_____ ЛАБОРАТОРНАЯ ТЕХНИКА

УДК 533.9.072

ГЕНЕРАТОР ПЛАЗМЫ НА ОСНОВЕ НЕСАМОСТОЯТЕЛЬНОГО ТЛЕЮЩЕГО РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ С ПОЛЫМ КАТОДОМ БОЛЬШОГО ОБЪЕМА

© 2011 г. И. В. Лопатин, Ю. Х. Ахмадеев, Н. Н. Коваль, П. М. Щанин

Институт сильноточной электроники СО РАН

Россия, 634055, Томск, просп. Академический, 2/3 E-mail: lopatin@opee.hcei.tsc.ru Поступила в редакцию 15.06.2010 г.

Представлены результаты исследования несамостоятельного тлеющего разряда в электродной системе с полым катодом объемом 0.25 м³. Зажигание и поддержание горения сильноточного (до 35 A) несамостоятельного тлеющего разряда при низких (0.3–1 Па) давлениях осуществляется вспомогательным дуговым разрядом с холодным полым катодом. При увеличении тока несамостоятельного тлеющего разряда от 2 до 35 A напряжение его горения изменяется от 40 до 300 B, что значительно ниже напряжения горения самостоятельного тлеющего разряда в той же электродной системе. При токе разряда 30 A концентрация электронов в центре полого катода составляет $n_e \sim 10^{10} - 10^{11}$ см⁻³, а температура электронов – $T_e \approx 2$ эВ. Рассмотренный разряд может быть использован в системах модификации материалов и изделий.

ВВЕДЕНИЕ

Методы диффузионного насыщения приповерхностных слоев материалов и изделий азотом с целью изменения их физико-химических и трибологических свойств, таких как твердость, износо- и коррозионная стойкость, широко используются в различных областях промышленности. В последние годы распространение получили методы азотирования в различных видах газового разряда: в самостоятельном и несамостоятельном тлеющих разрядах [1–4], в дуговом разряде [5, 6].

Известно [1, 5], что процесс азотирования сталей и сплавов проходит не эффективно, если не удалить окислы, образующиеся на поверхности изделий при нагреве до температуры ~400–500°С. Для очистки поверхности в процессе азотирования используется несколько способов, основными из которых являются химическое связывание кислорода ионами водорода, обычно получаемого в результате диссоциации аммиака [1], и ионное травление поверхности [5]. Последний способ более предпочтителен, поскольку позволяет работать на чистом азоте без добавок водорода и, в то же время, обеспечить более эффективный нагрев обрабатываемых изделий.

Особенностью функционирования самостоятельного тлеющего разряда является относительно высокое (10–100 Па) давление рабочего газа при напряжении его горения в сильноточной форме ~400–600 В, при этом время азотирования достигает нескольких десятков часов [1, 2]. На продолжительность процесса азотирования в большой степени влияет то, что ионы, поступающие из плазмы на катод и азотируемое изделие, вследствие потери энергии из-за многократных столкновений в катодном слое, не обеспечивают ионную очистку обрабатываемой поверхности от слоя окислов, препятствующего диффузии азота и тормозящего процесс азотирования.

Несамостоятельный тлеющий разряд позволяет получить сильноточный режим горения при более низких рабочих давлениях, когда процесс ионной очистки эффективен, что сокращает время азотирования при прочих равных условиях [7].

В данной работе описана установка для получения несамостоятельного тлеющего разряда при значительно бо́льших, чем в [8], токах и в существенно бо́льшем, чем в [7, 9–11], объеме за счет эмиссии электронов из плазмы вспомогательного дугового разряда. Плазма, генерируемая тлеющим разрядом, использовалась для азотирования сталей.

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Исследование несамостоятельного тлеющего разряда проводилось на экспериментальном стенде (рис. 1), собранном на основе промышленной ионно-плазменной напылительной установки ННВ-6.6-И1, оснащенной дополнительным дуговым генератором плазмы. Принципиальная схема экспериментального стенда приведена на рис. 2. Вакуумная камера размером 650 × 650 × 650 мм, которая являлась одновремен-

Рис. 1. Конструкция экспериментального стенда. *1* – водоохлаждаемый трубчатый анод тлеющего разряда; *2* – камера – полый катод тлеющего разряда; *3* – изоляторы; *4* – магнитная катушка; *5* – сетка; *6* – полый сетчатый анод дугового разряда; *7* – изоляторы; *8* – диафрагма; *9* – полый катод дугового разряда; *10* – поджигающий электрод; *11* – зонд для измерения радиальной однородности плазмы; *12* – зонд для измерения азимутальной однородности плазмы.

