УДК 544.77;665.654.2

МОДЕЛИРОВАНИЕ НАДМОЛЕКУЛЯРНОЙ СТРУКТУРЫ НЕФТЯНЫХ ДИСПЕРСНЫХ СИСТЕМ

© 2018 г. Х. М. Кадиев^{1, *}, А. М. Гюльмалиев¹, М. Х. Кадиева¹, С. Н. Хаджиев¹

¹Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, Россия *E-mail: kadiev@ips.ac.ru

Поступила в редакцию 14.03.2018 г.

Методом молекулярной механики (MM+) исследовано формирование преимущественных структур надмолекулярных образований в высокодисперсных коллоидных системах, дисперсионная фаза которых представлена углеводородами (УВ). На примере соединений, моделирующих парафиновые, нафтеновые и асфальтеновые компоненты нефти, изучен характер структурирования как отдельных групп молекул, так и их смесей с образованием энергетически наиболее устойчивых ассоциатов надмолекулярных структур. Показано, что количество идентичных молекул (*n*) в ассоциатах ограничено. Например, молекулы асфальтенов образуют ассоциат с упорядоченной (графитоподобной) надмолекулярной структурой при $n \approx 5-10$. По энергиям межмолекулярных взаимодействий $E_{\rm MMB}$ рассмотрение смеси трех компонентов показывает, что в коллоидных растворах асфальтены формируют ядро, вокруг которого координируются нафтеновые и парафиновые УВ.

Ключевые слова: нефть, дисперсная система, надмолекулярная структура, метод молекулярной механики, асфальтены.

DOI: 10.1134/S0028242118050088

В последнее время актуальны исследования в области переработки тяжелого нефтяного сырья, в частности методом гидроконверсии, с применением соизмеримых по размеру с компонентами сырья каталитических частиц, формируемых непосредственно в сырье (in situ) [1-3]. При этом возможности регулирования свойств катализаторов и переработки нефтяного сырья во многом определяются взаимодействием структурных составляющих сырья, характеризующихся сложным строением, обусловленным природой и геометрической формой высокомолекулярных компонентов, силами межмолекулярных взаимодействий и другими факторами. На стадии подготовки нефтяного сырья к переработке, в частности, методом гидроконверсии, при внесении катализатора в реакционную среду особое значение имеет структурная неоднородность и характер надмолекулярной организации сырья.

Согласно общепринятым представлениям, основа которых была заложена еще в 1940 гг. [4], тяжелое нефтяное сырье представляет собой коллоидную дисперсную систему с выраженными надмолекулярными структурными образованиями сложными структурными единицами [5–7]. Для многокомпонентных нефтяных дисперсных систем характерно взаимодействие молекул с самопроизвольным образованием сложных структурных единиц, которые способны к самостоятель-

существованию. В составе сложных HOMV структурных единиц различают более упорядоченную внутреннюю область – ядро, содержащее парамагнитные молекулы асфальтенов с неорганическими включениями, и сольватную оболочку, окружающую ядро и образованную из диамагнитных соединений (смолы, ароматические углеводороды), менее склонных к межмолекулярным взаимодействиям, чем в ядре [6-9]. Отдельные фрагменты надмолекулярных образований, отличаются как по химическому, так и по пространственному строению. Степень неоднородности их структуры будет влиять на основные физикохимические свойства эмульсии и суспензии наноразмерных частиц катализатора, например, такие важные, как устойчивость и распределение частиц катализатора в отдельных фрагментах структурных единиц [8, 9].

Основные классы УВ, входящие в состав нефти — парафиновые, нафтеновые и ароматические с гетероатомами в цепи сопряжения — существенно отличаются по многим физико-химическим свойствам, в частности, по размерам молекул и гибкости геометрического строения образующих их структурных фрагментов. Свойства дисперсной системы в большей степени будут определяться концентрацией дисперсной фазы и концентрацией УВ этих классов в дисперсионной среде. В этой связи, представляет интерес иссле-

Рис. 1. Структурные модели молекул, принятых для расчета: асфальтенов ($C_{28}H_{19}NO$), парафинов ($C_{15}H_{32}$) и нафтенов ($C_{18}H_{30}$).

дование характера структурирования как отдельных групп молекул, моделирующих парафиновые, нафтеновые и ароматические УВ, так и их смесей, с образованием энергетически наиболее устойчивой надмолекулярной структуры. Это необходимо для установления преимущественной надмолекулярной структуры углеводородного сырья различного фракционного состава, а также для моделирования свойств прямой или обращенной эмульсии, содержащей воду и углеводороды нефти.

