УДК 551.463.5

СВЯЗЬ ПОКАЗАТЕЛЯ ВЕРТИКАЛЬНОГО ОСЛАБЛЕНИЯ ДНЕВНОГО СВЕТА С ГЛУБИНОЙ ВИДИМОСТИ БЕЛОГО ДИСКА

© 2014 г. В. И. Маньковский

Морской гидрофизический институт НАН Украины, Севастополь e-mail: emankovskaya@mail.ru Поступила в редакцию 09.07.2012 г.

Построена полуэмпирическая модель связи показателя вертикального ослабления дневного света $\alpha \downarrow c$ глубиной видимости белого диска Z_6 . Согласно модели, параметр $\Psi = \alpha \downarrow Z_6$ не является величиной постоянной, он увеличивается с возрастанием Z_6 . По данным натурных наблюдений, в океанских водах установлена связь $\Psi = f(Z_6)$, подтверждающая модельные расчеты.

DOI: 10.7868/S0030157414010080

ВВЕДЕНИЕ

Показатель вертикального ослабления нисходящего потока дневного света $\alpha \downarrow$ является одной из основных гидрооптических характеристик, определяющих параметры светового поля в море. В частности, знание величины $\alpha \downarrow$ необходимо при расчете важной экологической характеристики водоемов — толщины эвфотического слоя. Вследствие этого определение величин $\alpha \downarrow$ является одной из актуальных задач в оптике моря.

Определяют $\alpha \downarrow$ путем измерения погружаемым фотометром облученности сверху $E \downarrow$. Вычисляется $\alpha \downarrow$ по формуле

$$\alpha \downarrow (H), \, \mathbf{M}^{-1} =$$

= ln[$E \downarrow (H_1) / E \downarrow (H_2)$]/($H_2 - H_1$), (1)
 $H = (H_1 + H_2)/2, \quad H_2 > H_1$,

где $H, H_1, H_2 -$ глубина.

В ряде работ исследовалась возможность определения величины $\alpha \downarrow$ более простым методом по глубине видимости белого диска Z_6 . Было установлено, что между средней величиной $\alpha \downarrow$ в слое $0-Z_6$ и Z_6 существует тесная связь с коэффициентом корреляции, составляющим в ряде экспериментов 0.8-0.9 единиц, что позволяет достаточно точно оценивать величину $\alpha \downarrow$ в слое от поверхности до глубины $H = Z_6$

В обзоре [14] литературных данных о связи $\alpha \downarrow$ с величиной Z_6 сделан вывод, что для различных по прозрачности и географии вод произведение $\alpha \downarrow Z_6$ в области длин волн 490–520 нм изменяется в пределах 1.39–1.70, наиболее вероятное значение – 1.50.

Обозначим эту оптическую характеристику вод как параметр $\Psi = \alpha \oint Z_6$.

В работе [8] приведены данные о параметре Ψ (длина волны 490 нм) по результатам измерений в Черном море, Индийском и Атлантическом океанах. Величина Ψ в этих экспериментах составила соответственно: 1.73, 1.36, 1.06. Среднее значение по всем измерениям в трех экспериментах получилось равным 1.52 с коэффициентом корреляции r = 0.846.

В [12] проводились измерения $\alpha \downarrow$ (длина волны 550 нм) и Z_6 в центральной и северо-восточной частях Тихого океана, величина Ψ лежала в пределах 1.4–1.90.

Как видно из всех упомянутых работ, величина параметра Ψ варьируется в широких пределах. Однако, с чем это связано, не исследовалось. Обычно искалась линейная связь величин $\alpha \downarrow c$ величинами $1/Z_6$ и вычислялось среднее по всем измерениям значение параметра Ψ , которое принималось характерным для исследуемых вод. Считалось, что величина данного параметра не связана с глубиной видимости белого диска. Однако это не так.

