УДК 54.473,547.316

СИНТЕЗ ИЗОБУТИЛЕНА ИЗ ЭТАНОЛА НА КАТАЛИЗАТОРАХ, СОДЕРЖАЩИХ ОКСИДЫ ЦИНКА И ЦИРКОНИЯ

© 2018 г. О. А. Пономарева^{1, 2,} *, П. А. Шапошник², П. А. Коц², С. В. Коннов¹, Б. А. Коложвари^{1, 2}, И. И. Иванова^{1, 2}

¹Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, Россия ²Химический факультет МГУ имени М.В. Ломоносова, Москва, Россия *E-mail: oaponomareva@phys.chem.msu.ru Поступила в редакцию 15.06.2018 г.

Получение изобутилена из этанола изучено на ZnO/ZrO_2 -катализаторах. Образцы синтезировали пропиткой по влагоемкости гидроксида циркония, полученного из хлорида цирконила, нитратом цинка с последующим прокаливанием при 550°С. Полученные образцы исследовали методами низкотемпературной адсорбции азота, СЭМ, РФА, ИК адсорбированного СО, ТГА-ДТА. Исследование влияния состава катализатора и условий проведения эксперимента позволило установить, что в процессе синтеза изобутилена из этанола оптимальным мольным отношением Zr : Zn, позволяющем получать изобутилен с селективностью 45–50%, является 8–20, оптимальными условиями проведения превращения этанола в изобутилен являются 500°С, скорость подачи сырья 3 г/гч, сырье, представляющее собой 50% раствор этанола в воде. По данным термогравиметрического анализа увеличение содержания цинка в образцах приводит к уменьшению содержания коксовых отложений.

Ключевые слова: этанол, изобутилен, оксид цинка, оксид циркония, пропитка по влагоемкости. **DOI:** 10.1134/S0028242118060114

Биоэтанол, представляющий собой один из наиболее доступных возобновляемых ресурсов. получаемых ферментацией растительной массы, является сырьем для получения широкого набора продуктов, таких как этилен [1-4], ароматические углеводороды [2], пропилен [1, 5-8], изобутилен [9–13], бутадиен [14], бутанол [3, 15], этилацетат [16, 17], водород [18], ацетон [3, 17, 19, 20], ацетальдегид [15, 17], уксусная кислота [21]. Одним из наиболее перспективных процессов на основе этанола является одностадийный синтез изобутилена [8–13]. Изобутилен, являющийся сырьем многотоннажных процессов получения метилметакрилата, полимеров и метил-третбутилового эфира [22], в настоящее время получают путем переработки нефти. Поскольку потребность в изобутилене постоянно увеличивается, а запасы нефти истощаются, то актуальной задачей является разработка альтернативных путей его получения, которые позволят уменьшить зависимость производства от ископаемых природных ресурсов и колебаний рынка углеводородов (УВ).

Впервые синтез изобутилена из этанола осуществили Y. Wang с сотр. на смешанном бифункциональном оксидном катализаторе $Zn_xZr_yO_z$, полученном твердотемплатным методом [9]. Было установлено, что ключевую роль в получении

изобутилена играют льюисовские кислотно-основные пары. тогда как наличие бренстедовских кислотных центров способствует протеканию побочных реакций изомеризации изобутилена, олигомеризации бутенов и коксообразованию [10]. Синтез Zn_xZr_yO₂ пропиткой по влагоемкости гидроксида циркония растворами солей цинка позволяет получать катализаторы, характеризующиеся только льюисовскими кислотно-основными центрами, что способствует увеличению времени их стабильной работы [10]. Исследование влияния состава солей цинка, используемых для приготовления катализатора, показало, что важную роль играет размер аниона соли цинка. Наиболее активный катализатор был получен при использовании ацетата цинка [12]. Авторы связывают это с тем, что Zn_xZr_vO_z, полученный пропиткой ацетатом цинка, обладает оптимальным балансом кислотных и основных центров, высокой дисперсностью цинка, более сильным взаимодействием оксида металла с подложкой. Недавно W. An с сотр. опубликовали данные о синергетическом эффекте в синтезе изобутилена из этанола добавок хрома к $Zn_xZr_yO_z$ -катализатору, полученному с использованием темплата [13].

