрии для светосильного подавления β-линий основных анодов рентгеновских трубок [7].

СПИСОК ЛИТЕРАТУРЫ

- Policarpo A.J.P.L., Alves M.A.F., Dos Santos M.C.M., Corvalho M.J.T. // Nucl. Instrum. and Methods. 1972. V. 102. P. 337.
- Dos Santos J.M.F., Lopes J.A.M., Veloso J.F.C.A. et al. // X-ray Spectrometry. 2001. V. 30. P. 373.
- Conde C.A.N. // X-ray Spectrometry: Recent Technological Advances / Eds Tsuji, J. Injuk and R. Van Gricken. John Willey and Sons, Ltd, 2004. P. 195.
- Goganov D.A., Schultz A.A. // X-ray Spectrometry. 2006. V. 35. P. 47; Goganov D.A., Schultz A.A. // Nucl. Instrum. and Methods. 1997. V. 394. P. 151.
- Policarpo A.J.P.L. // X-ray Microscopy: Proc. Intern. Symp. Göttingen, FRG, Sept. 14–16, 1983. Berlin– Heidelberg–New York–Tokio: Springer Verlag, 1984. P. 172.
- Goganov Al.D., Goganov D.A., Schultz A.A., Vazina A.A. // Nucl. Instrum. and Methods. 2009. V. A603. P. 56.
- 7. *Рихтер К., Морас К., Кредо Е. и др. //* Кристаллография. 1990. Т. 35. Вып. 4. С. 816.
- 8. *Kubota S.* // J. Phys. Soc. Japan. 1970. V. 29. № 4. P. 1017.
- Heikki Sipilä // Nucl. Instrum. and Methods. 1977. V. 140. P. 389.
- 10. *Lima E.P., Salete M., Leite S.C.P. et al.* // Nucl. Instrum. and Methods. 1982. V. 192. P. 575.
- Do Carmo S.J.C., Trindade A.M.F., Borges F.J.G.M. // J. Instrum. March 2009. P. 1.
- Do Carmo S.J.C., Borges F.J.G.M., Vinagre F.L.R., Conde C.A.N. // IEEE Trans. on Nucl. Sci. 2008. V. 55. № 5. P. 2637.
- 13. *Do Carmo S.J.C., Borges F.J.G.M., Conde C.A.N. //* IEEE Trans. on Nucl. Sci. 2009. V. 56. № 2. P. 437.
- 14. *Inoue M., Koyama K., Mazuoka M. et al.* // Nucl. Instrum. and Methods. 1978. V. 157. P. 295.