ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 53.07

ТРИГГЕР СОБЫТИЙ С ВЫСОКОЙ МНОЖЕСТВЕННОСТЬЮ ЗАРЯЖЕННЫХ ЧАСТИЦ УСТАНОВКИ СВД-2

© 2011 г. В. В. Авдейчиков, Г. А. Богданова*, В. А. Будилов, В. Ю. Волков*, Е. С. Кокоулина, А. Я. Кутов***, А. К. Лефлат*, В. А. Никитин, В. В. Попов*, И. А. Руфанов, А. Г. Холоденко**

Объединенный институт ядерных исследований

Россия, 141980, Дубна Московской обл., ул. Жолио-Кюри, 6

*НИИ ядерной физики им. Д.В. Скобельцына МГУ им. М.В. Ломоносова, Москва

**Институт физики высоких энергий, Протвино

***Отдел математики Коми НЦ УрО РАН, Сыктывкар

Поступила в редакцию 07.10.2010 г.

На выведенном пучке протонов ускорителя У-70 ИФВЭ выполняется проект "Термализация". Цель эксперимента – исследование коллективного поведения вторичных частиц, образующихся в многочастичном *pp*-взаимодействии при энергии пучка E = 50-70 ГэВ. Исследуется область высокой множественности заряженных частиц $n_{ch} \ge 10$, где значительная часть энергии в системе центра масс идет на образование вторичных частиц. Это приводит к образованию адронной системы, которая в начальный момент эволюции имеет высокую плотность, что может служить причиной коллективного поведения вторичных частиц. Исследования выполняются на широкоапертурном магнитном спектрометре СВД-2. Описывается многоканальный триггерный сцинтилляционный годоскоп, предназначенный для отбора редких событий с большим числом заряженных частиц, превышающим заданную величину. При этом основной поток событий с малой множественностью подавляется системой триггера в ~ 10^2 раз.

ВВЕДЕНИЕ

Множественное рождение частиц при высокой энергии является одной из фундаментальных областей исследования физики адронов. Этот процесс не может быть описан в квантовой хромодинамике по теории возмущений. Теория дает только качественную картину явления: столкновение адронов инициирует партонный каскад. На конечном этапе партонного каскада, когда энергия относительного движения партонов исчерпана, и существенными становятся силы конфайнмента, партоны объединяются, образуя адроны. Механизм удержания цвета (конфайнмент) неизвестен. В настоящее время теоретически невозможно рассчитать главные характеристики процесса: распределение по множественности, энергетический и массовый спектры частиц. Они описываются различными моделями. По данному предмету имеется обширная литература [1–4].

Цель проекта "Термализация", выполняемого на установке "Спектрометр с вершинным детектором" СВД-2, состоит в исследовании коллективного поведения частиц в процессе множественного рождения в *pp*-взаимодействии при энергии пучка протонов E = 50-70 ГэВ. В настоящее время распределение частиц по множественности при энергии E = 70 ГэВ измерено до числа заряженных частиц при этой энергии составляет $\bar{n}_{ch} =$ = 5.6. Кинематический предел составляет $n_{\pi} = 69$ (*n*_π – полное число заряженных и нейтральных пионов). Мы планируем исследовать события с множественностью $n_{\pi} = 10-30$. В этой области значительная часть энергии в системе центра масс ($E_{cms} = 11.6$ ГэВ) превращается в массу рожденных частиц. Плотность созданной адронной системы в начальный момент эволюции может быть достаточно высокой, $\rho/\rho_0 \approx 10 \ (\rho_0 - плот$ ность ядра в основном состоянии). Основной вклад в величину ρ вносит пионный газ или конденсат. Согласно общепринятому представлению при большой плотности система должна переходить в состояние кварк-глюонной плазмы. При множественности значительно больше средней могут проявиться коллективные эффекты: большие флуктуации числа заряженных и нейтральных пионов как результат образования пионного конденсата; формирование струй тождественных пионов – многочастичный эффект Бозе-Эйнштейна; формирование событий с кольцевой топологией - результат адронизации глюонов, испускаемых партонами, движущимися в ядерной среде (аналог черенковского излучения) [5]; увеличенного выхода прямых мягких ("тепловых") фотонов, как сигнал перехода от ядерной материи в кварк-глюонную фазу и др. [6]. Получаемые на установке СВД-2 данные позволят проверить и

Рис. 1. Схема головной части установки СВД-2.