Несмотря на то, что $Zn_xZr_yO_z$ -катализаторы, полученные пропиткой по влагоемкости солями

цинка гидроксида циркония, более просты, технологичны и дешевы в приготовлении, основная масса работ посвящена $Zn_xZr_yO_z$, полученным твердотемплатным синтезом [9–11, 13]. В литературе отсутствуют данные по влиянию состава $Zn_xZr_yO_z$ -катализаторов, полученных пропиткой по влагоемкости, на каталитические свойства этих образцов, а также данные ТГА–ДТА образцов, закоксованных в процессе синтеза изобутилена из этанола.

В настоящей работе изучена конверсия этанола в изобутилен на Zn_xZr_yO_z-катализаторах с различным содержанием оксидов цинка и циркония, полученных пропиткой по влагоемкости гидроксида циркония раствором нитрата цинка, исследовано влияние условий проведения реакции на показатели процесса, методом TГА–ДТА изучены дезактивированные катализаторы различного состава.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В реакции получения изобутилена из этанола были исследованы катализаторы на основе оксида циркония, модифицированного соединениями цинка, которые получали пропиткой по влагоемкости нитратом цинка гидроксида циркония, полученного из $ZrOCl_2 \cdot 8H_2O$ осаждением 5 М раствором NaOH, из расчета состава полученного катализатора Zn : Zr = 1 : 2, 1 : 6, 1 : 8, 1 : 14, 1 : 20, 1 : 40 с последующим прокаливанием при температуре 550°C. Также для сравнения был синтезирован исходный ZrO₂ путем прокаливания гидроксида циркония, полученного из ZrOCl₂ · 8H₂O осаждением 5 М раствором NaOH при 550°C в течение 6 ч.

Химический состав образцов определяли с использованием рентгенофлуоресцентного анализа на приборе Thermo Scientific ARL Perform'X с родиевой трубкой 3.5 кВт.

Изучение морфологии поверхности синтезированных образцов проводили методом сканирующей электронной микроскопии (СЭМ) на электронном микроскопе Hitachi Tabletop Microscope TM3030Plus. Напряжение на ускоряющем электроде 15 кВ; использованные увеличения от ×500 до ×20000.

Исследование характеристик пористой структуры цеолитов проводили на автоматическом сорбтометре ASAP 2000 фирмы Micromeritics.

Рентгеновские дифрактограммы (метод РФА) получали при комнатной температуре на порошковом дифрактометре D2 PHASER фирмы BRUKER в геометрии $\theta-\theta$. Режим генератора 30 кВ, 10 мА, рентгеновская трубка с медным анодом ($\lambda \operatorname{Cu} K_{\alpha 1} = 1.5418 \text{ Å}$). Съемку дифрактограмм проводили при вращении образца в горизонтальной плоскости в интервале угла 2 θ 5°–50° с шагом 0.05°, ширина щелей на выходе из трубки 0.6 мм и перед детектором 1.15 мм, время регистрации в точке 3 с. Обработку дифрактограмм осуществляли с использованием программного пакета diffrac. EVA от BRUKER. Идентификацию фаз проводили по базе ICDD PDF2.

ИК-спектры регистрировали на спектрометре Ргоtеge 460 (Nicolet) с Фурье-преобразованием, укомплектованном МТС-детектором, в интервале 4000—400 см⁻¹ с разрешением 4 см⁻¹. Образец катализатора 20 мг прессовали в диск диаметром 2 см при давлении 100 атм. Удаление воды с образцов проводили на вакуумной установке, оснащенной датчиками абсолютного давления с рабочим вакуумом 5 × 10⁻⁴ Па. Таблетку образца помещали в ИК-ячейку, нагревали за 2 ч до 450°С и выдерживали 1 ч при 450°С. Адсорбцию СО проводили при температуре жидкого азота (77 K) путем дозирования газа до полного насыщения. Обработку полученных ИК-спектров проводили с помощью пакета программ OMNIC ESP версии 7.3.

