УДК 66.095.21;546.92;546.98;543.831

Рt-СОДЕРЖАЩИЕ КАТАЛИЗАТОРЫ НА ОСНОВЕ ПИЛЛАРИРОВАННОГО ЖЕЛЕЗОМ МОНТМОРИЛЛОНИТА В Na- И Ca-ФОРМАХ В ИЗОМЕРИЗАЦИИ *н*-ГЕКСАНА

© 2018 г. Н. А. Закарина¹, О. К. Ким^{1, *}, Л. Д. Волкова¹, Д. А Жумадуллаев¹

¹Институт топлива, катализа и электрохимии им. Д.В.Сокольского, Алматы, Казахстан *E-mail: kimolya82@mail.ru

Поступила в редакцию 15.01.2018 г.

Приведены данные по активности 0.1 и 0.35% Pt-катализаторов, нанесенных на пилларированный железом монтмориллонит в Na- и Ca-формах в реакции изомеризации *н*-гексана. Найдено, что уменьшение содержания платины до 0.1% приводит к увеличенному образованию диизомерных гексанов и гептанов. Активности катализаторов сопоставлены с их физико-химическими характеристиками, полученными методами БЭТ, ТПД аммиака, электронной микроскопии и Мессбауэровской спектроскопии Высокая прочность предлагаемых катализаторов, повышенные выходы C₆-и C₇-ди- и триизомеров из *н*-гексана на низкопроцентных Pt-содержащих катализаторах с применением доступных и дешевых природных материалов, достаточно высокая конверсия *н*-гексана, говорят о возможности их использования в изомеризации низкооктановой легкой нафты с получением высококтановых изомеров

Ключевые слова: Pt-катализаторы, железо, пилларированные монтмориллониты, изомеризация. **DOI:** 10.1134/S0028242118050180

Известно, что бензиновые фракции нефти в настоящее время остаются все еще наиболее востребованными при производстве моторных топлив. Если они получены при переработке высокопарафинистых нефтей, то содержат значительное количество алканов с преобладанием нормальных структур и, как следствие, характеризуются низкой детонационной стойкостью. Эффективный способ повышения детонационной стойкости легких бензиновых фракций является изомеризация содержащихся в них алканов [1–3].

В соответствии с бифункциональным механизмом изомеризации в катализаторах процесса должны присутствовать центры двух типов – для дегидрирования алканов в алкены и изомеризации алкенов с последующим гидрированием. Определяющими факторами при подборе носителя являются его кислотность и пористость. Микропоры ограничивают транспорт крупных молекул, приводя к снижению числа разветвленных алканов, недостаточная кислотность контактов способствует образованию монозамешенных изомеров. Широко известны Pt-содержащие катализаторы изомеризации на цеолитах – мордените [4-6], молекулярных ситах [7, 8]. В последние годы в изомеризации модельных алканов и легких бензиновых фракций широкое распространение получили катализаторы с использованием металлов платиновой группы в составе суперкислотных систем на основе диоксида циркония [9], сульфатированного диоксида циркония [10–14], пилларированного цирконием монтмориллонита [15–17]. Анализ данных литературы [18, 19] показал, что монтмориллониты, пилларированные железом, отличает достаточно высокая кислотность, что в [20] использовано в реакции изомеризации.

Цель данной работы — приготовление и исследование каталитической активности в реакции изомеризации низкопроцентных платиновых катализаторов на пилларированном железом монтмориллоните и определение их физико-химических характеристик.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для приготовления Pt-катализатора использовали пилларированный железом натриевый и кальциевый монтмориллониты (MM) в H-форме. Пилларирование NaHMM и CaHMM осуществляли с использованием гидроксопроизводного железа по методике [21] с последующим отмыванием и термообработкой материала. Платину вводили из раствора H_2PtCl_6 методом пропитки; содержание платины варьировали от 0.35 до 0.1 мас. %.