Рис. 2. Принципиальная схема экспериментального стенда. *1* – охлаждаемый водой анод тлеющего разряда; *2* – обрабатываемые образцы; *3* – вакуумная камера – полый катод тлеющего разряда; *4* – сетка; *5* – сетчатый полый анод дугового разряда; *6* – диафрагма; *7* – магнитная катушка; *8* – вспомогательный поджигающий электрод дугового разряда.

но полым катодом несамостоятельного тлеющего разряда, откачивалась турбомолекулярным насосом ТМН-500 до давления 10⁻³ Па. Рабочее давление регулировалось в диапазоне 0.3–1 Па за счет напуска рабочего газа – азота.

Тлеющий разряд зажигался между полым катодом 3 и охлаждаемым водой трубчатым анодом 1. Площадь поверхности катода $2.3 \cdot 10^4$ см², анода — 150 см², соотношение этих площадей соответственно равно ≈150/1. Электропитание несамостоятельного тлеющего разряда осуществлялось от источника с тиристорной регулировкой тока в первичной обмотке трехфазного трансформатора. Выходной выпрямитель собран по схеме Ларионова. Источник питания оснащен электронной системой зашиты, предотвращающей появление микродуг на поверхности катода тлеющего разряда.

Для облегчения зажигания несамостоятельного тлеющего разряда и устойчивого его горения при низких давлениях использовался источник электронов на основе дугового разряда с холодным полым катодом [12]. Для предотвращения ухода катодного пятна из рабочей части полого катода дугового генератора плазмы на его край катодная и анодная части плазмогенератора разделены диафрагмой 6 с диаметром отверстия 50 мм, находящейся под плавающим потенциалом.

Эмиссия электронов в полый катод — камеру осуществлялась через эмиссионное окно диаметром 200 мм. Для разделения плазмы основного тлеющего и вспомогательного дугового разрядов эмиссионное окно перекрывалось мелкоструктурной (0.4 × 0.4 мм) сеткой 5, которая являлась сетчатым полым анодом дугового разряда и находилась под потенциалом катода тлеющего разряда. Электропитание плазмогенератора осуществлялось от сварочного выпрямителя ВД-201, обеспечивающего ток до 200 А при напряжении ~30 В.

В процессе экспериментов обрабатываемые образцы 2 помещались под потенциал катода, и их очистка и нагрев проводились ионами, ускоренными в катодном слое тлеющего разряда. В работе [5] было показано, что для эффективной ионной очистки в процессе азотирования при низких давлениях необходимо, чтобы ионы, поступающие из плазмы на поверхность обрабатываемых изделий, имели энергию ≥150 эВ. Для повышения напряжения в катодном слое тлеющего разряда и увеличения энергии ионов в описываемой системе пришлось снизить эффективность извлечения электронов из плазмы дугового разряда путем введения в систему дополнительной сетки 4. Она находилась под потенциалом катода несамостоятельного тлеющего разряда и размещалась на расстоянии ~1 см от сетки полого анода 5 дугового разряда. Геометрическая прозрачность сетки 4 составляла ≈65%.

Установка сетки 4 позволила снизить эффективность извлечения электронов из плазмы дугового разряда, так как плотность плазмы в эквипотенциальном зазоре между сетками 4 и 5 ниже, чем в полом аноде 5. При этом напряжение горения несамостоятельного тлеющего разряда возросло до ~300-400 В, что обеспечило нагрев обрабатываемых деталей до температур ~450-550°C в условиях ограничения максимального тока тлеющего разряда ~30-35 А.

В рассматриваемой электродной системе для сравнения были проведены исследования некоторых характеристик самостоятельного тлеющего разряда. В этом случае дуговой генератор плазмы не включался и напряжение подавалось между полым катодом *3* и водоохлаждаемым анодом *1*.