Дезактивированные образцы исследовали методами термогравиметрического и дифференциального термического анализа (ТГА/ДТА) на приборе NETZSCHSTA 409 PC/PG, совмещенном с масс-спектрометром. Для анализа использовали 20–30 мг образца. Образец нагревали в токе сухого воздуха (100 мл/мин) со скоростью 10°С/мин от комнатной до 800°С.

Каталитические эксперименты проводили в проточном реакторе при атмосферном давлении, в интервале температур 440—500°С, массовых скоростей подачи сырья (50% раствор этанола в воде) 1.3—14.5 г/г ч, в присутствии азота (10 мл/мин). Состав сырья варьировали, меняя содержание этанола в воде от 20 до 80 мас. % В качестве внутреннего стандарта для газов использовали азот, для жидких проб – диоксан.

Жидкие и газообразные продукты реакции анализировали с помощью газожидкостного хроматографа Кристалл 2000М с пламенно-ионизационным детектором с использованием газа-носителя – азота, кварцевой капиллярной колонки длиной 30 м с неполярной жидкой фазой "SE-30". Определение количества СО2 проводили с помощью газожидкостного хроматографа Кристалл 2000М с детектором по теплопроводности, с использованием газа-носителя водорода на набивной колонке длиной 3 м с фазой "Porapak-Q". Для разделения изобутилена и бутадиена использовали хроматограф Кристалл 5000.2 с пламенноионизационным детектором с использованием газа-носителя — водорода, кварцевой капиллярной колонки длиной 25 м с фазой "KCl/Al₂O₃". Идентификацию продуктов реакции проводили на хромато-масс-спектрометре Thermo Trace GC Ultra (хроматограф), Thermo DSQ II (масс-спектрометр), с использованием кварцевой капиллярной колонки длиной 50 м с неполярной жидкой фазой "Ultra 1".

Образец	Coctaв Zn : Zr, моль/моль	Содержание ZnO, мас. %	$S_{\rm БЭТ}$, м ² /г	<i>V</i> пор, см ³ /г	<i>D</i> пор, Å
$ZnO/2ZrO_2$	1:2	24.5	34	0.039	46
$ZnO/6ZrO_2$	1:6	10.0	36	0.042	53
$ZnO/8ZrO_2$	1:8	7.6	35	0.048	55
$ZnO/14ZrO_2$	1:14	4.5	32	0.046	57
$ZnO/20ZrO_2$	1:20	3.2	42	0.065	62
$ZnO/40ZrO_2$	1:40	1.6	33	0.055	66
ZrO ₂	0	0	44	0.099	91

Таблица 1. Физико-химические свойства образцов

Активность катализатора характеризовали по конверсии этанола и селективности образования продуктов реакции. Конверсию этанола, а также селективности и выходы целевых продуктов рассчитывали по результатам хроматографического анализа.

Конверсию этанола (*K*) и селективность образования *i*-того продукта рассчитывали по следующим формулам:

$$K = (m_{\text{под.этанола}} - m_{\text{непрореаг.этанола}}) \times \\ \times 100/m_{\text{под.этанола}}, \%$$

$$S_i = 100 \times (k_i Q_i / M_{\text{гi}}) / m_{\text{прорег. этанола}}, \%$$

$$Y_i = K S_i / 100, \%$$

$$Y_{\text{от теор}} = Y_i / 100 \times Y_{\text{теор}}, \%,$$

где S_i — массовая доля *i*-того продукта, M_{ri} — молекулярная масса *i*-того продукта, $m_{\text{под.этанола}}$ масса поданного за 1 ч этанола, $m_{\text{непрореаг.этанола}}$ масса непрореагировавшего этанола, k_i — коэффициент, учитывающий, количество молекул этанола, необходимое для образования продукта. Выход *i*-того продукта реакции рассчитывали следующим образом: $Y_i = K S_i/100, \%$.