Текстурные характеристики образцов определяли методом БЭТ по низкотемпературной ад-

Образец	$S = M^2/r$	Общий объем	Рациус цор Å	Содержание пор, %			
Образец	З _{уд} , м /1	пор, см ³ /г	тадиус пор, А	микро 0—20 Å	мезо 20–80 Å		
Fe(2.5)NaHMM	166.7	0.318	12.9-71.4	20.0	80.0		
Fe(2.5)CaHMM	176.6	0.171	10.0-71.4	38.1	61.9		
0.1Pt/Fe(2.5)NaHMM	150.6	0.201	11.1-72.2	20.9	79.1		
0.35Pt/Fe(2.5)NaHMM	104.5	0.206	9.7-70.8	23.1	76.9		
0.1Pt/Fe(2.5)CaHMM	152.3	0.172	9.7-72.2	37.7	62.3		
0.35Pt/Fe(2.5)CaHMM	124.1	0.276	11.1-70.8	10.0	90.0		

Таблица 1. Физико-химические характеристики Pt/Fe(2.5)NaHMM- и Pt/Fe(2.5)CaHMM-катализаторов

сорбции азота на приборе ACCUSORB. Рентгенофазовый анализ (РФА) синтезированных столбчатых глин и катализаторов на их основе проводили на дифрактометре DRON-4*0.7 с Со K_{α} -излучением. Дисперсность частиц металлов определяли электронно-микроскопически (ЭМВ-125) методом реплик с экстракцией с применением микродифракции. Состав катализаторов определяли методом эмиссионного спектрального анализа на приборе ДФС-13. Для характеристики катализаторов были использованы методы Мессбауровской спектроскопии и электронной микроскопии, а также термопрограммированной десорбции (ТПД) аммиака. Расшифровка электронограмм электронной микроскопии проводилась по справочникам (JCPDS) наборов межплоскостных расстояний по 8 линиям.

Катализаторы испытывали в реакции гидроизомеризации модельного углеводорода – *н*-гексана, являющегося компонентом промышленной пентан-гексановой фракции прямогонного бензина, с целью получения высокооктановой составляющей бензина. Процесс проводили в проточном реакторе с объемом катализатора 5 см³ в интервале температур 250–400°С при атмосферном давлении водорода, мольном соотношении $H_2: C_6H_{14} = 3.5$ и объемной скорости подачи гексана, составляющей 0.82 ч⁻¹.

Анализ продуктов реакции проводили методом ГЖХ на хроматографе "3700" с пламенноионизационным детектором и капиллярной колонкой, заполненной скваланом. Измерения прочности исследуемых катализаторов были проведены на приборе "Прочномер катализаторов" ПК-21-015 ОАО БСКБ "Нефтехимавтоматика".

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Текстурные характеристики синтезированных Pt-катализаторов — пилларированных монтмориллонитов приведены в табл. 1. Удельные поверхности пилларированных железом монтмориллонитов Fe(2.5)NaHMM и Fe(2.5)CaHMM составляют 166.7 и 176.6 м²/г, соответственно. Внесение 0.1% платины приводит к уменьшению S_{yg} для Fe(2.5)NaHMM-контакта до 150.6 м²/г, а для 0.35%-ных Pt-катализаторов — до 104.5 м²/г. При использовании Fe(2.5)CaHMM-носителя наблюдается уменьшение S_{yg} для 0.1% и 0.35% Pt-катализаторов до 152.3 и 124.1 м²/г, соответственно.

Число микропор при внесении 0.1% платины в Fe(2.5)CaHMM практически не меняется и уменьшается до 10% для 0.35%-ного Pt-катализатора. У Fe(2.5)NaHMM аналогичных изменений не наблюдается. Число микропор для Fe(2.5)NaHMM -20.0%. 0.1 и 0.35% Pt- катализаторы на основе Fe(2.5)NaHMM имеют 20.9 и 23.1% микропор. Подобное различие между Na- и Ca-формами, возможно, связано с меньшим объемом пор у исходного Fe(2.5)CaHMM – 0.171 см³/г. У Fe(2.5)NaHMM – эта величина составляет 0.318 см³/г. Таким образом, максимальным количеством мезопор отли-Pt/Fe(2.5)CaHMMчаются 0.35 (90%) И 0.1 Pt/Fe(2.5)NaHMM (79.1%)-катализаторы.