В статье приведены результаты теоретических расчетов характера структурирования дисперсных систем на примере соединений, моделирующих углеводороды нефти, с применением методов квантовой химии. Проведен сравнительный анализ устойчивости оптимизированных структур ассоциатов, содержащих различное число модельных соединений (парафинов, нафтенов и асфальтенов), с различным пространственным строением. Сделаны выводы о характере организации модельных УВ в асфальтеносодержащей системе и сопоставление с общепринятыми представлениями.

ЭКСПРИМЕНТАЛЬНАЯ ЧАСТЬ

Моделирование надмолекулярной структуры дисперсных систем проводили методом "Молекулярной механики" (ММ+) при стандартных значениях параметров, по программе HyperChem 7.0. Полная энергия молекулы $E_{\text{пол}}$ вычислялась с

НЕФТЕХИМИЯ том 58 № 5 2018

оптимизацией геометрических параметров при среднеквадратичном отклонении всех сил от среднего значения R = 0.01 ккал/(Å моль). Энергию межмолекулярных взаимодействий $E_{\text{ммв}}$ для реакции A + B = AB вычисляли по формуле:

$$E_{\rm mmb} = E_{\rm A, \rm find} + E_{\rm B, \rm find} - E_{\rm AB, \rm find}.$$

Оптимизированную конфигурацию наиболее устойчивых молекулярных систем находили из минимума полной энергии $E_{\text{пол}}$ (из максимума энергии межмолекулярных взаимодействий — $E_{\text{ммв}}$) с дополнительным анализом характера най-денного минимума.

Структурные модели асфальтеновых, парафиновых и нафтеновых УВ, принятые для расчета, представлены на рис. 1.

Структура молекулы асфальтена с брутто формулой $C_{28}H_{19}NO$ смоделирована как фрагмент асфальтенового агрегата типа "архипелаг" [5, 7, 8] и состоит из семи конденсированных ароматических колец и одного насыщенного шестичленного кольца. В цепи сопряжения ароматических колец содержатся атомы кислорода в валентном состоянии $O(tr^2 trtr\pi^2)$ и азота в валентном состоянии $N(trtrtr\pi^2)$.

Молекулы, моделирующие структуру асфальтенов, парафинов и нафтенов, выбраны таким образом, чтобы общее число атомов в них было близким. В молекулах асфальтена – C₂₈H₁₉NO, парафина – C₁₅H₃₂ и нафтенового углеводорода –

Рис. 2. Оптимизированная структура ассоциата, включающего 5 молекул асфальтенов.

 $C_{18}H_{30}$ число атомов равно 49, 47 и 48, соответственно, что позволяет сопоставить их энергии межмолекулярных взаимодействий.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рассмотрен характер пространственного расположения плоскостей ароматических фрагментов асфальтенов в ассоциате, включающем 5 молекул. Наиболее устойчивая структура по величине минимума $E_{\text{пол}}$, найденная путем варьирования геометрических параметров ассоциата, приведена на рис. 2.

Оптимизированная структура ассоциата, включающего 5 молекул асфальтенов (рис. 2), показывает, что ароматические фрагменты, находясь в параллельных плоскостях, образуют упорядоченную надмолекулярную структуру. Расстояние между плоскостями составляет ≈ 3.6 Å.

Проведена оценка среднего числа молекул асфальтенов в ассоциате с упорядоченной структурой. В табл. 1 приведены значения полной энергии $E_{n,\text{пол}}$ и энергии межмолекулярных взаимодействий $E_{\text{ммв}}$, вычисленные для ассоциатов, состоящих из п молекул, по формуле:

Анализ данных табл. 1 показывает, что в случае, когда плоскости молекул параллельны, с ростом числа молекул n в ассоциате средние значения $E_{\rm MMB}$ на одну молекулу ($E_{\rm MMB}/n$) увеличиваются.

В то же время результаты оптимизации структур ассоциатов, содержащих 12 молекул асфальтенов, показывают, что после определенного значения *n* графитоподобная структура становится энергетически не выгодной (рис. 3). По значению полной энергии среди четырех структур, соответствующих локальным минимумам энергии (рис. 3a-3r)), наиболее устойчива структура, представленная на рис. 3r ($E_{пол} = -354.04$ ккал/моль), а структура рис. 3а менее устойчива ($E_{пол} = -337.36$ ккал/моль).