Выход изобутилена от теоретического рассчитывали следующим образом:

 $Y_{\text{от теор}} = Y_i / 100 \times Y_{\text{теор}}, \%$, исходя их уравнения реакции: $3C_2H_5OH + H_2O = u_{3O}-C_4H_8 + 2CO_2 + 6H_2$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Физико-химические свойства катализаторов. Физико-химические свойства образцов и их обозначения представлены в табл. 1.

Все образцы ZnO/ZrO_2 после прокаливания при 550°С имеют низкую удельную площадь поверхности 30–40 м²/г, а также малый объем пор, при этом диаметр пор у ZnO/ZrO_2 примерно одинаков и составляет около 50–60 Å, тогда как оксид циркония характеризуется средним диаметром пор 91 Å.

Исследование полученных образцов методом СЭМ показало, что их морфология не зависит от состава. Микрофотография синтезированного ZnO/8ZrO₂ представлена на рис. 1. Образцы представляют собой агломераты частиц неправильной

НЕФТЕХИМИЯ том 58 № 6 2018

формы с широким распределением их эффективных размеров по длине.

Данные РФА для образцов ZnO/ZrO₂ разного состава, а также ZrO_2 представлены на рис. 2. ZrO_2 , полученный в результате прокаливания при 550°С ZrO(OH)₂, представляет собой смесь двух фаз – тетрагональной и моноклинной (ICDD 50-1089, 37-1484). После модифицирования ZrO(OH)₂ нитратом цинка и прокаливания при 550°C в образце ZnO/40ZrO₂ еще присутствуют рефлексы, относящиеся к моноклинной фазе, хотя их интенсивность заметно ниже, чем в ZrO₂, тогда как при увеличении содержания цинка наблюдали рефлексы, относящиеся только к тетрагональной фазе оксида циркония. Это свидетельствует о том, что оксид цинка находится в высокодисперсном состоянии и препятствуют фазовому переходу ZrO₂ из тетрагональной фазы в моноклинную. Полученные результаты согласуются с данными В.Г. Заводинского [23], который показал, что легирование лиоксила циркония оксилами различных металлов способствуют стабилизации его в метастабильном фазовом состоянии.

Природу и количество кислотных центров изучали с помощью ИК-спектроскопии адсорбированного СО. Данные представлены на рис. 3. В спектрах присутствуют полосы поглощения 2204 см⁻¹, которые соответствуют адсорбции CO на Zn^{2+} , 2154 см⁻¹, которые соответствуют адсорбции СО на слабых бренстедовских центрах, 2168 см⁻¹ – на слабых льюисовских центрах, 2180 см⁻¹ – на сильных льюисовских центрах. На рис. 3 также представлено количество СО, адсорбированного на кислотных центрах разной силы для ZrO₂ с различным содержанием оксида цинка. Видно, что увеличение содержания цинка практически не влияет на количество СО, адсорбированного на катионах цинка, что свидетельствует о том, что с увеличением содержания оксида цинка идет укрупнение частиц. Также увеличение содержания цинка не приводит к увеличению количества сильных льюисовских центров (ЛКЦ), тогда как количество адсорбированного СО на слабых льюисовских и слабых бренстедовских кислотных центрах (БКЦ) уменьшается.

Рис. 1. Микрофотографии СЭМ ZnO/8ZrO₂ с разным увеличением.

Рис. 2. Дифрактограммы образцов ZrO₂ (1), ZnO/40ZrO₂ (2), ZnO/8ZrO₂ (3), ZnO/6ZrO₂ (4), ZnO/2ZrO₂ (5).

Если предположить, что сильные льюисовские центры находятся на гранях кристаллов, тогда как слабые льюисовские и бренстедовские — на их плоскостях, то полученные данные свидетельствуют о том, что при модифицировании оксид цинка располагается на плоскостях кристаллов, приводя к уменьшению количества слабых ЛКЦ и БКЦ в ZrO₂.

Влияние состава катализатора на каталитические свойства. Полученные образцы исследовали в реакции превращения этанола в изобутилен. Уравнение реакции представлено выше, в экспериментальной части.

