ЭЛЕКТРОНИКА И РАДИОТЕХНИКА

УДК 621.373

МОЩНЫЕ ИСТОЧНИКИ СВЕРХШИРОКОПОЛОСНОГО ИЗЛУЧЕНИЯ С СУБНАНОСЕКУНДНОЙ ДЛИТЕЛЬНОСТЬЮ ИМПУЛЬСА

© 2011 г. А. М. Ефремов, В. И. Кошелев, Б. М. Ковальчук, В. В. Плиско, К. Н. Сухушин

Институт сильноточной электроники СО РАН Россия, 634055, Томск, просп. Академический, 2/3 Поступила в редакцию 07.07.2010 г.

Описаны источники мощных сверхширокополосных электромагнитных импульсов субнаносекундной длительности. Биполярный импульс напряжения длительностью 0.5 нс и амплитудой ~200 кВ подается на вход излучающей системы (16-элементная решетка или одиночная антенна). Получены значения эффективного потенциала излучения $E_p R = 260$ кВ для источника с одиночной антенной и $E_p R = 690$ кВ для источника с 16-элементной решеткой на частоте повторения импульсов 100 Гц.

введение

Для решения ряда задач, таких как радиолокация удаленных (*R* ~ 100 км) объектов и исследования по электромагнитной совместимости, необходимы мощные источники сверхширокополосного (с.ш.п.) электромагнитного излучения с эффективным потенциалом $E_p R \sim 1-10$ MB, где E_p — пиковая напряженность электромагнитного поля в дальней зоне на расстоянии R, и различной длительностью импульса. Малая длительность импульса обеспечивает хорошее пространственное разрешение, а большая полоса частот позволяет увеличить объем информации о зондируемых объектах и средах. В предыдущих наших работах [1, 2] были представлены источники с.ш.п.излучения, основанные на возбуждении одиночных антенн и решеток биполярными импульсами напряжения длительностью 2 и 1 нс. Следующим шагом является создание с.ш.п.-источников с субнаносекундной длительностью биполярного импульса напряжения. Целью данной работы было создание компактных источников мощного с.ш.п.-излучения, основанных на возбуждении одиночной антенны или многоэлементной решетки от одного генератора биполярных импульсов напряжения длительностью 0.5 нс.

КОНСТРУКЦИЯ ИСТОЧНИКА

Источник (рис. 1) состоит из генератора монополярных импульсов *1*, формирователя биполярных импульсов (ф.б.и.) *2* и излучающей системы. В качестве излучающей системы используется 16-элементная антенная решетка *5*, возбуждаемая от ф.б.и. через волновой трансформатор *3* и делитель мощности *4*, или одиночная антенна (на рисунке не показана).

ГЕНЕРАТОР БИПОЛЯРНЫХ ИМПУЛЬСОВ

Генератор биполярных импульсов источника состоит из генератора монополярных импульсов и формирователя биполярных импульсов напряжения. В качестве генератора монополярных импульсов в данном источнике использовался генератор высоковольтных импульсов СИНУС-160 [3].

На эквивалентной схеме генератора биполярных импульсов напряжения, приведенной на рис. 2, генератор монополярных импульсов представлен выходной формирующей линией FL_0 и разрядником S_0 . Линия FL_0 с волновым сопротивлением 40 Ом и электрической длиной 2.25 нс заряжается от вторичной обмотки трансформатора Тесла до напряжения — 360 кВ с частотой следования импульсов 100 Гц.

Формирователь биполярных импульсов напряжения выполнен по схеме с разомкнутой линией [1–3] и состоит из линий FL_2-FL_6 , обостряющего S_2 и срезающего S_3 разрядников и нагрузки $R_{\rm H}$. В отличие от предыдущих работ [1–3], для увеличения скорости нарастания напряжения на электродах разрядника S_2 использована дополнительная ступень обострения, состоящая из линии FL_1 , ограничительного резистора R_0 , зарядной индуктивности L и разрядника S_1 .

Схема моделировалась на компьютере с использованием программы PSpice. Время коммутации, т.е. время, в течение которого сопротивление разрядника меняется от 100 кОм до 0.01 Ом, установлено для S_0 , S_1 , S_2 и S_3 равным 1, 0.75, 0.2 и 0.2 нс соответственно. Сопротивление R_1 необходимо только для обеспечения работы программы.

