ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2011, № 2, с. 51–57

ЭЛЕКТРОНИКА И РАДИОТЕХНИКА

УДК 537.876.4

МЕТОДЫ И СРЕДСТВА ДЛЯ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ ОТ ПЛОСКИХ ОБРАЗЦОВ НА МИЛЛИМЕТРОВЫХ, САНТИМЕТРОВЫХ И ДЕЦИМЕТРОВЫХ ВОЛНАХ

© 2011 г. О. А. Дьяконова, Ю. Н. Казанцев, С. В. Маречек, И. В. Воронин*, С. А. Горбатов*

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН

Россия, 141190, Фрязино Московской обл., пл. им. Академика Б.А. Введенского, 1

*Национальный исследовательский ядерный университет "МИФИ"

Россия, 115409, Москва, Каширское ш., 31 Поступила в редакцию 19.07.2010 г. После доработки 28.09.2010 г.

Описываются методы измерения коэффициента отражения от плоских образцов в свободном пространстве на миллиметровых, сантиметровых и дециметровых волнах. Продемонстрирована эффективность этих методов при измерении реальных образцов двухслойной структуры на основе киральных элементов. Экспериментально показано хорошее совпадение результатов измерений, полученных различными методами.

1. ВВЕДЕНИЕ

Для решения многих фундаментальных и прикладных задач требуется измерять коэффициент отражения от образцов материалов в условиях, приближенных к свободному пространству. В научно-технической литературе посвящено много работ таким измерениям для различных диапазонов частот и описывающих конкретные измерительные схемы [1, 2].

Основными элементами этих измерительных схем являются:

 перестраиваемый генератор сигнала (синтезатор частот или свип-генератор);

 – антенное устройство, формирующее плоскую волну и согласованное со свободным пространством и измерительным трактом;

- направленный ответвитель обратной волны;

приемник, измеряющий либо амплитуду, либо амплитуду и фазу;

 компьютер для автоматизации процесса измерений и обработки экспериментальных результатов.

Конкретная реализация первых четырех из пяти перечисленных элементов существенным образом зависит от интервала измеряемых коэффициентов отражения, требуемой точности измерений и диапазона частот. Необходим грамотный и рациональный подход к созданию экспериментальных установок и методик измерений. Нет установок, перекрывающих весь диапазон миллиметровых, сантиметровых и дециметровых длин волн, работающих в условиях, близких к свободному пространству, поэтому возникла необходимость создания единой системы измерений.

На практике задача может быть решена как целенаправленным совершенствованием традиционных методов, методик и средств измерений с разработкой элементной базы для них, так и использованием новых решений при создании экспериментальных установок под определенный вид работ.

Для широкополосных измерений в качестве базовых приборов применяются стандартные скалярные и векторные анализаторы цепей, требующие согласования со свободным пространством. В качестве приемопередающих антенн предлагается использовать в диапазоне 2–37.5 Гц прецизионные плавные рупоры (разработка ИРЭ РАН), в диапазоне 1–3 ГГц – стандартные антенны Пб-23А, ниже 1 ГГц – логопериодические антенны (разработка ИРЭ РАН).

За последние десятилетия в ИРЭ РАН создана серия функциональных волноводных элементов и квазиоптических рефлектометров [3] на основе металлодиэлектрических волноводов прямоугольного сечения с уникальными характеристиками. Разработанный комплект рефлектометров состоит из девяти приборов (каждый на свой диапазон), выполненных по схеме Майкельсона.

Определенный прогресс связан с вычислительной техникой. Экспериментальные установки, описанные в разделе 5, автоматизированы.

На установках 1-3 базовым прибором является векторный анализатор цепей, имеющий высокую степень автоматизации. Связь между компьютером и аппаратурой осуществляется через канал общего пользования. Прибор работает под управлением компьютера по методу дискретно-частотных сигналов (д.ч.с.). При использовании метода д.ч.с. определяется отражение от исследуемого образца в частотной области, затем сигнал преобразуется в дальностно-временную область с исключением переотражений, не относящихся к измеряемому образцу (для чего необходимо наличие безэховой камеры). После обратного преобразования сигнала в частотную область получаем частотную зависимость коэффициента отражения. Автоматизированная установка 4 использует скалярный анализатор цепей и работает по методике, подробно описанной в работе [4]. Связь между компьютером и аппаратурой осуществляется через внешний аналого-цифровой преобразователь.