При превращении этанола помимо основного продукта реакции — изобутилена, также образуются побочные продукты, такие как углеводородные газы состава C_1-C_4 , диоксид углерода, алифатические УВ состава C_5-C_6 , изопропанол, ацетон, ацетальдегид, этилацетат, бутаналь, бутеналь, бутанон, уксусная кислота, пентанон, пентенон, мезитилоксид и др. Предполагаемая схема реакции и возможные пути образования наблюдаемых продуктов представлены на схеме.

Схема 1. Схема возможных превращений этанола в изобутилен.

Каталитическое превращение этанола в изобутилен протекает через дегидрирование этанола до ацетальдегида, с последующим диспропорционированием по реакции Тищенко до этилацетата, который далее гидролизуется до уксусной кислоты и этанола. Далее протекает реакция кетонизации уксусной кислоты с образованием ацетона с последующей альдольной конденсацией ацетона в диацетоновый спирт, который далее образует целевой продукт изобутилен и уксусную кислоту. В результате побочных реакций дегидратации, гидрирования, конденсации, изомеризации, олигомеризации, дегидроциклизации и др. образуется широкий набор наблюдаемых продуктов.

В табл. 2 представлены результаты каталитических экспериментов по получению изобутилена из этанола на образцах ZnO/ZrO_2 разного состава. На ZrO_2 основными продуктами реакции являются этилен и пропилен, селективность образования которых составила 79 мол. % соответственно. При этом селективность по целевому продукту изобутилену не превышала 1.2%. Это свидетельствует о том, что на этих катализаторах протекают процессы дегидратации с образовани-

НЕФТЕХИМИЯ том 58 № 6 2018

ем этилена. Пропилен может образовываться различными путями: либо путем олигомеризации трех молекул этилена с последующим метатезисом, либо через образование ацетона с последующим гидрированием до изопропанола и дгидратацией его до пропилена. Возможно также образование пропилена путем конденсации двух молекул ацетальдегида, образовавшихся путем дегидрирования этанола, до 3-ол-бутаналя, который далее превращается в бутеналь, разлагающийся до пропилена и CO. Все Zn-содержащие катализаторы активны в образовании изобутилена, при этом с увеличением содержания оксида цинка в образцах от 1.6 до 24.5 мас. % селективность образования изобутилена проходит через максимум. Введение небольших количеств оксида цинка приводит к резкому снижению количества слабых льюисовских и бренстедовских кислотных центров, ответственных за протекание реакций, приводящих к образованию этилена и пропилена, селективность образования которых снижается в пять раз на $ZnO/20ZrO_2$ по сравнению с ZrO₂. При этом на оксиде цинка протекает дегидрирование этанола до ацетальдегида, а на

Рис. 3. Данные ИКС адсорбированного СО и количество СО, адсорбированного на кислотных центрах разной силы.

кислотно-основных центрах – реакции альдолизации, кетонизации и конденсации, приводящие к образованию целевого продукта изобутилена (схема 1). При увеличении содержания оксида цинка наблюдали образование большого количества ацетона, что, вероятно, связано с уменьшением количества и силы кислотных центров, ведущих образование изобутилена из ацетона. Оптимальным составом, при котором селективность по изобутилену составляет 44-48%, является отношение ZnO : ZrO_2 в интервале 1 : 20–1 : 8, при этих отношениях выход изобутилена от теоретического на них составил 73-66%. Сравнение кислотных (рис. 3) и каталитических свойств (табл. 2) позволяет предположить, что образование изобутилена протекает на сильных льюисовских кислотных центрах.

Все ZnO/ZrO_2 катализаторы работали стабильно в течение времени проведения эксперимента, за исключением $ZnO/40ZrO_2$, у которого активность снизилась на 20% за 2.5 ч реакции.

Влияние условий проведения реакции на показатели процесса. Исследование активности Zn-Zr-содержащих оксидных катализаторов показало, что наиболее селективными в образовании изобутилена из этанола являются образцы с $ZnO : ZrO_2$ с отношением Zn : Zr = (1:8)-(1:20). Поэтому для дальнейших исследований по изучению влияния условий проведения реакции на показатели процесса был выбран образец состава $ZnO : 8ZrO_2$.