Формирующая линия FL_0 генератора монополярных импульсов коммутируется разрядником S_0 на промежуточную линию FL_1 через ограничительное сопротивление R_0 и зарядную индуктив-

Рис. 1. Внешний вид источника излучения. *1* – генератор монополярных импульсов, *2* – формирователь биполярных импульсов, *3* – волновой трансформатор, *4* – делитель мощности, *5* – 16-элементная решетка.

Рис. 2. Эквивалентная схема генератора биполярных импульсов. *FL* – формирующие линии; *S* – разрядники; *1*–*3* – точки снятия расчетных осциллограмм.

ность *L*. Максимальное зарядное напряжение на промежуточной линии FL_1 достигает 580 кВ за время 6.5 нс (рис. 3, кривая *I*).

Разрядник S_1 срабатывает в максимуме зарядного напряжения и подключает линию FL_1 через высокоомную линию FL_2 к формирующей линии FL_3 , которая заряжается до напряжения 790 кВ за время 0.5 нс (кривая 2). При срабатывании разрядника S_2 в максимуме зарядного напряжения на линии FL_3 , а S_3 – с относительной задержкой 0.16 нс в передающей линии FL_6 , в конце которой установлена согласованная нагрузка $R_{\rm H}$, формируется биполярный импульс с амплитудой 360 кВ длительностью 0.5 нс (кривая 3). Точки, где выведены расчетные осциллограммы, указаны на рис. 2.

Конструкция формирователя биполярных импульсов представлена на рис. 4. Внутри латунного корпуса в среде азота под давлением 8.6 МПа размещены зарядная индуктивность L, шесть коаксиальных линий FL_1-FL_6 , обостряющие S_1 , S_2 и срезающий S_3 разрядники. Зарядная индуктивность Lсоединяется через проходной капролоновый изолятор (на рис. 4 не показан) с ограничительным резистором R_0 . Линии FL_2 , FL_4 и FL_6 имеют изоляцию из фторопласта-4, а линия FL_5 – из оргстекла. Диаметры наружных проводников линий FL_1-FL_6 равны 35, 35, 23, 35, 16.5 и 35 мм соответственно.

Электродами разрядников S_1 и S_2 являются концы внутренних проводников линий $FL_1 - FL_4$. Электродами срезающего разрядника S_3 служат

Рис. 3. Расчетные импульсы напряжений на линиях $FL_1(1)$, $FL_3(2)$ и $FL_6(3)$.

внутренний проводник линии FL_4 и диск толщиной 2 мм на внешнем проводнике этой линии. Все электроды разрядников съемные и изготовлены из меди. Зазоры в разрядниках S_1 и S_2 регулируются прокладками и равны 1.55 и 1.25 мм соответственно. Передающая линия FL_6 соединяет выход формирователя биполярных импульсов с резистивной нагрузкой $R_{\rm H}$ (на рис. 4 не показана). В качестве нагрузки использовался резистор TBO-5 номиналом 51 Ом.

Выходной биполярный импульс напряжения регистрировался с помощью делителя на связанных линиях DL, установленного в тракте линии FL_6 , осциллографом TDS 6604 фирмы Tektronix с полосой пропускания до 6 ГГц. Делитель калибровался путем подачи биполярного импульса напряжения длительностью ~0.5 нс от низковольтного генератора на вход передающей линии FL_6 . Восстановленная с коэффициентом ослабления ≈ 300 форма импульса с делителя DL имела хорошее совпадение с формой импульса на выходе линии.

Настройка формирователя сводилась к последовательной настройке зазоров в разрядниках S_1-S_3 . Зазоры в разрядниках S_1 , S_2 выбирались таким образом, чтобы обеспечить стабильное срабатывание этих разрядников вблизи максимального зарядного напряжения при частоте следования импульсов 100 Гц. Регулировкой зазора в срезающем разряднике S_3 добивались наиболее симметричной формы биполярного импульса напряжения. При указанных выше зазорах и давлении измеренный выходной биполярный импульс (рис. 5) имеет амплитуды -160, +200 кВ и длительность 520 пс на уровне 0.1 амплитуды.