Оценка эффективности этих решений в диапазонах миллиметровых, сантиметровых и дециметровых длин волн является целью данной статьи.

2. ИЗМЕРЕНИЕ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ ДЛЯ НОРМАЛЬНОГО ПАДЕНИЯ ВОЛН НА ОБРАЗЕЦ

2.1. Миллиметровые волны

Методы и установки для определения коэффициентов отражения от плоских образцов на миллиметровых волнах достаточно подробно описаны в статьях [3, 4]. В качестве базовых электронных приборов (генератор + приемник) использованы отечественные панорамные измерители коэффициента стоячей волны напряжения (к.с.в.н.) серии P-2 (скалярные анализаторы цепей), работающие в комплекте с согласованными рупорами либо с квазиоптическими рефлектометрами.

В рупорном методе [4] минимальное значение измеряемого коэффициента отражения и погрешность измерения определяются, в основном, уровнем отражения от рупора и инструментальной погрешностью панорамного измерителя к.с.в.н. Показано, что применение методики "с подвижным образцом" позволяет измерять коэффициенты отражения до –25 дБ с погрешностью <1.2 дБ. Однако предпочтение отдается схеме с квазиоптическим рефлектометром [3], позволяющей измерять коэффициенты отражения до –40 дБ с погрешностью <1 дБ, а также, что немаловажно, фазу коэффициента отражения.

Измеряемый образец помещался перед выходной апертурой (40 × 40 мм) рефлектометра, предназначенного на диапазон частот 36–120 ГГц. За

время, прошедшее после опубликования этой статьи, фирмой Agilent Technologies разработаны векторные анализаторы цепей миллиметрового диапазона, применение которых в измерительных схемах с рефлектометром позволило уменьшить погрешность измерения коэффициента отражения практически до аппаратурной погрешности самого прибора – (0.2–0.3) дБ.

2.2. Сантиметровые волны

В диапазоне сантиметровых волн, так же как в диапазоне миллиметровых волн, основными методами измерения коэффициентов отражения остаются методы с применением рупоров и квазиоптических рефлектометров [3, 4], работающих в комплекте с векторными либо скалярными анализаторами цепей. В рупорном методе в диапазоне 2-36 ГГц применяются плавные рупоры с коэффициентом отражения -25...-30 дБ. Достаточно малые коэффициенты отражения от таких рупоров позволяют использовать их как в комплекте с векторными, так и скалярными анализаторами цепей. В измерительных схемах с использованием квазиоптических рефлектометров также можно применять как скалярные, так и векторные анализаторы цепей. Минимальное значение измеряемых коэффициентов отражения составляет -30 дБ при использовании скалярных и -60 дБ - векторных анализаторов цепей.

2.3. Дециметровые волны

В дециметровом диапазоне на частотах 1–2 ГГц требуемые размеры плавных рупоров становятся чрезмерно большими, и практически единственным применяемым вариантом остается рупорный метод с использованием измерительной антенны Пб-23А. Однако ввиду значительного коэффициента отражения от этой антенны для обеспечения приемлемой точности предпочтительно применять в комплекте с ней векторные анализаторы цепей.

На частотах ниже 1 ГГц неизвестны серийные измерительные антенны, пригодные для измерения коэффициентов отражения от плоских образцов. Тем не менее, в работе [5] описано антенное устройство для измерения коэффициента отражения в диапазоне 0.5-1 ГГц. Это устройство состоит из передающей и приемной логопериодических антенн, помещенных в отрезок полого волновода квадратного сечения (750 × 750 мм²) и длиной ~2 м с радиопоглощающими стенками. Волновод обеспечивает поглощение волн, распространяющихся под большими углами к продольной оси так, что на его открытом конце формируется квазиплоское поле. Образец устанавливался перед открытым концом волновода. Максимальная погрешность измерения коэффициентов отражения не превышает ±0.8 дБ.