Влияние температуры реакции. В интервале температур 440—500°С конверсия этанола составляет 100%. Увеличение температуры от 440 до 500°С при скорости подачи сырья 3.1 г/г ч приводит к росту селективности образования метана с 0.8 до 4.0%, пропилена с 5.8 до 12.0%, изобутилена с 7.4 до 43.9%, уменьшению селективности образования ацетона с 61.6 до 12.2%. При этом селективность по этилену и CO_2 практически не менялась (рис. 5).

Таким образом, при температуре 440°С основной реакцией является реакция образования ацетона, тогда как вклад реакции образования изобутилена невелик. С ростом температуры увеличивается вклад реакции альдольной конденсации ацетона с образованием диацетонового спирта с последующим его разложением до изобутилена, метана и СО. Таким образом, увеличение температуры реакции способствует увеличению выхода целевого продукта изобутилена.

Влияние скорости подачи сырья. На рис. 5 представлены данные зависимости селективности образования продуктов от массовой скорости подачи сырья. Увеличение массовой скорости подачи сырья от 1.3 до 3.1 ч⁻¹ при 500°С не приводит к существенным изменениям в распределении продуктов, тогда как увеличение скорости до 14.5 ч⁻¹ приводит к заметному росту селективности по ацетону и снижению селективности по изобутилену, пропилену и метану, что свидетельствует о том, что изобутилен, пропилен и метан образуются в результате вторичных превращений ацетона, что согласуется со схемой превращений. При всех временах контакта ZnO/8ZrO₂ работал стабильно в течение всего времени проведения эксперимента.

Наибольшую селективность образования изобутилена (43.9 мол. %) наблюдали при скорости подачи сырья 3.1 г/г ч, при этом выход его от теоретического составил 65.8%.

Влияние состава сырья. В табл. 3 представлены результаты по влиянию состава сырья на показатели реакции превращения этанола в изобутилен на ZnO/8ZrO₂ при 500°C, 3.1 г/г ч, V_{N_2} 10 мл/мин.

С увеличением содержания этанола в сырье заметно снижается селективность по ацетону, поСИНТЕЗ ИЗОБУТИЛЕНА ИЗ ЭТАНОЛА НА КАТАЛИЗАТОРАХ

Катализатор/продукт	ZrO ₂	ZnO/ 40ZrO ₂	ZnO/ 20ZrO ₂	ZnO/ 14ZrO ₂	ZnO/ 8ZrO ₂	ZnO/ 6ZrO ₂	ZnO/ 2ZrO ₂
Конверсия этанола, %	100.0	98.6	99.3	99.8	99.9	100.0	92.5
Селективность по С, мол. %							
Метан	3.8	6.9	3.9	4.3	4.0	4.0	2.1
Этилен	53.6	12.5	4.7	4.0	4.8	2.2	3.5
CO ₂	8.7	19.8	20.2	20.8	21.7	19.3	19.3
Пропилен	25.1	8.0	12.4	12.3	12.0	8.2	7.7
Ацетальдегид	0.0	0.8	0.1	0.5	0.3	0.0	8.2
Изобутилен	1.2	30.6	48.7	45.2	43.9	29.1	25.8
C ₄ H ₈	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Ацетон	6.1	20.4	7.4	11.2	12.2	35.5	32.9
$C_5H_{10} + C_5H_8$	1.1	0.5	1.3	0.8	0.6	0.6	0.0
Другие соединения	0.0	0.1	0.0	0.1	0.1	0.1	0.4
Выход изобутилена от теор., %	1.8	45.3	72.6	67.7	65.8	47.3	35.8

Таблица 2. Превращение этанола на ZnO/ZrO₂ при 500°C, 3.1 г/г ч, 50%-ный раствор этанола, V_{N2} 10 мл/мин

скольку в его образовании принимает участие вода. При этом растет селективность образования этилена, пропилена и пентенов, которые, вероятно, формируются в результате реакций олигомеризации изобутилена с последующим крекингом с образованием пропилена и пентенов. На рис. 6 представлены кривые выхода изобутилена от теоретического от времени реакции при различном составе сырья на ZnO/8ZrO₂ при 500°C, 3.1 г/г ч, $V_{\rm N_2}$ 10 мл/мин. Катализатор работал стабильно, если в качестве сырья использовали 20 или 50% раствор этанола в воде. При высоком содержании этанола в сырье катализатор быстро дезактивируется. Вероятно, это связано с тем, что в отсутствии разбавления парами воды образующийся изобутилен легко олигомеризуется, что приводит к быстрой дезактивации катализатора.