Основные измерения проводились стрелочными или цифровыми приборами, при этом фиксировались действующие значения величин токов и напряжений.

153

Рис. 3. Вольт-амперные характеристики: I – несамостоятельного тлеющего разряда при $I_{\rm A}$ = 30 A, 2 – самостоятельного тлеющего разряда. Давление азота p = 0.64 Па.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

До начала измерений осуществлялась ионная очистка стенок камеры, для чего в рабочей камере зажигался тлеющий разряд с током 30 A и проводилась ионная бомбардировка стенок камеры в течение 15–20 мин.

Разрядный ток $I_{\text{тл}}$ возникает практически сразу при подаче напряжения на разрядный промежуток (рис. 3, кривая *I*). С увеличением напряжения $U_{\text{тл}}$ до 320 В ток нарастает практически по линейному закону до величины 35 А.

В некоторых случаях требуется снижение интенсивности распыления стенок. Уменьшить ионное распыление в нашей системе можно без изменения конструкции — путем увеличения тока дугового разряда (рис. 4). При увеличении тока дугового разряда I_{π} от 20 до 100 А наблюдается почти двукратный рост тока несамостоятельного тлеющего разряда $I_{\pi\pi}$ от 16 до 30 А и резкое (почти в 3 раза) снижение напряжения его горения $U_{\pi\pi}$ от 270 до 100 В.

При изменении давления азота *р* в разрядной системе от 0.3 до 1 Па (рис. 5) ток тлеющего разряда $I_{\rm TA}$ оставался на уровне 25–26 А, а напряжение горения $U_{\rm TA}$ – на уровне 280–270 В, что свидетельствует о слабой зависимости этих параметров от давления азота в полом катоде.

В случае самостоятельного разряда (рис. 3, кривая 2) зажигание разряда происходит при напряжении $U_{\text{тл}} \approx 700$ В. Минимальное напряжение горения разряда $U_{\text{тл}} = 250$ В при токе разряда $I_{\text{тл}} =$

Рис. 4. Зависимость напряжения горения (*1*) и тока несамостоятельного тлеющего разряда (*2*) от тока дугового разряда (давление азота p = 0.64 Па).

= 2 А. Ток разряда $I_{\text{тл}}$ = 35 А достигается при напряжении горения $U_{\text{тл}}$ = 600 В.

В процессе исследований с помощью плоского зонда диаметром 5 мм с охранным кольцом были проведены измерения азимутального (рис. 6) и радиального (рис. 7) распределений плотности тока на зонд, находящийся под потенциалом катода. При измерениях азимутального распределения зонд перемещался по круговой относительно центра камеры траектории, проходящей на полувысоте камеры и имеющей радиус 20 см, и был повернут к стенкам камеры.

Азимутальное распределение плотности тока, приходящего на зонд в плазме несамостоятельного тлеющего разряда, достаточно однородно ($\approx \pm 20\%$) (см. рис. 6, кривая *I*). Заметен незначительный рост плотности тока в области, расположенной напротив дугового генератора, из плазмы которого в камеру поступают электроны, ускоренные в катодном слое несамостоятельного тлеющего разряда. При этом среднее значение плотности тока, приходящего на зонд, составляет *j* \approx ≈ 3.8 мA/см². На этом же рисунке приведено азимутальное распределение плотности тока на зонд в самостоятельном тлеющем разряде при тех же значениях тока разряда ($I_{TЛ} = 30$ A) и давлении азота в камере (кривая *2*). В этом режиме средняя плотность тока *j* ≈ 3 мA/см².

Измерения радиального распределения плотности тока на зонд проводились в плоскости А–А (см. рис. 6). Анализ рис. 7 показывает, что радиальная однородность несамостоятельного разряда в пределах 25 см от центра камеры составляет $\approx 10\%$, а средняя плотность тока на зонд в этой области $j \approx 3.4$ мА/см². В случае самостоятельного разряда при среднем значении $j \approx 3$ мА/см² плот-

Рис. 5. Зависимость тока (*1*) и напряжения горения несамостоятельного тлеющего разряда (*2*) от давления (ток дугового разряда $I_{\rm A} = 30$ A).