По данным РФА в исходном и активированном ММ практически все рефлексы повторяются: 1.49–1.50; 1.68–1.69; 2.54–2.55; 4.42–4.46. При этом d_{001} составляет 9.6 Å – для исходной глины и 12.6 Å – для Н-формы. Катализаторы отличаются довольно высокой прочностью; так, прочность Pt-контактов на основе Fe(2.5)NaHMM составляет 155.5 H/см², а на основе Fe(2.5)CaHMM – 135.5 H/см².

Согласно данным эмиссионного спектрального анализа (табл. 2) содержание платины в составе катализаторов составляет 0.37–0.35 мас. % при расчете 0.35 мас. %.

Известно, что катализатор гидроизомеризации должен отличаться сбалансированной кислотной и гидрирующе-дегидрирующей функциями, которые бы позволили бы минимизировать побочные реакции гидрокрекинга, гидрогенолиза и др. Кислотные характеристики исследуемых катализаторов, полученные методом ТПД аммиака, а также расчитанные по ним количества слабых, средних и сильных кислотных центров (методика [22]), приведены на рис. 1 и в табл. 3.

Рt-СОДЕРЖАЩИЕ КАТАЛИЗАТОРЫ

Образец	Na ₂ O	Mg O	Al ₂ O ₃	Si O ₂	K ₂ O	CaO	TiO ₂	Fe ₂ O ₃	PtO ₂
0.35Pt/Fe(2.5) NaHMM	0.15	2.59	20.79	62.68	0.13	0.23	0.08	13.1	0.43
0.35Pt/Fe(2.5) CaHMM	0.2	2.53	17.65	60.28	0.10	0.17	0.27	18.4	0.4

Таблица 2. Элементный состав 0.35%-ного Pt/Fe(2.5)NaHMM+ и 0.35%-ного Pt/Fe(2.5)CaHMM-катализаторов, %

Таблица 3. Кислотные характеристики 0.1 и 0.35% Pt/Fe(2.5)NaHMM и Fe(2.5) CaHMM-катализаторов

Катализатор	Содержание к.ц.	Слабые к.ц. до 200°С	Средние к.ц. 200–300°С	Сильные к.ц. >350°С	Общая кислотность	
NaHMM [23]	%	32.4	27.7	39.9	100	
	мкмоль NH ₃ /г	72.9	62.1	89.5	224.5	
0.35% Pt/	%	42.2	30.1	27.7	100	
NaHMM [23]	мкмоль NH ₃ /г	129.1	92.1	84.7	305.9	
0.1% Pt/	%	38.7	17.6	43.7	100	
Fe(2.5)NaHMM	мкмоль NH ₃ /г	88.1	40.1	99.4	227.6	
0.35% Pt/	%	13.5	19.8	66.7	100	
Fe(2.5)NaHMM	мкмоль $NH_3/г$	33.7	50.0	166.3	250	
0.1% Pt/	%	62.5	10.8	26.7	100	
Fe(2.5)CaHMM	мкмоль $NH_3/г$	108.9	18.8	46.5	174.2	
0.35% Pt/	%	40.2	25.4	34.4	100	
Fe(2.5)CaHMM	мкмоль NH ₃ /г	81.6	51.5	69.8	202.9	

В табл. 3 включены также данные по кислотности NaHMM-матрицы и 0.35%-ного Pt/NaHMM-катализатора [23].

Термодесорбционные кривые характеризуются двумя ярко выраженными пиками в низкотемпературной и высокотемпературной областях. В высокотемпературной области это пики \approx 400°C – у Fe(2,5)NaHMM и \approx 350°C – у Fe(2,5)CaHMM.

Наибольшей кислотностью отличаются контакты на основе Fe(2.5)NaHMM. На долю сильных к.ц. у 0.1%-ного Pt/Fe(2.5)NaHMM приходится 43.7%, а у 0.35%-ного Pt-катализатора – 66.7%. Для Pt-ката-

Рис. 1. Термодесорбционные кривые 0.1%- (1) и 0.35%-ного (2) Рt-катализаторов на Fe(2.5)NaHMM (а) и Fe(2.5)CaHMM (б).