Таким образом, лучшие показатели при получении изобутилена из этанола были достигнуты при использовании 50% раствора этанола в воде.

Анализ дезактивированных образцов. В табл. 4 представлены данные о потере веса и температу-

Таблица 3.	Превращение этанола на	ZnO/8ZrO ₂ при	500°С, 3.1 г/г ч, V _{N2}	10 мл/мин
------------	------------------------	---------------------------	-----------------------------------	-----------

Продукт/состав сырья	20% раствор этанола	50% раствор этанола	80% раствор этанола
Конверсия этанола, %	99.7	99.9	99.7
Селективность по С, мол. %			
Метан	3.4	4.0	1.9
Этилен	1.4	4.8	5.0
CO ₂	15.8	21.7	19.2
Пропилен	6.3	12.0	21.9
Ацетальдегид	0.1	0.3	0.0
Изобутилен	36.8	43.9	29.1
Ацетон	36.1	12.2	16.2
$C_5H_{10} + C_5H_8$	0.0	0.6	4.5
Другие соединения	0.0	0.1	2.2
Выход изобутилена от теор., %	55.1	65.8	43.6

ПОНОМАРЕВА и др.

Рис. 4. Зависимость селективности образования продуктов конверсии этанола от температуры на $ZnO/8ZrO_2$ при 3.1 г/г ч, 50% раствор этанола, V_{N_2} 10 мл/мин. Конверсия этанола 100%.

Рис. 5. Зависимость селективности образования продуктов конверсии этанола от массовой скорости подачи сырья на $ZnO/8ZrO_2$ при 500°C, 50% раствор этанола, V_{N_2} 10 мл/мин. Конверсия этанола 100%.

Таблица 4. ТГА–ДТА анализ катализаторов после проведения реакции превращения этанола в течение 3.5 ч при 500°С, 3.1 г/г ч, N₂ 10 мл/мин

Образец	Потеря веса в интервале 300–650°С, мас. %	Температура максимума на кривой теплового потока, °C
$ZnO/2ZrO_2$	1.3	412
$ZnO/6ZrO_2$	1.6	300-368
$ZnO/8ZrO_2$	1.4	379
$ZnO/14ZrO_2$	1.5	357
$ZnO/20ZrO_2$	1.8	376
ZnO/40ZrO ₂	3.0	357; 402

рах максимумов на кривых теплового потока по данным ТГА-ДТА для образцов ZnO/ZrO_2 разного состава, после проведения реакции превращения этанола в течение 3.5 ч при 500°С, 3.1 г/гч, N₂ 10 мл/мин.

Полученные данные свидетельствуют о том, что для всех дезактивированных образцов температура максимумов на кривых теплового потока лежит в интервале температур $300-412^{\circ}$ С, при этом потеря веса образцами в интервале температур $200-650^{\circ}$ С составляет 1.3-3.0 мас. %. Максимальную потерю веса 3.0 мас. % наблюдали на ZnO/40ZrO₂ образце. Полученные результаты согласуются с данными каталитических экспериментов, которые свидетельствуют о том, что наиболее быстро дезактивируется образец ZnO/40ZrO₂.

Таким образом, исследование влияния состава катализатора и условий проведения эксперимента позволило установить, что для получения катализатора с высокой селективностью по изобути-

Рис. 6. Зависимость выхода изобутилена от теоретического от времени реакции при различном составе сырья на ZnO/8ZrO₂ при 500°C, 3.1 г/г ч, $V_{\rm N_2}$ 10 мл/мин.