Анализ данных, представленных в работе [12], показывает, что параметр Ψ связан с глубиной видимости белого диска, а именно – он увеличивается с ростом Z_6 . В трех экспериментах получены следующие соотношения: 1. "Manning cruise 32": $\langle Z_6 \rangle = 13 \text{ м}, \Psi = 1.4; 2.$ "Smith cruise 52": $\langle Z_6 \rangle = 21 \text{ м}, \Psi = 1.66; 3.$ "Manning cruise 36": $\langle Z_6 \rangle = 26 \text{ м}, \Psi = 1.90.$

Такая же закономерность изменения параметра Ψ (длина волны 480 нм) в зависимости от Z_6 была получена по нашим измерениям на озере Байкал (рис. 1). Хотя разброс точек на графике большой (следствие влияния волнения при измерениях), в целом четко видно значительное увеличение Ψ при возрастании глубины видимости белого диска.

Рис. 1. Связь параметра $\Psi(480)$ с глубиной видимости белого диска в водах озера Байкал. Тонкая линия — аппроксимация поля экспериментальных точек, показанных на рисунке, зависимостью $\Psi(480) = 0.7986 Z_6^{0.1976}$. Коэффициент корреляции R = 0.7.

МОДЕЛЬ СВЯЗИ $\Psi = f(Z_{\rm b})$

Рассмотрим связь параметра Ψ с величиной Z_6 по модельным расчетам. Теория белого диска [11] дает следующую связь Z_6 с гидрооптическими характеристиками:

$$Z_{\delta} = C/(\varepsilon + \alpha \downarrow), \qquad (2)$$

где є и $\alpha \downarrow$ — показатель ослабления направленного света и показатель вертикального ослабления дневного света соответственно, *С* — коэффициент. Показатели є и $\alpha \downarrow$ в формуле (2) представляют собой средние величины в слое 0-*Z*₆ и относятся к области спектра, соответствующей максимальному пропусканию океанской водой солнечного излучения.

Показатель ослабления света $\alpha \downarrow$ тесно связан с показателем поглощения света водой к. В работе [2] установлено, что в океанских водах $\alpha \downarrow$ связан с к в среднем соотношением

$$\delta = \kappa / \alpha \downarrow = 0.81(+/-0.08).$$
 (3)

То есть, выражая $\alpha \downarrow$ через к, запишем: $\alpha \downarrow = 1.23 \kappa$. Показатель ослабления направленного света является суммой показателей поглощения и рассеяния $\varepsilon = \kappa + \sigma$. Согласно этому соотношению, величину показателя поглощения запишем как: $\kappa = \varepsilon (1 - \Lambda)$, где $\Lambda = \sigma/\varepsilon$ (вероятность выживания фотона).

Рис. 2. Связь параметра $\Psi(550)$ с параметром Λ по модели (коэффициент C = 1). Уравнение аппроксимации $\Psi(550) = -0.4851\Lambda^2 + 0.0039\Lambda + 0.5024$.

С учетом соотношений $\alpha \downarrow = 1.23 \kappa$ и $\kappa = \epsilon (1 - \Lambda)$ получаем

$$\Psi = \alpha \oint Z_6 = C1.23(1 - \Lambda) / [1 + 1.23(1 - \Lambda)]. \quad (4)$$

Расчет по формуле (4) изменчивости параметра Ψ в зависимости от Λ при коэффициенте C = 1, показан на рис. 2. Параметр Ψ с увеличением Λ уменьшается.

Вероятность выживания фотона Λ в океанских водах не постоянна, она изменяется в зависимости от ε . Для длины волны 550 нм в [4] установлена связь

$$\Lambda(550) = 0.944 - 0.048/\varepsilon(550).$$
(5)

Рассчитаем по формуле (4), с учетом формулы (5), параметр Ψ для длины волны 550 нм при разных Z_6 . Для этого в формуле (5) выразим ε (550) через Z_6 , воспользовавшись эмпирической формулой связи показателя ослабления направленного света с глубиной видимости белого диска в океанских водах из работы [5]. Для $\lambda = 505$ нм она имеет вид

$$\varepsilon(505) = 7.7/Z_6$$
. (6)

Коэффициент пропорциональности в этой формуле для 550 нм должен быть несколько больше; в наших расчетах он принят равным 8. Результаты расчета параметра $\Psi(550)$ по формуле (4), для коэффициента C = 1, при изменчивости Z_6 от 5 до 60 м представлены на рис. 3.

Как видно из рис. 3, модельный расчет согласуется со сделанным выше выводом по экспериментальным данным, а именно, величина $\Psi(550)$ возрастает с увеличением Z_6 .