развить различные модели множественных процессов в области $n_{\pi} \ge \overline{n}$ [7].

УСТАНОВКА

Эксперимент выполняется на модернизированной установке СВД-2, размещенной на выведенном пучке протонов ускорителя У-70 ИФВЭ, Протвино [8]. Пучок протонов выводится из ускорителя изогнутым монокристаллом кремния [9].

Схема головной части установки показана на рис. 1. Она включает следующие элементы.

• Пучковый телескоп. Он определяет параметры пучка — интенсивность, положение и др. В него входят сцинтилляционные счетчики C_1-C_4 и трекер из шести плоскостей полосковых кремниевых детекторов (X, Y) размером $10 \times 10 \text{ мм}^2$ с шагом полосок 50 мкм. Трекер определяет траекторию каждой пучковой частицы. Счетчики C_1-C_4 вырабатывают триггер на пучковую частицу (триггер нулевого уровня), регистрируют интенсивность пучка и его временную растяжку. Счетчик C_3 имеет отверстие для прохода пучка. Он включен со счетчиками C_1 , C_2 , C_4 на антисовпадение для подавления гало пучка.

• Жидководородная мишень. Размеры мишени: длина сосуда по пучку 70 мм, Ø27 мм, толщина лавсановых стенок сосуда 100 мкм.

• Триггерный сцинтилляционный годоскоп (описывается ниже).

• Вершинный детектор. В него входят 10 плоскостей полосковых кремниевых детекторов (X, Y, U, V). Детекторы U, V повернуты относительно детекторов X, Y на угол $\pm 15^{\circ}$. Шаг полосок 25 и 50 мкм. Вершинный детектор является важнейшим элементом установки. Он позволяет восстановить траектории заряженных частиц в событиях с множественностью ≥ 24 . При этом определяются положения первичной и вторичных вершин (распады K^0 - и Λ^0 -частиц).

• Дрейфовый трекер. В него входят девять плоскостей дрейфовых трубок, которые определяют координаты на траектории частиц с точностью 200 мкм [10]. Это позволяет уточнить параметры треков, полученные в вершинном детекторе и продолжить их в трекер магнитного спектрометра.

• Магнитный спектрометр обозначен на рис. 1 частично, а черенковский счетчик и электромагнитный калориметр, следующие за ним, не показаны, так как они не существенны при обсуждении проблем триггера.

ТРИГГЕРНЫЙ ГОДОСКОП

Интенсивность пучка протонов составляет $2 \cdot 10^6$ в одном цикле ускорителя. Время между циклами – 7 с. Длительность вывода (растяжка пучка) составляет 1.5-2.0 с в каждом цикле. Число *pp*-взаимодействий в водородной мишени составляет $2 \cdot 10^4$ в одном цикле. Система сбора данных установки имеет максимальную скорость регистрации событий с большой множественностью (2 · 10²) в одном цикле. Исходя из целей эксперимента, триггерная система должна подавлять основной поток событий с малой множественностью и отбирать редкие события с множественностью заряженных частиц больше заданной. Анализ имеющихся данных дает оценку парциального сечения $\sigma \approx 1$ мб для области множественности $n_{ch} \ge 10$. Эта величина в ~30 раз меньше полного неупругого сечения рр-взаимодействия. Таким образом, установка порога триггера на величину $n_{ch} = 10-12$ решает поставленную задачу. Заметим, что в области $n_{ch} \ge 20$, где данные отсутствуют, экстраполированное парциальное сечение составляет ~0.1 мкб, а ожидаемая скорость счета составляет 2 события/ч.