Максимальная амплитуда импульса отличается от расчетной в 1.8 раза, что обусловлено упрощением в расчетах процесса коммутации тока и срабатыванием разрядников при напряжении ниже максимального зарядного. Относительный разброс амплитуды биполярного импульса напряжения не превышает 4–5% при относительном разбросе амплитуды зарядного напряжения генератора СИНУС-160 менее 1%.

ВОЛНОВОЙ ТРАНСФОРМАТОР И 16-КАНАЛЬНЫЙ ДЕЛИТЕЛЬ МОЩНОСТИ

Волновой трансформатор экспоненциального типа использовался для согласования выходного волнового сопротивления формирователя биполярных импульсов 50 Ом и суммарного волнового сопротивления фидера антенной решетки 3.125 Ом. Волновой трансформатор моделировали на компьютере с помощью программы PSpice. Плавный переход разбивали на 20 участков, сопротивление которых менялось ступенчато по экспоненциальному закону от 50 до 3.125 Ом. Из анализа численных расчетов выбрана электрическая длина перехода $\tau = 0.8$ нс.

Конструкция волнового трансформатора (рис. 6) представляет собой коаксиальный маслонаполненный переход длиной 153 мм, волновое сопротивление ρ_w которого меняется вдоль оси *z* по закону $\rho_w = 50 \exp(-18.22z)$. Диаметры внешних проводников на входе *3* и выходе *4* перехода состав-

Рис. 4. Конструкция формирователя биполярных импульсов. *FL* – формирующие линии; *S* – разрядники; *DL* – делитель на связанных линиях; *L* – зарядная индуктивность.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 1 2011

Рис. 5. Осциллограмма выходного импульса напряжения с делителя *DL*.

Рис. 7. Внешний вид комбинированной антенны. 1 - TEM-рупор, 2 - активный магнитный диполь, <math>3 - пассивные магнитные диполи.

ляют 20 и 68 мм. Вход трансформатора 3 соединен с выходом формирователя биполярных импульсов 1 через проходной изолятор 2, а выход – с 16-канальным делителем мощности 5, от которого с помощью кабелей 6 типа PK-50-11-11 биполярный импульс напряжения подается к элементам антенной решетки.

ИЗЛУЧАЮЩАЯ СИСТЕМА

В качестве самостоятельного излучателя и как элемент решетки использовалась комбинированная антенна (рис. 7), специально разработанная для возбуждающего биполярного импульса длительностью 0.5 нс. Антенна близка по конструкции к описанной в [2], но имеет в два раза меньшие размеры — $7.5 \times 7.5 \times 8$ см. В источнике с одиночной антенной она присоединялась к выходу ф.б.и. без использования волнового трансформатора и делителя мощности. Для предотвращения электрического пробоя антенна помещалась в ди-

Рис. 6. Конструкция волнового трансформатора с делителем мощности. *1* – выход ф.б.и.; *2* – проходной изолятор; *3* – вход трансформатора; *4* – выход трансформатора; *5* – делитель мощности; *6* – кабели.

Рис. 8. КСВН комбинированной антенны (1) и элемента решетки (2).

электрический контейнер, заполненный газом SF_6 под давлением 0.4 МПа.

На рис. 8 приведен коэффициент стоячей волны по напряжению (КСВН) комбинированной антенны (кривая 1), а на рис. 9 – диаграммы направленности (д.н.) по пиковой мощности в Н-и Е-плоскостях. Ширина д.н. по половинному уровню мошности составляет ~ 85° в плоскости Hи ~110° в плоскости Е. Зная эффективность антенны по энергии ($k_w = 0.9$) и пространственновременные характеристики излучения, можно найти эффективность антенны по пиковой мощности [4] как $k_p = P_{_{\rm ИЗЛ}}/P_{_{\rm \Gamma}}$, где $P_{_{\rm ИЗЛ}}$ – пиковая мощность импульса излучения, P_{Γ} – пиковая мощность импульса напряжения генератора на входе антенны. Измерения, выполненные при возбуждении антенны низковольтным биполярным импульсом длительностью 0.5 нс, позволили оценить величину k_n как ~0.8.