3. ИЗМЕРЕНИЕ УГЛОВЫХ И ПОЛЯРИЗАЦИОННЫХ ЗАВИСИМОСТЕЙ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ

3.1. Измерение угловых зависимостей

Известны два основных метода измерения коэффициента зеркального отражения при направлениях падения волны на образец, отличных от нормального. Более простым из двух является метод с использованием двухгранного уголкового отражателя [2]. В этом методе образец располагается на одной из граней уголкового отражателя (вторая грань остается металлической). Измеряется коэффициент отражения в зависимости от угла поворота уголкового отражателя относительно его оси. Недостатками метода являются эффект дифракции на ребре отражателя и то, что образец занимает только часть эффективной площади отражения.

Наиболее сложным в применении является метод двух рупоров, в котором передающий и приемный рупоры направляются на образец, расположенный в ближней зоне [1]. Недостатками этого метода являются невозможность измерить коэффициент отражения при малых углах падения и наличие электромагнитной связи между передающим и приемным рупорами. Основное достоинство метода — это возможность измерять не только коэффициенты зеркального отражения, но и индикатрису рассеяния.

3.2. Измерение поляризационных зависимостей

Наиболее простой метод измерения поляризационных зависимостей коэффициента отражения реализуется в двухрупорной схеме при условии, что рупоры могут поворачиваться вокруг продольных осей. Более точным является метод поляризационного рефлектометра [6]. Измерения коэффициента отражения в схеме с квазиоптическим поляризационным рефлектометром могут проводиться как в комплекте со скалярными, так и векторными анализаторами цепей, при этом векторный анализатор обеспечивает большую чувствительность. Чтобы выделить кросс-поляризованный сигнал, в схему рефлектометра, помимо основного делителя мощности, введен дополнительный делитель мощности "крест-поляризатор". "Крест-поляризатор", в диагональ которого установлена поляризационная решетка, выполнен на основе канала в радиопоглощающем материале. Уровень развязки по поляризациям составляет -60 дБ и

Рис. 1. Двухслойная структура из решетки *1* киральных элементов с диэлектрическим слоем *2* на металлической подложке *3*.

определяется поляризационными характеристиками "креста-поляризатора" и преобразователей.

4. ОБЪЕКТ ИССЛЕДОВАНИЯ

Объектом исследования является двухслойная структура (рис. 1), включающая в себя решетку из киральных элементов *1* и диэлектрический слой *2*, расположенные на металлической поверхности *3*. Изготовлены и измерены три типа образцов, отличающихся как формой, так и расположением киральных элементов.

В образцах первого типа киральный элемент решетки выполнен из двух разомкнутых колец, расположение элементов в решетке — ромбовидное, причем, каждый элемент ряда повернут относительно соседних на 90° (рис. 2а). В образцах второго типа каждый киральный элемент решетки выполнен из пяти разомкнутых колец (рис. 2б). В образце третьего типа элементом решетки является разомкнутое кольцо, расположение элементов — по углам квадратов, ориентация элементов случайная (рис. 2в).

Киральные элементы во всех образцах выполнены из вольфрамовой проволоки Ø30 мкм с удельным сопротивлением 6.8 · 10⁻⁸ Ом · м. Диэлектрический слой между решеткой и металлической поверхностью выполнен из пористого полиэтилена. Основные размеры для пяти образцов указаны в таблице.

5. ИЗМЕРИТЕЛЬНЫЕ УСТАНОВКИ

Для измерения образцов в диапазоне частот 1– 12 ГГц использованы измерительные установки *1*–4 с применением как векторных, так и скалярных анализаторов цепей.

Рис. 2. Кольцевые структуры первого (а), второго (б) и третьего (в) типа.