Рис. 2. а – схема триггерного годоскопа. *1* – сцинтиллятор ("лепесток") ВС-408; *2* – световод; *3* – ф.э.у. ФЭУ-147-2; *4* – делитель ф.э.у.; б – триггерный годоскоп в процессе монтажа.

Получение сигнала на события с множественностью выше заданного порога достигается с помощью сцинтилляционного годоскопа, показанного на рис. 2а, 2б. Годоскоп похож по форме на ромашку. Он состоит из 19 лепестков – сцинтилляторов, расположенных по форме диска Ø260 мм. Диск имеет в центре отверстие Ø3.2 мм для пропускания пучка. Сцинтиллятор 1 имеет форму усеченной треугольной пластины высотой 28 мм, основанием 8.6 мм (см. ниже рис. 4б) и толщиной 1.8 мм. Она обернута в алюминированный лавсан толщиной 6 мкм. Отражение света от зеркальной поверхности уменьшает его потери. Световол 2 из органического стекла оптически соединен с лепестком и ф.э.у. 3 с помощью оптической эпоксидной смолы ЕРОЗО1 [11]. Защита каждого ф.э.у. от внешнего магнитного поля (~50 Гс) осуществляется слоем µ-металла толщиной 0.3 мм; получен фактор ослабления поля, равный ~100. При интенсивности пучка протонов 2 · 10⁶ с⁻¹ загрузка одного лепестка заряженными частицами, идущими из мишени, составляет ~10³ с⁻¹. Основная загрузка элемента триггера фоновыми частицами обусловлена гало пучка. При оптимальной юстировке пучка она составляет ~ $2 \cdot 10^4 \, c^{-1}$. При среднем токе анода ф.э.у., равном 0.1 мА, и сильноточном делителе допустимая загрузка элемента триггера составляет 10⁶ с⁻¹. Делитель ф.э.у. имеет сопротивление 4.2 МОм и средний ток 0.4 мА. Выделяемая тепловая мощность одного канала регистрации при этом составляет 0.8 Вт (полная

мощность годоскопа ~15 Вт), что не превосходит допустимый предел системы охлаждения электроники.

Амплитудный спектр сигналов сцинтиллятора годоскопа при прохождении минимально ионизирующей частицы (м.и.ч.) имеет форму распределения Ландау с максимумом при 0.43 МэВ (обозначено стрелкой на рис. За). Поскольку отношение сигналов α/β для органического сцинтиллятора равно 0.07 [12], амплитуда сигнала α-частиц с энергией 4.5 МэВ эффективно равна амплитуде сигнала β-частиц с энергией 0.31 МэВ. Точечный α-источник интенсивностью 20 с⁻¹ распадов укреплен на каждом лепестке. Это позволяет провести полную калибровку спектрометрических каналов триггера без пучка и контролировать отношение м.и.ч./шум. Для сцинтиллятора типа "лепесток" отражение света от торцов существенно определяет зависимость сбора света от координаты попадания частицы. Однородность сбора света достигается неравномерной полировкой торцовых граней пластины – качество полировки плавно улучшается от вершины к основанию лепестка.

На рис. 4а приведена зависимость выхода света вдоль сцинтилляционной пластины, облучаемой α -частицами для двух типов световодов. Наши данные по энергетическому разрешению сцинтиллятора для $E(\alpha) = 4.5$ МэВ приведены на рис. 46. Полуширина распределения сигналов составляет ~25%. Мы считаем это значение вполне приемлемым для целей триггера (согласно расче-

Рис. 3. Амплитудный спектр сигналов от сцинтиллятора, облучаемого: **a** – точечными источниками ²⁴¹Am (α-частицы) с энергией 4.5 МэВ (стрелка указывает расчетное положение сигнала м.и.ч., *R* – ширина на полувысоте амплитудного распределения); **б** – точечными источниками ²⁰⁷Ві (β-частицы).