НЕФТЕХИМИЯ том 58 № 5 2018

ЗАКАРИНА и др.

			Выход продуктов реакции, %														
Кат.	T, ℃	α,%	S _{C6} , %	S _{C6+} , %	$\Sigma C_1 - C_4$	изо-Б	2MB	н-С ₅	2,2-ДМБ	2,3-ДМБ	3- и 2-МП	2,2-ДМП	2,3-ДМП	2,2,3-TMB	3MF	ЗЭП	$_{H}$ -C $_{7}$
Pt/	250	3.6	22.2	100	_	_	-	-	0.4	_	0.4		-	2.7	0.1	-	_
Fe	300	10.3	73.8	98.9	_	_	_	0.1	4.4	_	3.2	0.03	0.02	2.5	0.03	0.01	0.01
CaH	350	16.2	75.4	97.9	0.04	_	_	0.2	—	7.3	4.9	0.5	0.1	2.9	0.04	0.1	0.1
MM	400	19.9	74.5	97.9	0.2	_	0.2	_	0.1	8.8	6.0	1.4	0.3	2.7	0.2	0.03	0.01
Pt/	300	10.3	73.5	100	_	_	_	_	4.4	_	3.2	0.03	_	2.5	0.1	0.1	_
Fe	350	28.7	88.4	98.5	_	_	0.02	0.3	15.1	_	10.3	0.2	0.2	2.4	0.1	_	0.1
NaH MM	400	36.4	88.9	97.8	_	0.1	0.1	0.5	19.1	_	13.3	0.7	0.2	2.1	0.2	0.03	0.1

Таблица 4. Изомеризация *н*-гексана на 0.1%-ном Pt/Fe(2.5)CaHMM и Pt/Fe(2.5)NaHMM-катализаторах при различных температурах

Таблица 5. Изомеризация *н*-гексана на 0.35%-ном Pt/Fe(2.5)CaHMM и Pt/Fe(2.5)NaHMM-катализаторах при различных температурах

				S _{C6+} , %	Выход продуктов реакции, %									
Кат. <i>Т</i> ,	<i>T</i> , °C	α,%	S _{C6} , %		$\Sigma C_1 - C_4$	изо-Б	2МБ	н-С5	2,2- ДМБ	2-МП	3-МП	2,2- ДМП	2,4- ДМП	
Pt/Fe	250	9.4	74.5	100	_		_	-	_	3.9	3.1	-	2.4	
CaH	300	11.1	80.2	100	-	_	_	—	—	5.4	3.5	_	2.2	
MM	350	19.6	85.7	96.4	_	0.7	_	_	1.8	8.9	6.1	_	2.1	
	400	31.9	76.8	85.9	2.4	0.6	0.8	0.7	1.7	13.8	9.0	0.8	2.1	
Pt/Fe	250	20.7	86.7	99.0	—	—	0.1	0.1	0.1	13.5	4.0	0.1	2.4	
NaH	300	17.7	84.7	100	_	_	_	_	_	10.0	5.0	_	2.7	
MM	350	21.4	84.1	95.3	_	1.0	_	_	3.3	8.6	6.1	_	2.4	
	400	40.2	73.1	78.4	4.9	1.2	1.5	1.1	3.0	16.4	10.0	—	2.1	

лизаторов на основе Fe(2.5)CaHMM эти величины составляют 26.7 и 34.4% соответственно. У Ptконтактов на основе NaHMM [23] при высокой общей кислотности содержание сильных к.ц. составляет 27.7%.

В табл. 4 и 5 приведены активности синтезированных 0.1- и 0.35%-ных платиновых катализаторов в интервале температур 250—400°С.