Рис. 9. Диаграммы направленности комбинированной антенны в плоскостях H(1) и E(2).

Измеренный коэффициент направленного действия антенны в главном направлении диаграммы составил $D_0 \approx 4$, а коэффициент по пиковой напряженности поля $k_E = E_p R/U_{\text{gmax}} \approx 1.2$, где $U_{\text{gmax}} -$ максимальная амплитуда импульса напряжения. Полученная в измерениях величина E_p отличалась от рассчитанной по формуле

$$E_P = \frac{1}{R}\sqrt{30P_{\rm r}k_p D_0} \tag{1}$$

менее чем на 10%. Это различие обусловлено несимметричностью д.н. антенны (см. рис. 9), приводящей к увеличению погрешности вычисления k_p по методике, изложенной в [4].

Для антенны, излучающей с.ш.п.-импульс, важным параметром является зависимость формы импульса от угла наблюдения. Искажение формы импульса оценивалось как среднеквадратичное отклонение импульса U(t), излученного под произвольным углом, от импульса V(t), излученного в направлении максимума д.н.:

$$\sigma = \sqrt{\int_{T} \left[u(t) - v(t) \right]^2 dt} / \int_{T} v^2(t) dt, \qquad (2)$$

где $u(t) = U(t)/U_{\text{max}}$ и $v(t) = V(t)/V_{\text{max}}$ – нормализованные функции, T – временное окно интегрирования.

На рис. 10 приведены зависимости от угла среднеквадратичного отклонения формы импульса, излученного комбинированной антенной, в *H*- (кривая *I*) и *E*-плоскостях (кривая *2*). Видимое различие формы импульсов проявляется при $\sigma > 0.1$.

В решетке комбинированные антенны закреплены на диэлектрической пластине с расстоянием между центрами антенн 9 см. В отличие от одиночной антенны изолятором на входе в элемент

Рис. 10. Среднеквадратичное отклонение формы импульса в плоскостях H(1, 3) и E(2, 4), излученного комбинированной антенной (1, 2) и решеткой (3, 4).

решетки служит диэлектрик питающего кабеля. Усредненный КСВН элемента решетки приведен на рис. 8 (кривая 2). Его отличие от КСВН одиночной антенны (рис. 8, кривая 1) обусловлено другой конструкцией антенного входа.

На рис. 11 приведены д.н. решетки, ширина д.н. по половинному уровню мощности составляет ~20° в обеих плоскостях. В отличие от одиночной антенны д.н. решетки симметричны в обеих плоскостях. Коэффициент направленного действия решетки в главном направлении составляет $D_0 \approx 54$, а эффективность по пиковой мощности $k_p = 0.36$. Эффективность по пиковой мощности рассчитывалась в приближении, что энергетическая эффективность элемента решетки такая же,

Рис. 11. Диаграммы направленности решетки в плоскостях H(I) и E(2).

Рис. 12. Зависимость эффективного потенциала излучения решетки от расстояния. *1* – комбинированная антенна, *2* – *TEM*-антенна.

как и у одиночной антенны ($k_w = 0.9$). Коэффициент по пиковой напряженности поля для антеннофидерной системы "волновой трансформатор – делитель мощности – кабельные фидеры – антенная решетка" составляет $k_E \approx 3.1$. Из формулы (1) можно найти для этой системы эффективность по пиковой мощности – $k_p = 0.3$. Так как в отличие от одиночной антенны д.н. решетки симметрична, можно полагать, что различие коэффициентов k_p решетки и антенно-фидерной системы обусловлено потерями (20% по мощности) как от рассогласования в системе, так и потерями в трансформаторном масле.

Приведенные на рис. 10 зависимости от угла среднеквадратичного отклонения формы импульса, излученного решеткой, в *H*- (кривая *3*) и *Е*-плоскостях (кривая *4*) показывают, что по сравнению с одиночной антенной форма импульса начинает искажаться при меньших углах.