Рис. 3. Связь параметра $\Psi(550)$ с глубиной видимости белого диска Z_6 по модели (коэффициент C=1). Урав-

нение аппроксимации $\Psi(550) = -2E - 05Z_6^2 + 0.006Z_6 + 0.0673.$

В работе [11], где выведена формула (2), величина коэффициента *С* в этой формуле не определена. Определим его величину, используя данные наблюдений $\Psi_{_{ЭКСП}}(550)$ из работы [12] и связь $\Psi_{_{MOД}}(550)$ с Z_6 , рассчитанную по модели при коэффициенте $C_{_{MOД}}=1$ (формула (4)). Из формулы (4) коэффициент *C*(550) определится как $C(550) = \Psi_{_{ЭКСП}}(550)/\Psi_{_{MOД}}(550)$. Результаты расчетов представлены в табл. 1. Коэффициент *C*(550) не постоянен – он уменьшается при возрастании Z_6 .

Была проведена валидация полученных величин коэффициента *С*. Для этого коэффициенты *С*, представленные в табл. 1, были использованы для расчета параметра $\Theta = \varepsilon Z_6$ и результаты сравнили с величинами этого параметра, рассчитанными по теории белого диска в работе [3]. Параметр $\Theta = \varepsilon Z_6$ рассчитывался по следующей фор-

Таблица 1. Результаты расчета коэффициента *С* для длины волны 550 нм в формуле (2) по данным измерений параметра $\Psi_{\text{эксп}}(550)$ в работе [12] и по модельным расчетам $\Psi_{\text{мод}}(550)$

N⁰	$\langle Z_{\tilde{0}} \rangle$, м	Ψ _{эксп} (550)	Ψ _{мод} (550)	<i>C</i> (550)
1	13	1.40	0.142	9.86
2	21	1.66	0.181	9.17
3	26	1.90	0.210	9.05

муле, полученной путем преобразования формулы (2) вышеизложенным методом:

$$\Theta = \varepsilon Z_6 = C(550)/\{1 + 1.23(1 - \Lambda)\}.$$
 (7)

Результаты расчетов по формуле (7) представлены в табл. 2. Там же даны теоретические значения параметра Θ , определенные по диаграмме из работы [3] для случая измерений белым диском в безоблачную погоду с теневого борта при отсутствии волнения. Сравнение показывает близкие значения параметра Θ , рассчитанные по формуле (7) и по теоретическим данным из работы [3].

СВЯЗЬ $\Psi = f(Z_{\rm b})$ ПО НАТУРНЫМ ДАННЫМ

Кроме расчета по модели, была рассчитана по натурным данным изменчивость параметра Ψ при изменении величин Z_6 , имеющем место в океанских водах. Особый интерес представляют воды с максимальными величинами Z_6 , наблюдающимися в антициклональных круговоротах. Так, в антициклональных круговоротах. Так, в антициклональном субтропическом круговороте в южной части Тихого океана величина Z_6 по [7] составила 67 м, что является максимальной величиной, зарегистрированной в водах Мирового океана.

Для расчетов взят показатель вертикального ослабления дневного света на длине волны 525 нм. Кроме экспериментальных данных, коих было недостаточно, были использованы данные, полученные путем сопоставления распределения в Мировом океане оптических типов вод из [1] (с. 148—155 в [1]) и климатических величин Z_6 из [10]. При сопоставлении с типами вод из [1] в нескольких случаях величина Z_6 в районе расположения данного оптического типа вод была определена по наблюдениям в этом районе, выполнявшимся в рейсах научно-исследовательских судов "Михаил Ломоносов" и "Академик Вернадский".

В табл. 3 представлены исходные данные, использовавшиеся при расчетах. Величины $\alpha \downarrow$ (525) для каждого оптического типа вод в табл. 3 даны согласно таблице 27 из работы [1]. Для измерений в Черном море в табл. 3 приведены средние значения величин $\alpha \downarrow$ (525) и Z_6 , так как глубина видимости белого диска в этих экспериментах изменялась в небольших пределах – несколько метров.