ту полуширина распределения Ландау для м.и.ч. составляет 22–25%). Отношение м.и.ч./шум в среднем равно 40/1. Следует отметить, что по имеющимся данным предельное энергетическое разрешение сцинтиллятора для α -частиц с энергией 4.5 МэВ равно ~14%. Это достигается при светосборе близком к 100%.

ЭЛЕКТРОНИКА ТРИГГЕРА

Электроника триггера включает следующие элементы. Усилители *AMP* (AMPlifier) (*M*₁, AD8056) принимают сигналы с ф.э.у. триггерного годоскопа. Они расположены в непосредственной близости от мишени. Модули амплитудного анализа *AAM* вырабатывают двоичный код амплитуд входных сигналов. Модуль табличного преобразования кодов амплитуд TPM-62 вырабатывает сигналы триггера. Триггерная электроника выполнена в стандарте КАМАК. Ее компоненты описываются ниже.

УСИЛИТЕЛЬ АМР

Сигналы с анодов ф.э.у. поступают на вход усилителей *АМР* по коаксиальным кабелям длиной 2 м. Каждый канал усилителя с полосой пропускания 300 МГц имеет два выхода – положительный и отрицательный. Положительный сигнал поступает на модули *ААМ* по коаксиальному кабелю длиной 24 м. Отрицательный сигнал поступает на модули а.ц.п. (П-267) по кабелю длиной 68 м. Модуль запускается сигналом триггера (см. ниже). Код с а.ц.п. передается в систему сбора данных для оперативного контроля и последующей обработки.

Рис. 4. Зависимость амплитуды импульса сцинтиллятора (**a**) и энергетического разрешения (**б**) от координаты облучения сцинтиллятора α-частицами.

Конструктивно усилители выполнены в стандарте КАМАК по 10 каналов в модуле двойной ширины. Схема одного канала приведена на рис. 5. Время нарастания и спада спектрометрического сигнала равны 15 и 25 нс, соответственно. При разработке печатной платы усилителя приняты меры по минимизации взаимного влияния канала на канал. Амплитуда сигнала от м.и.ч. на выходах усилителя составляет 50 мВ.

МОДУЛЬ АМПЛИТУДНОГО АНАЛИЗА ААМ

Модуль ААМ предназначен для кодирования аналоговых сигналов, поступающих с усилителей АМР. Схема модуля представлена на рис. 6. В триггерной системе используется три 8-канальных модуля ААМ. Сигналы положительной полярности каждого канала годоскопа поступают на вход усилителя А, который используется для изменения амплитудного диапазона входных сигналов. Сигнал с усилителя А поступает на первые входы трех компараторов $C_1 - C_3$. На вторые входы компараторов подаются пороговые напряжения с 8-разрядных ЦАП₂ с динамическим диапазоном 0-255 мВ. Один ЦАП₂ обслуживает один из трех порогов с уровнями дискриминации, соответствующими одному, двум, трем и более м.и.ч. Сигналы с выходов компараторов $C_1 - C_3$ поступа-

*L*₁ 0.1 мГн

Рис. 5. Схема канала усилителя *АМР*. M_1 – AD8056; $\mathcal{I}_1, \mathcal{I}_2$ – KD521; L_1 – M1000.

ют на вход приоритетного шифратора. Он кодирует амплитуду следующим образом:

• ни один компаратор не сработал – код 00;

 сработал компаратор C₁ – код 01 (одна частица, амплитуда сигнала A = м.и.ч.);

• сработал компаратор *C*₂ – код 10 (две частицы, *A* = 2 м.и.ч.);

 сработал компаратор C₃ – код 11 (три частицы, A ≥ 3 м.и.ч.).