п	$-E_{n, \text{пол}}$, ккал/моль	$E_{\rm MMB} = n E_{1, \rm пол} - E_{n, \rm пол},$ ккал/моль	Е _{ммв} / <i>п,</i> ккал/моль	<i>R</i> , Å
1	6.60	0	0	—
2	35.72	22.52	11.26	3.6
3	64.31	44.51	14.84	7.1
4	93.88	67.48	16.87	10.6
5	123.82	90.82	18.12	14.2
6	155.17	115.57	19.26	18.2
12	337.36	258.16	21.51	39.6
24	699.76	541.36	22.56	83.0

Таблица 1. Энергетические и геометрические характеристики ассоциатов молекул асфальтенов

Рис. 3. Надмолекулярные структуры ассоциатов, включающих 12 молекул асфальтенов, соответствующих локальным минимумам полной энергии.

Таким образом, согласно результатам расчетов, энергетическая устойчивость ассоциата с упорядоченной (графитоподобной) надмолекулярной структурой лимитируется количеством молекул асфальтенов, и ассоциат наиболее устойчив при количестве молекул асфальтенов $n \approx 5-10$. Согласно термодинамическому определению, ассоциаты молекул могут существовать как устойчивая единая система при условии, что их энергии межмолекулярных взаимодействий больше, чем энергия их поступательного движения:

$$\Delta E = [E_{\rm MMB}(n+1) - E_{\rm MMB}(n)] > RT/2,$$

НЕФТЕХИМИЯ том 58 № 5 2018

где RT/2 – значения энергии на одну степень свободы системы. При $T = 25^{\circ}$ С величина RT/2 = 0.45 ккал/моль.

На рис. 4 для сравнительного анализа представлены оптимизированные структуры ассоциатов, состоящие из 3-х молекул пентадекана, декалина и асфальтена. По значениям энергий $E_{\rm MMB}$ ассоциат из 3-х молекул асфальтена является наиболее устойчивым ($E_{\rm MMB}$ = 44.51 ккал/моль), чем в случае парафина C₁₅H₃₂ ($E_{\rm MMB}$ = 28.48 ккал/моль) и нафтена C₁₈H₃₀ ($E_{\rm MMB}$ = 26.82 ккал/моль). Из приведенных данных следует, что асфальтеновые молекулы более склонны к ассоциации между собой

 $3-C_{15}H_{32}$ $3-C_{18}H_{30}$ $3-C_{18}H_{30}$ $3-C_{18}H_{30}$ $3-C_{28}H_{19}NO$ $E_{пол} = -0.91$ ккал/моль $E_{пол} = 28.48$ ккал/моль $E_{MMB} = 28.48$ ккал/моль $E_{MMB} = 26.82$ ккал/моль $E_{MMB} = 44.51$ ккал/моль

Рис. 4. Оптимизированные структуры и полные энергии ассоциатов, состоящих из 3-х молекул парафинов (C₁₅H₃₂), нафтенов (C₁₈H₃₀) и асфальтенов (C₂₈H₁₉NO).

Рис. 5. Две формы ассоциатов, состоящих из 3-х молекул асфальтенов (C₂₈H₁₉NO) и 2-х молекул декана (C₁₀H₂₂).

с образованием надмолекулярной структуры, по сравнению с молекулами парафинов и нафтенов. Этот вывод подтверждается результатами расчета $E_{\text{ммв}}$ двух ассоциатов, состоящих из 2-х молекул декана и 3-х молекул асфальтена (рис. 5). Видно, что структура, в которой 3 молекулы асфальтена расположены рядом в параллельных плоскостях, является более устойчивой. Это обусловлено тем, что молекулы асфальтенов имеют большую энергию межмолекулярного взаимодействия, чем в случае их межмолекулярного взаимодействия с парафинами. В результате, молекулы парафинов вытесняются из межплоскостного пространства. На рис. 6 представлена оптимизированная структура, в состав которой входят 3 модельные молекулы: парафинов, нафтенов, асфальтенов. Эта структура соответствует общепринятым представлениям: асфальтеновые молекулы образуют ядро ассоциатов, а молекулы парафина и нафтена располагаются в окружении ядра ассоциата.