В состав установок входили следующие приборы и устройства:

векторный анализатор цепей РК4-55 с рабочим диапазоном частот 2—18 ГГц;

– векторный анализатор цепей E5071B фирмы Agilent Technologies с рабочим диапазоном частот 300 кГц–8.5 ГГц;

- скалярные анализаторы цепей (панорамные измерители к.с.в.н. Р2-58; Р2-59; Р2-61) на диапазон частот 3.6–12.4 ГГц; – рупорные антенны Пб-23А с рабочим диапазоном 1–12 ГГц;

– комплект плавных рупоров для диапазона 3–
13 ГГц (разработка ИРЭ РАН);

- безэховая камера (разработка ИРЭ РАН).

Схемы измерительных установок *1*-4 даны на рис. 3-6.

На рис. 3 показана схема установки *1* на основе рефлектометра в комплекте с векторными анализаторами цепей РК4-55 либо E5071B. В случае применения прибора РК4-55 обработка измерен-

Параметр	Номер образца/тип образца				
	№ 1/первый	№ 2/первый	№ 3/первый	№ 4/второй	№ 5/третий
<i>d</i> ₁ , мм	10	10	10	10	10
<i>d</i> ₂ , мм	18	18	18	18	—
<i>d</i> ₃ , мм	_	_	_	24	_
d_4 , мм	_	_	_	30	_
<i>d</i> ₅ , мм	_	—	_	36	_
<i>D</i> , мм	2.5	3.5	4.5	3	1

Основные размеры для пяти образцов киральных элементов ($\Delta = 1$ мм, $\delta = 0.2$ мм)

ных амплитудно-частотной и фазово-частотной зависимостей проводится персональным компьютером, связь которого с прибором осуществляется через канал общего пользования.

На рис. 4 дана схема измерительной установки 2 с двумя рупорными антеннами в комплекте с векторным анализатором цепей. Оси антенн повернуты по отношению друг к другу на ~30°.

На рис. 5 изображена схема измерительной установки *3* с одной рупорной антенной в комплекте с векторным анализатором цепей.

Использование в установках *1–3* векторного анализатора цепей позволяет существенно уменьшить влияние паразитных отражений и переотра-

Рис. 3. Схема измерительной установки на основе квазиоптического рефлектометра. *1* – векторный анализатор цепей; *2*, *3* – возбудители рабочей моды; *4* – направленный делитель мощности; *5* – согласованная нагрузка; *6* – измеряемый образец.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 2 2011

жений в измерительном тракте путем компьютерной обработки отраженного сигнала. Это дает возможность обеспечить точность порядка ± 1 дБ при измерении уровней отражения ≤ -10 дБ даже в простейшей установке *3*, где паразитный фон отражений от рупорной антенны достигает -10 дБ.

Для сравнения укажем, что в установке 1 тот же порядок точности имеет место при измерении уровней отражения –60 дБ. Высокая точность и чувствительность этой установки обусловлены малым уровнем отражений и переотражений в квазиоптическом рефлектометре и большим коэффициентом направленности направленного делителя мощности. Для исключения влияния остаточного паразитного фона измерения на установках 1–3 проводятся в безэховой камере.

На рис. 6 приведена схема измерительной установки 4 с плавным рупором в комплекте со скалярным анализатором цепей. Для уменьшения влияния паразитных отражений и переотражений в схеме использовались плавные рупоры с малым собственным коэффициентом отражения (-30 дБ). При коэффициенте направленности ответвителя обратной волны того же порядка погрешность измерения не превысит $\pm 1.5 \text{ дБ}$ при уровнях отражения -20 дБ.

Рис. 4. Схема измерительной установки с двумя рупорными антеннами. *1* – приемная антенна Пб-23А; *2* – передающая антенна Пб-23А; *3* – векторный анализатор цепей; *4* – измеряемый образец.

Рис. 5. Схема измерительной установки с одной рупорной антенной. *1* – приемопередающая антенна П6-23А; *2* – векторный анализатор цепей; *3* – измеряемый образец.