Были проведены измерения для нахождения дальней зоны излучения решетки. Расстояние до границы дальней зоны можно оценить из формулы $R_{\rm r} = 2D^2/\lambda_0$, где D – максимальный размер решетки, λ_0 – центральная длина волны спектра возбуждающего биполярного импульса напряжения. В нашем случае $R_{\rm r} \approx 3$ м. На рис. 12 приведена зависимость эффективного потенциала излучения $E_p R$ от расстояния между решеткой и приемной антенной. В качестве приемных использовались компактная комбинированная антенна (кривая 1), аналогичная элементу решетки, и ТЕМ-антенна (кривая 2) с апертурой 40 × 8 см. Горизонтальный участок кривой соответствует дальней зоне. Различие в поведении кривых объясняется разными размерами апертур антенн. Теоретическая оценка границы дальней зоны согласуется с результатами измерений с приемной комбинированной антенной. Из рисунка видно, что расстояния больше 6 м можно считать дальней зоной для ТЕМ-антенны с большой апертурой. Все измерения проводились с помощью ТЕМ-антенны на расстояниях более 6 м.

ИЗЛУЧЕНИЕ МОЩНЫХ СВЕРХШИРОКОПОЛОСНЫХ ИМПУЛЬСОВ

На рис. 13а представлена осциллограмма электромагнитного импульса, излученного одиночной антенной. Эффективный потенциал $E_p R$ составил 260 кВ. При этом среднеквадратичное отклонение величины $E_p R$ за 100 импульсов не превышало 5%. При использовании принудительного воздушного охлаждения источник с одиночной антенной работал непрерывно в течение часа, при этом изменение амплитуды излученных импульсов не

Рис. 13. Осциллограммы импульсов, излученных одиночной антенной (а) и решеткой (б).

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 1 2011

Рис. 14. Зависимости амплитуды биполярного импульса напряжения (*1*) и эффективного потенциала излучения (*2*) от числа импульсов.

превысило 15%. Пиковая мощность излучения составила ~650 МВт. На рис. 136 представлена осциллограмма импульса, излученного решеткой.

На рис. 14 приведены зависимости амплитуды биполярного импульса напряжения на выходе ф.б.и. и эффективного потенциала от числа импульсов при частоте повторения 100 Гц для источника с 16-элементной решеткой. Вертикальными пунктирными линиями на рисунке показаны 10-минутные перерывы в работе генератора для охлаждения ф.б.и. Среднее значение эффективного потенциала составило $E_p R \approx 690$ кВ. При этом среднеквадратичное отклонение $E_p R$ за 100 импульсов не превышало 5%, а изменение амплитуды за $3.6 \cdot 10^5$ импульсов (1 ч работы) не превысило 10%. Коэффициент по пиковой напряженности поля был таким же, как и для низковольтных импульсов, $k_E \approx 3.1$. Пиковая мощность источника излучения с решеткой составила ~240 МВт (при $U_{\text{gmax}} = 200 \text{ кB}$). Меньшая по сравнению с источником на основе одиночной антенны пиковая мощность объясняется, прежде всего, тем, что у решетки форма импульса излучения сохраняется только в небольшом диапазоне углов в направлении максимума д.н. (рис. 10), а также вследствие уменьшения энергетической эффективности антенно-фидерной системы.

выводы

Разработаны источники импульсов с.ш.п.-излучения с субнаносекундной длительностью и пиковой мощностью 300-600 МВт при частоте повторения 100 Гц. Эффективный потенциал излучения источника с 16-элементной решеткой достигает 700 кВ при нестабильности менее 10%. При использовании принудительного воздушного охлаждения ф.б.и. генератор биполярных импульсов может работать непрерывно в течение одного часа на частоте повторения 100 Гц с изменением амплитуды выходного импульса менее 15%.

СПИСОК ЛИТЕРАТУРЫ

- Губанов В.П., Ефремов А.М., Кошелев В.И. и др. // ПТЭ. 2005. № 3. С. 46.
- Ефремов А.М., Кошелев В.И., Ковальчук Б.М. и др. // РЭ. 2007. Т. 52. № 7. С. 813.
- 3. Andreev Yu.A., Gubanov V.P., Efremov A.M. et al. // Laser and Particle Beams. 2003. V. 21. № 2. P. 211.
- 4. Андреев Ю.А., Буянов Ю.И., Кошелев В.И. // РЭ. 2005. Т. 50. № 5. С. 585.