Шифратор может выдать максимальное двоичное число 11 (3 частицы). Таким образом, на выходе одного *ААМ* появляется 16-разрядный код, соответствующий амплитудам с восемью каналами триггерного годоскопа. Выходы компараторов закрываются с некоторой задержкой сигналом системы сцинтилляционных счетчиков пучка. Время решения в модуле *ААМ* составляет 40 нс. Отладка и контроль работы *ААМ* выполняются с помощью тестовых сигналов, вырабатываемых цифроаналоговым преобразователем *ЦАП*₁ (см. ниже).

19

R₇ 22

Рис. 6. Схема модуля амплитудного анализа ААМ.

МОДУЛЬ ТАБЛИЧНОГО ПРЕОБРАЗОВАНИЯ КОДОВ АМПЛИТУД ТРМ-62

Модуль ТРМ-62 предназначен для выработки сигнала триггера. Алгоритм принятия решения реализуется с помощью табличного метода (Look Up Table). Модуль представляет собой двухуровневое о.з.у., где данные с выходов первого уровня поступают на адресные входы второго уровня. Данные с выходов ААМ поступают на адресные входы о.з.у. первого уровня, где происходит подсчет ионизации в каждом ААМ. О.з.у. второго уровня производит суммирование ионизации со всех каналов и сравнение суммы со значением заданного порога по множественности. В зависимости от результата сравнения, модуль вырабатывает сигнал "Т", или сигнал "нет Т". В модуле используется статическое о.з.у. СУ7С192 с временем доступа 25 нс. Время решения составляет 100 нс. Структурная и функциональная схемы триггерной электроники представлены на рис. 7а, б.

ТЕСТИРОВАНИЕ ТРИГГЕРНОЙ ЭЛЕКТРОНИКИ

Процесс тестирования заключается в исследовании зависимости вероятности срабатывания триггерной электроники от числа треков в годоскопе при заданном пороге по множественности. Система тестирования управляется программой сбора и обработки данных. Генератор случайных чисел выбирает номер канала годоскопа, число треков в каждом канале (1, 2, 3 или >3). Эта информация поступает на вход модуля $IIAII_1$ (рис. 6), который вырабатывает тестовый аналоговый сигнал, имитирующий сигнал с анода ф.э.у. триггерного годоскопа. К тестовому сигналу добавляется шумовой сигнал с гауссовым распределением амплитуд со стандартным отклонением $\sigma = 0.35 \times 1.15 \times$ м.и.ч. Эта эмпирическая величина соответствует измеренной дисперсии сигналов с ф.э.у.

Зависимость вероятности срабатывания системы триггера от числа треков для порогов по множественности M = 3, 8, 12, 16, 20, 24 частиц приведена на рис. 8. Размытый порог срабатывания электроники обусловлен указанной выше дисперсией генерируемых амплитуд сигналов м.и.ч. Например, при заданном пороге по множественности M = 12 вероятность срабатывания триггера при числе треков $n_{ch} = 12$ равна P = 0.533, но уже для $n_{ch} > 14$ величина P близка к 1.

В событиях с высокой множественностью $n_{ch} \ge 10$ пионы испускаются в конусе с полушириной углового распределения $\Delta \theta \approx 7^{\circ}$. Отверстие в ромашке с радиусом 1.6 мм видно из центра мишени под углом $\theta = 1.3^{\circ}$. Путем моделирования вычислено среднее число частиц k, попадающих в отверстие. Для событий с множественностью 10, 20 и 30 число потерянных частиц составляет k = 0.48, 1.0 и 1.6, соответственно, что практически не влияет на эффективность работы триггера.

Рис. 7. Структурная (а) и функциональная (б) схемы триггерной электроники.