ность тока на зонд изменялась от 3.2 мА/см² при $r \approx 20$ см (где r — расстояние от центра камеры) до 2.8 мА/см² при r = 0. Такую форму распределения можно объяснить тем, что при низком (≈ 0.6 Па) давлении в камере длина ионизационного пробега электронов становится сравнимой с размерами катодной полости, поэтому максимум ионизации находится вблизи противоположной стенки катода. Длина ионизационного пробега оценивалась по формуле $\lambda = 1/(\sigma n_0)$, где σ и n_0 — соответственно сечение ионизации и концентрация нейтралов азота, и составила ≈ 0.5 м. При этом изменение давления в полом катоде от 0.3 до 1 Па не влияло существенно на распределение плотности тока на зонд.

Как показали измерения цилиндрическим зондом диаметром 0.4 мм и длиной 4 мм, в центре полого катода при токе несамостоятельного тлеющего разряда 30 А, напряжении его горения 370 В и давлении азота p = 0.64 Па концентрация плазмы составляет $n_i \approx (1.5-2) \cdot 10^{11}$ см⁻³ при температуре электронов $T_e = 1-2$ эВ. Концентрация плазмы вблизи катода в этих же условиях составляет $n_i \approx$ $\approx (6-9) \cdot 10^{10}$ см⁻³. В соответствии с законом Ленгмюра толщину катодного слоя можно оценить как:

$$h \approx \frac{\sqrt{2}}{3} \lambda_d \left(\frac{2U}{T_e}\right)^{3/4},\tag{1}$$

где λ_d – радиус Дебая, U – напряжение на катодном слое, T_e – температура электронов.

При вышеуказанных параметрах разряда толщина катодного слоя составляет $h \approx 1$ см.

Высокие плотности тока, полученные в тлеющем разряде, обусловлены особенностью процессов, происходящих в полом катоде. Электроны, ускоренные в катодном слое, осциллируют в катодной полости и эффективно ионизируют газ. В результате многократных осцилляций в полом катоде создается плазма высокой концентрации. Так, при катодном падении напряжения в слое $U_c \approx 600$ В и потенциале ионизации азота $I^* = 15.6$ эВ быстрый

Рис. 6. Азимутальные распределения плотности тока на зонд: 1 – несамостоятельного тлеющего разряда при $U_{\text{TR}} = 370$ B; 2 – самостоятельного тлеющего разряда при $U_{\text{TR}} = 600$ B. Давление азота p = 0.64 Па, ток тлеющего разряда $I_{\text{TR}} = 30$ A.

Рис. 7. Радиальное распределение плотности тока на зонд: 1, 2 – несамостоятельного тлеющего разряда при $U_{\text{тл}} = 370 \text{ B}, p = 0.64 \text{ Па}$ (1) и 1 Па (2); 3 – самостоятельного тлеющего разряда при $U_{\text{тл}} = 600 \text{ B}, p = 0.64 \text{ Па}$. Ток тлеющего разряда $I_{\text{тл}} = 30 \text{ A}$.

электрон с учетом передачи вторичному электрону энергии, равной одному потенциалу ионизации [13], может совершить до 20 актов ионизации. Оценочные расчеты были выполнены в предположении, что быстрые электроны теряют свою энергию только на ионизацию.

Экспериментами показано, что самостоятельный тлеющий разряд в нашей системе существует при достаточно низких напряжениях, ~200 В. Напряжение горения самостоятельного разряда с полым катодом может быть оценено следующим образом. Если пренебречь в балансе энергии электронов возбуждением молекул, то минимальное напряжение, при котором самостоятельный разряд стабильно горит в нашей электродной системе в азоте, можно рассчитать по формуле, приведенной в [12]:

$$e U_c = \left(1 - \frac{S_0}{S_e}\right)^{-1} \left(\frac{1}{\gamma} \left(I^* + \frac{1}{2}kT_e\right) + \frac{3}{2}kT_c(1+\gamma)\right), \quad (2)$$

где eU_c — энергия, набираемая электронами в катодном слое тлеющего разряда; S_0/S_c — отношение площади анода к площади катода; γ — коэффициент вторичной эмиссии; I^* — потенциал ионизации; T_e — температура электронов.