Результаты расчетов связей $\alpha \downarrow (525) = f(1/Z_6)$ и $\Psi(525) = f(Z_6)$ представлены на рис. 4 и 5.

Из рис. 4 видно, что связь между величинами $\alpha \downarrow$ (525) и $1/Z_6$ в целом нелинейная. Она может быть аппроксимирована прямой линией лишь на отдельных участках.

Рис. 5 показывает, что параметр $\Psi(525)$, как и было найдено выше, возрастает с увеличением Z_6 . В максимально прозрачных водах океана величи-

СВЯЗЬ ПОКАЗАТЕЛЯ ВЕРТИКАЛЬНОГО ОСЛАБЛЕНИЯ ДНЕВНОГО СВЕТА

Nº	<i>Z</i> б, м	Λ	<i>C</i> (550)	Θ, модель	Θ, теория
1	13	0.866	9.86	8.46	8.4
2	21	0.818	9.17	7.49	7.9
3	26	0.788	9.05	7.18	7.6

Таблица 2. Величина параметра $\Theta = \varepsilon Z_6$, рассчитанная по модели (формула (7)) и по теории из работы [3]

Таблица 3. Показатель вертикального ослабления дневного света $\alpha \downarrow$ (525), глубина видимости белого диска Z_6 и тип вод по классификации Ерлова [1]

N⁰	Район Мирового океана	Тип вод	$\alpha \downarrow$ (525) × 10 ² , m ⁻¹	<i>Z</i> б, м	Источник данных
1	Индийский. 5° ю.ш., 55° в.д.,	IB	5.4	30	[1, 11]
2	Атлантический. 45° с.ш., 20° з.д.	II	7.6	22	[1, 11]
3	Атлантический. 3°-6° с.ш., 25°-27° з.д.	IA	4.8	31	[1, 47МЛ]
4	Атлантический. 25° с.ш., 55° з.д.	IA	4.8	35	[1, 11]
5	Атлантический. 21°-22° с.ш., 53°-57° з.д.	Ι	4.3	38	[1, 40AB]
6	Атлантический. 40° с.ш., 50° з.д.	IB	5.4	30	[1, 11]
7	Атлантический. 00° с.ш., 16° з.д.	II	7.6	16	[1, 47МЛ]
8	Атлантический. 30.43° с.ш., 76.38° з.д.	_	5.5	33	[20МЛ]
9	Тихий океан. 45° с.ш., 140°–180° з.д.	II	7.6	20	[1, 11]
10	Тихий океан. 20° с.ш., 120° з.д.	IA	4.8	35	[1, 12]
11	Тихий океан. 35° с.ш., 175° з.д.	IB	5.4	25	[1, 11]
12	Тихий океан. 0°-10° ю.ш., 175° з.д.	IB	5.4	35	[1, 11]
13	Тихий океан. 20° с.ш., 150° з.д.–150° в.д.	IA	4.8	35	[1, 11]
14	Тихий океан. 35° с.ш., 175° з.д.	IB	5.4	25	[1, 11]
15	Тихий океан. 0°-10° ю.ш., 175° з.д.	IB	5.4	35	[1, 11]
16	Тихий океан. 18.2° с.ш., 163.8° з.д	_	3.6	60	[6, 7]
17	Тихий океан. Перуанский апвеллинг	_	12.8	10	[13]
18	Тихий океан. Перуанский апвеллинг	_	11.0	10	[13]
19	Тихий океан. 12.1° с.ш., 164.8° в.д.	_	4.5	43	[20МЛ]
20	Тихий океан. 11.71° с.ш., 161.51° в.д.	—	4.4	36	[20МЛ]
21	Тихий океан. 20.24° с.ш., 140.4° з.д.	_	3.2	58	[20МЛ]
22	Черное море. Платформа. 44.393° с.ш., 33.984° в.д.				
	1-я съемка	—	$\langle 10.4 \rangle$	$\langle 10.5 \rangle$	[9]
23	» 3-я съемка	—	$\langle 10.9 \rangle$	$\langle 12.5 \rangle$	[9]
24	» 4-я съемка	—	(13.0)	$\langle 9.0 \rangle$	[9]
25	Черное море	—	(11.7)	$\langle 11.0 \rangle$	[41ΠB]
26	Черное море	_	$\langle 9.7 \rangle$	$\langle 15.0 \rangle$	[33ΠK]

Примечание. МЛ – Михаил Ломоносов, АВ – Академик Вернадский, ПВ – Профессор Водяницкий, ПК – Профессор Колесников. Числа рядом – номера рейсов.