Значение энергии $E_{\rm MMB}$ усредненной (CE), равное $E_{\rm MMB} = 3[E_{\rm пол}(C_{15}H_{32}) + E_{\rm пол}(C_{18}H_{30}) + E_{\rm пол}(C_{28}H_{19}NO)] - E_{\rm пол}(CE) = 175.41$ ккал/моль, больше, чем сумма энергий $E_{\rm MMB}$ ее составляющих $\Delta E_{\rm MMB} = 75.60$ ккал/моль.

МОДЕЛИРОВАНИЕ НАДМОЛЕКУЛЯРНОЙ СТРУКТУРЫ НЕФТЯНЫХ

Ядро – молекулы асфальтенов

Сольватный слой – нафтеновые и парафиновые УВ

Рис. 6. Модель усредненной структурной единицы в асфальтеносодержащей системе ($E_{\text{пол}} = -138.71$ ккал/моль, $E_{\text{ммв}} = 175.41$ ккал/моль, $\Delta E_{\text{ммв}} = 75.60$ ккал/моль).

Ниже в виде матрицы представлены энергии взаимодействия в ассоциатах из 3 молекул различных классов углеводородов. Диагональные элементы соответствуют энергиям в самих ассоциатах, элементы верхнего треугольника энергиям в ассоциатах из двух классов, элементы нижнего треугольника — энергиям межмолекулярного взаимодействия двух классов соединений.

	Асфальтен (C ₂₈ H ₁₉ NO)	Нафтен (С ₁₈ Н ₃₀)	Парафин (C ₁₅ H ₃₂)
Асфальтен	-64.31	-55.4	-92.51
Нафтен	26.97	35.88	4.58
Парафин	23.20	26.30	-5.00

Из приведенных данных по энергиям $E_{\rm MMB}$ следует, что асфальтены сильнее взаимодействуют с нафтенами (26.97 ккал/моль). Примерно такой же порядок имеет энергия межмолекулярного взаимодействия нафтена и парафина (26.30 ккал/моль), но при этом энергия межмолекулярного взаимодействия асфальтена и парафина составляет 23.20 ккал/моль. Следовательно, система должна быть устойчивой при следующей организации надмолекулярной структуры: асфальтены—нафтены—парафины. Рис. 6 отражает усредненную модель структурной единицы (СЕ) в асфальтеносодержащей системе.

Таким образом, результаты проведенных исследований показывают, что в высокодисперсных нефтяных системах молекулы различных классов УВ образуют ассоциаты. Сформировавшиеся ассоциаты составляют основу надмолекулярной структуры – сложной структурной единицы нефтяных дисперсных систем. В устойчивых нефтяных дисперсных системах асфальтены образуют ядро, вокруг которого координируются нафтены, а внешний слой состоит из парафинов.

Работа выполнена в рамках Государственного задания ИНХС РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Хаджиев С.Н., Кадиев Х.М., Кадиева М.Х. // Нефтехимия. 2014. Т. 54. № 5. С. 327. [Petrol. Chemistry. 2014. V. 54. № 5. Р. 323.]
- Bernard Fixari,' Sylvie Peureux, Jeanne Elmouchnino, and Pierre Le Perchec. // Energy & Fuels. 1994. V. 8. P. 588,
- Хаджиев С.Н., Максимов А.Л., Кадиев Х.М. Наноразмерные катализаторы для нефтепереработки и нефтехимии. Наноматериалы: свойства и перспективные приложения. Отв. ред. Ярославцев А.Б. Глава 11. М.: Научный мир, 2014. С. 330.
- Pfeiffer J.Ph., Saal R.N.J. // J. Phys. Chem. 1940. V. 44. № 2. P. 139.
- 5. *Сюняев З.И., Сафиева Р.З., Сюняев Р.З.* Нефтяные дисперсные системы. М.: Химия, 1990. 226 с.
- 6. Сафиева Р.З. Физикохимия нефти. Физико-химические основы переработки нефти. М.: Химия, 1998. 448 с.
- 7. Mullins O.C., Sheu E.Y., Hammami A., Marshall. A.G. NY City: Springer, 2007. 370 p.
- 8. Ганеева Ю.М., Юсупова Т.Н., Романов Г.В. // Успехи химии. 2011. Т. 80. № 10. С. 1034.
- 9. *Yen T.F.* Asphaltenes: types and sources, in "Structures and Dynamics of Asphaltenes". Ed. by Mullins O.C., Sheu E.Y. NY.: Plenum Press, 1995. P. 1.