Рис. 7. Частотные спектры коэффициентов отражения от образцов № 1-№ 3 первого типа, отличающихся толщиной *D* диэлектрического слоя. 1 - D = 2.5 мм; 2 - 3.5 мм; 3 - 4.5 мм.

6. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ

На рис. 7-9 приведены частотные зависимости коэффициентов отражения от образцов № 1-№ 5, измеренные на установках, описанных в разделе 5. Области повышенного поглощения энергии (малых значений коэффициента отражения) располагаются вокруг резонансных частот решеток из киральных элементов. Резонансные частоты решеток определяются, в основном, формой, размерами и расположением киральных элементов. Несколько меньшее влияние на резонансные частоты оказывает толщина диэлектрического слоя между решеткой и металлической поверхностью. Частотные зависимости коэффициента отражения для образцов № 1, № 2 и № 3 первого типа (рис. 7), измеренные на установке 1, иллюстрируют это влияние.

Рис. 6. Схема измерительной установки с плавным рупором. *1* – плавный рупор; *2*, *3* – направленные ответвители; *4* – с.в.ч.-генератор; *5* – приемник; *6* – измеряемый образец.

Рис. 8. Частотные спектры коэффициентов отражения от образца № 4 второго типа, измеренные различными методами: 1 – на установке 1; 2 – на установке 2; 3 – на установке 3.

На рис. 8 приведены частотные зависимости коэффициента отражения от образца \mathbb{N} 4 второго типа, измеренные на установках *1*, *2* и *3*. Как следует из этого рисунка, имеет место вполне удовлетворительное совпадение результатов, полученных на различных установках. Основное различие заключается в степени изрезанности кривых, которая минимальна для кривой, полученной на установке *1*. Это обусловлено меньшим уровнем отражений и переотражений в измерительном тракте этой прецизионной установки.

На рис. 9 даны частотные зависимости коэффициента отражения от образца № 5, измеренные на установках 1 и 4. На рисунке видно, что различие кривых, полученных на установке 4 и прецизионной установке 1, не превышает 1 дБ.

Рис. 9. Частотные спектры коэффициентов отражения от образца № 5 третьего типа, измеренные на установке 1 с помощью рефлектометра (1) и рупорным методом на установке 4 (2).

7. ЗАКЛЮЧЕНИЕ

Сравнение методов и средств измерения коэффициента отражения от плоских образцов в условиях, приближенных к свободному пространству, показывает, что наибольший динамический диапазон (до –60 дБ) при лучшей точности (≤1 дБ) обеспечивается в установке на основе квазиоптического рефлектометра в комплекте с векторным анализатором цепей. Традиционный рупорный метод, реализованный в установке с плавным рупором (собственный коэффициент отражения –30 дБ) и скалярным анализатором цепей, позволяет измерять коэффициенты отражения до –20 дБ с погрешностью 1.5 дБ. Установки на основе широкополосной рупорной антенны типа Пб-23А и векторного анализатора цепей могут служить для оперативных оценок коэффициентов отражений на сантиметровых и дециметровых волнах.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 10-02-00053-а; № 10-08-00018-а).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мицмахер М.Ю., Торгованов В.А.* Безэховые камеры СВЧ. М.: Радио и связь, 1982.
- 2. *Алимин Б.Ф.* // Зарубежная радиоэлектроника. 1989. № 2. С. 75.
- 3. *Аплеталин В.Н., Казанцев Ю.Н., Солосин В.С.* // Радиотехника. 2005. № 8. С. 40.
- 4. Аплеталин В.Н., Дьяконова О.А., Казанцев Ю.Н., Солосин В.С. // Измер. техника. 1991. № 7. С. 40.
- 5. Аплеталин В.Н., Дьяконова О.А., Казанцев Ю.Н., Солосин В.С. // Измер. техника. 1994. № 7. С. 61.
- 6. Аплеталин В.Н., Зубов А.С., Казанцев Ю.Н., Солосин В.С. // Радиотехника. 1998. № 12. С. 48.