на Ψ примерно в два раза выше по сравнению с мутными прибрежными водами. Связь $\Psi(525) = f(Z_6)$ нелинейная.

При сравнении рис. 5 и 3 видно, что в модели (рис. 3) характер изменения $\Psi(550)$ при изменении Z_6 такой же, как и $\Psi(525)$ по натурным данным (рис. 5). Отметим, что по модели относи-

тельное увеличение параметра $\Psi(550)$ с возрастанием Z_6 больше, чем по натурным данным: в диапазоне $Z_6 = 10...60$ м по модели $\Psi(550)$ увеличивается в 2.7 раза, по натурным данным $\Psi(525)$ увеличивается в 1.7 раза. Это объясняется тем, что при расчете по модели связи $\Psi(550) = f(Z_6)$ коэф-фициент C(550) был принят постоянным и рав-

ОКЕАНОЛОГИЯ том 54 № 1 2014

Таблица 4. Величина параметра $\Psi(525)$ в океанских водах и $\Psi(480)$ в озере Байкал при разных Z_6

<i>Z</i> _б , м	Океанские воды $\Psi(525) = 0.6109 Z_6^{0.2882}$	Озеро Байкал Ψ(480) = 0.7888 Z ₆ ^{0.2042}
6	1.02	1.14
12	1.25	1.31
18	1.41	1.42
24	1.53	1.51

ным единице. А результаты расчетов реальной величины коэффициента C(550), представленные в табл. 1, показывают, что он с возрастанием Z_6 уменьшается, и учет этого должен приводить к уменьшению относительного увеличения параметра $\Psi(550)$ при возрастании Z_6 . Расчет по данным табл. 1 (три точки при Z_6 , равном 13, 21 и 26 м) дал связь $C(550) = 13.319_6^{-0.135}$. С учетом этой (приблизительной) связи относительное изменение модельной величины $\Psi(550)$ в диапазоне $Z_6 = 10...60$ м будет меньше и составит 2.1 раза.

Кроме того, возможно влияние различных спектральных участков, в которых рассчитывались величины Ψ в модели и в эксперименте.

Обратимся еще раз к изменчивости параметра Ψ на длине волны 480 нм в зависимости от Z_6 по данным измерений в озере Байкал и сравним ее с

Рис. 4. Связь показателя вертикального ослабления $\alpha \downarrow$ (525) с глубиной видимости белого диска Z_6 в океанских водах по данным натурных наблюдений. Тонкая линия – аппроксимация поля экспериментальных точек, показанных на рисунке, зависимостью $\alpha \downarrow$ (525) × 10² = 2.3051(1/ Z_6 × 10²)^{0.7111}. Коэффициент корреляции R = 0.98.

результатами, полученными в океанских водах для длины волны 525 нм. Такое сравнение приведено в табл. 4, где даны величины параметра Ψ , рассчитанные по эмпирическим формулам для разных Z_6 .

В табл. 4 обращает на себя внимание изменение соотношений между параметрами $\Psi(525)$ и $\Psi(480)$ при изменении Z_6 : в диапазоне $Z_6 = 6-18$ м параметр $\Psi(525) < \Psi(480)$, причем с увеличением Z_6 разница между ними уменьшается, а при $Z_6 =$ = 24 м соотношение изменяется и $\Psi(525) >$ > $\Psi(480)$. Этот эффект объясняется характером спектрального распределения величин $\alpha \downarrow (\lambda)$ в водах разного типа.

выводы

1. Построена полуэмпирическая модель связи параметра $\Psi = \alpha \bigvee Z_6$ с глубиной видимости белого диска Z_6 .

2. Величина параметра $\Psi(550)$ по модельным расчетам возрастает с увеличением Z_6 .

3. Определена величина коэффициента C(550)для разных Z_6 в теоретической формуле связи $Z_6 = C/(\varepsilon + \alpha \downarrow)$. Величина C(550) не постоянна, она изменяется, уменьшаясь при увеличении Z_6 .