НЕФТЕХИМИЯ том 58 № 6 2018

лену мольное соотношение Zr: Zn в катализаторе должно быть 8–20, при этом оптимальными условиями проведения превращения этанола в изобутилен являются 500°С, скорость подачи сырья 3 г/г ч, сырье, представляющее собой 50% раствор этанола в воде.

Работа выполнена в рамках Государственного задания ИНХС РАН.

СПИСОК ЛИТЕРАТУРЫ

- Dagle V.L., Smith C., Flake M., Albrech K.O., Gray M.J., Ramasamy K.K., Dagle R.A. // Green Chemistry. 2016. V. 18. P. 1880.
- Tret'yakov V.F., Makarfi Yu.I., Tret'yakov K.V., Frantsuzova N.A., Talishinskii R.M. // Catalysis in Industry. 2010. V. 2. P. 402.
- Ramasamy K.K., Gray M., Job H., Smith C., Wang Y. // Catal. Today. 2016. V. 269. P. 82.
- Phung T.A., Hernandez L.P., Busca G. // Appl. Catal. A. 2015. V. 489. P. 180.
- Iwamoto M., Tanaka M., Hirakawa S., Mizuno S., Kurosawa M. // ACS Catalysis. 2014. V. 4. P. 3463.
- Hayash F.I., Tanaka M., Lin D., Iwamoto M. // J. Catal. 2014. V. 316. P. 112.
- 7. Iwamoto M. // Catal. Today. 2015. V. 242. P. 243.
- Smith C., Dagle V.L., Flake M., Ramasamy K.K., Kovarik L., Bowden M., Onfroycd T., Dagle R.A. // Cat. Sci. Technol. 2016. V. 6. P. 2325.
- Sun J., Zhu K., Gao F., Wang C., Liu J., Peden C.H.F., Wang Y. // J. Am. Chem. Soc. 2011. V. 133. P. 11096.
- Sun J., Baylon R.A.L., Liu C., Mei D., Martin K.J., Venkitasubramanian P., Wang Y. // J. Am. Chem. Soc. 2016. V. 138. P. 507.
- Liu C., Sun J., Smith C., Wang Y. // Appl. Catal. A. 2013. V. 467. P. 91.
- Zhao B., Men Y., Zhang A., Wang J., He B., An W., Li S. // Appl. Catal. A. 2018. V. 558. P. 150.
- 13. Liu F., Men Y., Wang J., Huang X., Wang Y., An M. // ChemCatChem. 2017. V. 9. P. 1758.
- Baylon R.A.L., Sun J., Wang Y. // Catal. Today. 2016. V. 259. P. 446.
- Tayrabekova S., Maki-Arvela P., Peurla M., Paturi P., Eranen K., Ergazieva G.E., Aho A., Murzin D. Yu., Dossumov K. // Comptes Rendus. Chimie. 2017. http://dx.doi.org/ doi 10.1016/j.crci.2017.05.005.
- Inui K., Kurabayashi T., Sato S. // Appl. Catal. A. 2002. V. 237. P. 53.
- 17. Sun J., Wang Y. // ACS Catalysis. 2014. V. 4. P. 1078.
- Sun J., Karim A.M., Mei D., Engelhard M. // Appl. Catal. B. 2015. V. 162. P. 141.
- 19. Rodrigues C.P., Zonetti P.C., Silva C.G., Gaspar A.B., Appel L.G. // Appl. Catal. B. 2013. V. 458. P. 111.
- Silva-Calpa L.R., Zonetti P.C., Oliveira D.C., Avillez R.R., Appel A.G. // Catal. Today. 2017. V. 289. P. 264.
- Letichevsky S., Zonetti P.C., Reis P.P.P., Celnik J., Rabello C.R.K., Gaspar A.B., Appel L.G. // J. Mol. Catal. A. Chem. 2015. V. 410. P. 177.
- van Leeuven B.N.M., van der Wulp A.M., Duijnstee I., van Maris A.J.A., Straathof A.J.J. // Appl. Microbiol. Biotechnol. 2012. V. 93. P. 1377.
- 23. *Заводинский В.Г.* // Перспективные материалы. 2005. № 2. С. 5.