На рис. 9 показано распределение по множественности заряженных частиц n_{ch} , измеренное при разных установках порога триггера M = 8, 10, 12. Также приведены данные, полученные на пузырьковой камере Мирабель. Так как камера регистрирует частицы в полном телесном уголе 4π , то для нее следует положить M = 2 – минималь-

Рис. 8. Зависимость вероятности срабатывания триггера от числа треков в годоскопе.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 2 2011

ное возможное число заряженных частиц в *pp*-взаимодействии. Четыре функции нормированы на одну величину в области $n_{ch} > 14$. Среднее значение множественности при энергии 50 ГэВ составляет $\langle n_{ch} \rangle = 5$. В точке $n_{ch} = 5$ функции M =

Рис. 9. Распределение событий *pp*-взаимодействия по множественности заряженных частиц. Мирабель — экспериментальные данные [13], Триггер — порог триггера в данном эксперименте.

Рис. 10. Распределение координат пучковых треков по площади триггерного годоскопа. Цифрами обозначены номера лепестков годоскопа. В этом облучении пучок смещен в сторону лепестка с номером 16.

= 10 и M = 12 отличаются от функции M = 2 в 12 и 100 раз соответственно, что и демонстрирует подавление триггерной системой событий с малой множественностью.

На рис. 10 показано распределение координат пучковых треков по площади триггерного годоскопа. Видно, что в этом облучении пучок смещен от геометрической оси установки вправо. На рис. 11 показано амплитудное распределение сигналов (за вычетом пьедестала) в одном канале триггерного годоскопа, полученное на пучке протонов 50 ГэВ (а), и на пучке электронов с энергией 20 ГэВ (б). Форма энергетического спектра ионизационных потерь протонов близка к форме распределения Ландау. Амплитудный спектр сигналов от электронов содержит 4 пика. Первый (левый) — это радиационный фон в зале и шум электроники. Три других пика обусловлены одновременным прохождением 1, 2, 3 и более электронов через лепесток. Видно надежное отделение сигнала электронов от шума.

На рис. 11в показано распределение событий по лепесткам годоскопа. В случае оптимальной юстировки положения пучка должна наблюдаться равномерная загрузка всех лепестков. В данном частном случае пучок проходит несколько ниже медианной плоскости.

Источником фона при определении множественности события являются ядерные взаимодействия в лепестках триггерного годоскопа. Взаимодействия на ядрах вещества сцинтиллятора сопровождаются рождением медленных частиц и появлением сигналов большой амплитуды в одном или нескольких соседних лепестках. Взаимодействия в годоскопе не должны влиять на определение множественности события в водородной мишени, и их необходимо исключить, насколько это возможно. Реконструкция треков в кремниевом вершинном детекторе показывает, что из 2 млн. событий примерно треть не имеет вершины взаимодействия в объеме водородной мишени. При обработке данных удалось выяснить, что если число каналов триггерного детектора, имеющих тройную ионизацию (3 м.и.ч.), превышает число каналов с одинарной ионизацией (1 м.и.ч.), то с вероятностью 95% в триггерном детекторе произошло взаимодействие. В дальнейшем этот критерий был учтен при организации триггерных таблиц, т.е. в алгоритм принятия решения было введено сравнение числа каналов с одинарной и тройной ионизацией. В результате число регистрируе-

Рис. 11. Амплитудное распределение сигналов в одном канале триггера, полученное на пучке протонов 50 ГэВ (**a**) и на пучке электронов 20 ГэВ (**б**); **в** – профиль пучка протонов, измеренный триггерным детектором.

мых событий в лепестках годоскопа уменьшилось, что демонстрируется на рис. 12: после введения указанного критерия доля событий в триггерном годоскопе сократилась с 24% до 4%.

Юстировка первичного пучка протонов с помощью триггера множественности имеет целью минимизировать число ядерных взаимодействий в веществе лепестков, обусловленное гало пучка. Восстановление треков и координат вершин событий с помощью полосковых кремниевых детекторов и дрейфовых трубок позволяет построить распределение событий вдоль оси установки (вдоль пучка) и разделить события, происходящие на водороде, на стенках сосуда мишени и в годоскопе (рис. 12).