4. Проведено сравнение величин параметра $\Theta = \varepsilon Z_6$, рассчитанных по модели в настоящей работе, с его теоретическими величинами из работы

Рис. 5. Связь параметра $\Psi(525)$ с глубиной видимости белого диска Z_6 в океанских водах по данным натурных наблюдений. Тонкая линия – аппроксимация поля экспериментальных точек, показанных на рисунке, зависимостью $\Psi(525) = 0.6109 Z_6^{0.2882}$. Коэффициент корреляции R = 0.893.

ОКЕАНОЛОГИЯ том 54 № 1 2014

[3], показавшее близкие значения этого параметра, рассчитанного разными методами.

5. По натурным данным установлена связь параметра $\Psi(525)$ с глубиной видимости белого диска, подтверждающая модельные расчеты.

6. Установлено, что связь между величинами $\alpha \downarrow$ (525) и $1/Z_6$ в целом нелинейная. Она может быть аппроксимирована прямой линией лишь при небольших интервалах изменения Z_6 .

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ерлов Н.Г.* Оптика моря. Л.: Гидрометеоиздат, 1980. 247 с.
- Иванов А.П., Шемшура В.Е. Метод оценки величины показателя поглощения света водой // Морск. гидрофиз. исследования. 1973. № 1(60). С. 110–118.
- Левин И.М. К теории белого диска // Изв. АН СССР. Физ. атм. и океана. 1980. Т. 16. № 9. С. 678–683.
- 4. Левин И.М., Копелевич О.В. Корреляционные соотношения между первичными гидрооптическими характеристиками в спектральном диапазоне около 550 нм // Океанология. 2007. Т. 47. № 3. С. 374–379.
- 5. *Маньковский В.И.* Эмпирическая формула для оценки показателя ослабления света в морской воде по глубине видимости белого диска // Океанология. 1978. Т. 18. № 4. С. 750–753.
- Очаковский Ю.Н., Пелевин В.Н., Карлсен Г.Г. и др. Распространение естественного излучения в океане // Гидрофизические и гидрооптические иссле-

дования в Атлантическом и Тихом океанах. М.: Наука, 1974. С. 166–190.

- Павлов В.М. Прозрачность морской воды // Гидрофизические и гидрооптические исследования в Атлантическом и Тихом океанах. М.: Наука, 1974. С. 127–138.
- Сорокина Н.А., Земляная Л.А. Связь глубины видимости белого диска с показателем вертикального ослабления дневного света в некоторых районах Мирового океана // Морск. гидрофиз. исследования. 1970. № 4 (50). С. 143–148.
- Толкаченко Г.А., Маньковский В.И., Соловьев М.В. Гидрооптические наблюдения в прибрежных водах Крыма летом и осенью 2001 г. // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2003. Вып. 7. С. 93–99.
- Шифрин К.С. Океанология. Физика океана. Т. 1. Гидрофизика океана. М.: Наука, 1978. С. 359–365.
- 11. Шифрин К.С. Введение в оптику океана. Л.: Гидрометеоиздат, 1983. С. 23–29.
- Graham J.J. Secchy Disk observations and extinction coefficients in the central and eastern North Pacific Ocean // Limnology and Oceanography. 1966. V. 11. № 2. P. 184–190.
- Kullenberg G. Relationships between Optical Parameters in Different Oceanic Areas // Studies in physical oceanography. Papers dedicated to professor Nils G. Jerlov in commemoration of his seventieth birthday. Report № 42. Copenhagen. Kobenhavns Universitet. July 1980. P. 57–80.
- 14. *Pilgrim D.A.* The Secchy Disk in principle and in use // Hydrobiology J. 1984. № 33. P. 25–30.

Relation between the Diffuse Attenuation Coefficient and the Secchy Disk Depth

V. I. Mankovsky

A semi-empirical model of the relation between the diffuse attenuation coefficient $\alpha \downarrow$ and Secchy Disk depth Z_d is suggested. According to the model parameter $\Psi = \alpha \downarrow Z_d$ is not a constant value, it increases when Z_d increases. This relation was also confirmed by the experimental data in the oceanic waters.