Принимая $\gamma = 0.1$ и подставив значения $I^* = 15.6$ эВ, $T_e = 2$ эВ, $S_0/S_c = 6.5 \cdot 10^{-3}$, получим расчетную минимальную величину катодного падения – $U_c = 170$ В. Полученная величина удовлетворительно согласуется с экспериментальным значением минимального напряжения горения (см. рис. 3) $U_0 = U_c + U_a = 200$ В, где U_a – анодное падение потенциала.

Слабая зависимость $I_{\text{тл}}$ и $U_{\text{тл}}$ от давления (см. рис. 5), вероятно, связана с тем, что в исследуемом диапазоне давлений число ионизаций слабо изменяется при изменении длины ионизационного пробега и средней длины пути электронов, ускоренных в катодном слое тлеющего разряда.

В рассмотренной разрядной системе в плазме несамостоятельного тлеющего разряда в течение 3 ч при температуре 450–500°С было проведено азотирование образцов из нержавеющей (12X18H10T) и конструкционной (40X) сталей. В результате твердость поверхности образцов возросла в 4 раза: от 4 до 15 ГПа для стали 12X18H10T и от 2.2 до 8.8 ГПа для стали 40X. Это указывает на перспективность использования данного разряда в установках ионно-плазменного азотирования.

ЗАКЛЮЧЕНИЕ

Создана система генерации и рассмотрены характеристики самостоятельного и несамостоятельного тлеющих разрядов с токами, на порядок превышающими токи в аналогичных разрядных системах. Максимальный ток в несамостоятельном тлеющем разряде достигается при напряжениях горения в 2.5-5 раз ниже, чем в самостоятельном разряде. При этом энергетические затраты на создание плазмы, с учетом затрат на инжекцию дополнительных электронов в катодную полость разряда, в 2-4 раза ниже, чем в самостоятельном разряде. Получена сравнительно высокая равномерность распределения плотности тока, приходящего на зонд. Радиальная однородность плотности тока составила ±10% от средней величины и практически не зависит в исследованном диапазоне от давления. Азотирование в плазме исследуемого разряда поверхности сталей 12X18H10T и 40X показало высокую эффективность предлагаемого метода.

Авторы выражают благодарность профессору Ю.Д. Королеву за полезное обсуждение результатов исследований.

Работа выполнена при частичной финансовой поддержке проектов РФФИ – ГФЕН 08-08-92207 и 09-02-90456, а также интеграционного проекта СО РАН–ИС-43.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лахтин Ю.М., Коган Я.Д. и др. Теория и технология азотирования. М.: Металлургия, 1991.
- 2. Bell T. // Surface engineering. 2002. V. 18. № 6. P. 415.
- 3. Ахмадеев Ю.Х., Гончаренко И.М., Иванов Ю.Ф. и др. // Письма в ЖТФ. 2005. Т. 31. Вып. 13. С. 24.
- 4. Барченко В.Т., Лисенков А.А. // Петербургский журнал электроники. 2008. Вып. 2–3. С. 58.
- Щанин П.М., Коваль Н.Н., Гончаренко И.М., Григорьев С.В. // Физика и химия обраб. материалов. 2001. № 3. С. 16.
- 6. Андреев А.А., Кунченко В.В., Саблев Л.П. и др. // Технология машиностроения. 2002. № 5. С. 27.
- 7. *Meletis E.I.* // Surf. and Coatings Technology. 2002. № 149. P. 95.
- Метель А.С., Григорьев С.Н., Мельник Ю.А., Панин В.В. // Физика плазмы. 2009. Т. 35. № 12. С. 1140.
- 9. Визирь А.В., Окс Е.М., Щанин П.М., Юшков Г.Ю. // ЖТФ. 1997. Т. 67. Вып. 6. С. 27.
- 10. Гаврилов Н.В., Емлин Д.Р., Каменецких А.С. // Изв. вузов. Физика. 2007. № 9. Приложение. С. 30.
- 11. Гаврилов Н.В., Мамаев А.С., Кайгородов А.С. // Письма в ЖТФ. 2009. Т. 35. Вып. 1. С. 69.
- 12. Григорьев С.В., Коваль Н.Н., Щанин П.М. Патент РФ № 2227962. С2 // БИ. 2002. № 12.
- Ульянов К.Н. // Теплофизика высоких температур. 1999. Т. 37. № 3. С. 363.