Анализ данных показывает, что с увеличением порога по множественности *M* доля событий вза-имодействий в годоскопе от всех регистрируемых взаимодействий уменьшается.

ЗАКЛЮЧЕНИЕ

На выведенном пучке протонов с энергией 50–70 ГэВ ускорителя У-70 (ИФВЭ, Протвино) действует установка СВД-2. На ней изучается множественное рождение частиц в *pp*-взаимодействиях. Создана система триггера преимуще-

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 2 2011

Рис. 12. а — число событий в водородной мишени, в оболочке мишени и в триггерном годоскопе. Порог по множественности заряженных частиц составляет M = 3; **б** — то же, но после введения функции подавления ядерных взаимодействий в лепестках триггера.

ственной регистрацией событий с большой множественностью заряженных частиц $n_{ch} > 8-12$. События с малой множественностью подавляются с коэффициентом ~10². Основным элементом системы триггера является сцинтилляционный годоскоп из 19 счетчиков. Триггер также позволяет проводить юстировку пучка на жидко-водородную мишень. Приведено описание функциональных схем системы. Путем моделирования вычислена зависимость вероятности срабатывания триггерной электроники от числа треков в годоскопе. Система триггера успешно использована в исследовании на пучке, набрана статистика 6 млн. событий *pp*-взаимодействий с отбором по множественности $n_{ch} > 8$. В настоящее время идет набор данных по протон-ядерным взаимодействиям с большой множественностью. Исследования продолжаются. Разработанная методика будет востребована в экспериментах с большой множественностью на пучках легких ядер. Эти исследования предполагается начать на ускорителе У-70 в ближайшем будущем.

Гранты РФФИ: 06-02-810-Бел_а, 08-02-90028-Бел_а, 09-02-00445, 09-02-92424-КЭ_а, 09-02-00445. Гранты Президента РФ для Научных школ: НШ-1456.2008.02, 4142.2010.2.

СПИСОК ЛИТЕРАТУРЫ

- Hagedorn R. // La Revista del Nuovo Cimento. 1983. V. 6. № 10. P. 1.
- Murzin V.S., Sarycheva L.I. // Interactions of high energy hadrons (Russian ed). 1983; Giovannini A., Ugocioni R. // Int. J. Mod. Phys. 2005. V. A20. P. 3897.
- 3. Bjorken J.D. // Phys. Rev. 1983. V. D27. P. 140.
- 4. Дремин И.М. // Письма в ЖЭТФ. 1979. Т. 30. С. 140. // УФН. 1994. Т. 164. № 8. С. 785.
- Dremin I.M., De Wolf A.E. // Phys. Rep. 1996. V. 270. P. 1.
- Abdallah J. et al. (By DELPHI Collaboration) // Eur. Phys. J. 2006. V. C47. E-print: hep-ex/0604038.
- 7. Кокоулина Е.С., Кутов А.Я., Никитин В.А., Петухов Ю.П. // ЯФ. 2009. Т. 72. № 1. С. 198.
- Сотрудничество ОИЯИ-НИИЯФ МГУ-ИФВЭ-ФИ-РАН-ГГТУ-ОИЭЯИ НАНБ // Препринт Р1-2004-190. Дубна: ОИЯИ, 2004.
- 9. Басиладзе С.Г., Батурицкий М.А., Богданова Г.А. и др. // ПТЭ. 2008. № 3. С. 14.
- Asseev A.A., Baliaev N.A., Zapolsky V.N. et al. // IHEP 89-57, Serpuhov, 1989. IHEP 91-17. Serpuhov, 1991.
- 11. http://www.epotek.com
- 12. *Birks J.B.* // The Theory and Practice of Scintillation Counting. N.Y.: Pergamon Press, 1964.
- 13. Ammosov V.V., Boitsov V.N., Ermolov P.F. et al. // Phys. Lett. 1972. V. 42B. P. 519.