При 250 и 300°С для 0.1%-ных катализаторов конверсия *н*-гексана невелика. Повышение температуры реакции до 350 и 400°С ведет к росту гидроизомеризующей активности. Максимальная конверсия *н*-гексана (36.4%) наблюдается при 400°С на 0.1%-ном Pt/Fe(2.5)NaHMM-катализаторе. На Pt/Fe(2.5)CaHMM-контакте конверсия снижается до 19.9%. Среди продуктов реакции на 0.1%-но Pt-катализаторах обоих типов при 350 и 400°С отмечено повышенное содержание C₆- и C₆₊-изомеров, так что селективность процесса по C₆₊-изомерам составляет 97.8– 98.5%. Весьма показателен для 0.1%-ных Pt-катализаторов состав продуктов изомеризации. Так у композита на основе Fe(2.5)NaHMM при 350 и 400°C наряду с моноизомерными 2- и 3-метилпентанами (10.3 и 13.3%), характеризующими традиционный набор продуктов гидроизомеризации *н*-гексана на бифункциональных катализаторах, отмечено образование 15.1 и 19.1% диметилбутанов и 2.8 и 3.0% ди- и три-изомерных гептанов. На 0.1%-ном Pt/Fe(2.5)CaHMM при 350 и 400°C количество диметилбутанов составляет 7.3 и 8.8%, метилпентанов — 4.9–6%. На долю C-7 изомерных диметилпентанов и триметилбутана приходится 3.5 и 4.4%, что понижает селективность по C₆-изомерам.

Увеличение количества платины в составе катализаторов до 0.35% (табл. 5) приводит к росту как общей кислотности, так и конверсии *н*-гексана, которая составляет при 400°C 31.9% для Pt/Fe(2.5)CaHMM и 40.2% — для Pt/Fe(2.5)NaHMM. Состав продуктов гидроизо-

552

Рис. 2. Изменение конверсии, количества C_6 -изомеров и суммы ди- и три- метилизомеров при изомеризации *н*-гексана (400°С) на Pt/Fe(2.5)NaHMM и Pt/Fe(2.5)CaHMM от содержания платины.

меризации близок к традиционному с превалирующим содержанием метилзамещенных пентанов. Содержание продуктов гидрокрекинга и гидрогенолиза при 400°С на 0.35%-катализаторе практически в несколько раз больше, чем на 0.1% Ptконтактах.

Сравнительные данные по конверсии *н*-гексана, выходу C_6 -изомеров, ди и три-изомеров на Pt-контактах на Fe(2.5)NaHMM и Fe(2.5) CaHMM представлены на диаграмме (рис. 2).

Из анализа диаграммы следует, что оптимальным из исследованных катализаторов по выходу ди- и три-изомеров при изомеризации *н*-гексана (22.1%) является 0.1% Pt/Fe(2.5)NaHMM. На этом же катализаторе самое большое содержание C_6 -изомеров. Увеличение концентрации платины вызывает рост конверсии *н*-гексана с образованием значительных количеств метилпентанов. Содержание ди- и три-изомеров уменьшается в 3 и 4 раза для Fe(2.5) CaHMM и Fe(2.5)NaHMMконтактов.

Представляет интерес сопоставление активности и выхода продуктов реакции изомеризации с кислотность контактов. На 0.35%-ном Pt/NaH-MM-катализаторе, например, характеризующимся высокой общей кислотностью и малым содержанием сильных к.ц. [23], при высокой конверсии гексана выход диметилбутанов невелик.

У 0.35%-ного Pt/Fe(2.5)NaHMM-катализатора общая кислотность, равная 250 мкмольNH₃/г, как и конверсия *н*-гексана, больше, чем у композита на основе CaHMM. Аналогичная картина наблюдается и для 0.1%-ных Pt-катализаторов. Кислотность Pt/Fe(2.5)NaHMM в 1.5 раза превышает кислотность и в 1.8 раза активность Pt/Fe(2.5)CaHMM-контакта. Число сильных к.ц. ($T_{\text{дес}} > 350^{\circ}$ C) у 0.35%-ного Pt/Fe(2.5)NaHMM

НЕФТЕХИМИЯ том 58 № 5 2018

(66.7%) в 1.9 раза больше, а у 0.1%-ного Pt/Fe(2.5)NaHMM в 1.6 раза больше чем у Pt/Fe(2.5)CaHMM. Композиты на основе CaHMM заметно уступают композитам на основе NaHMM по суммарному количеству сильных и средних к.ц. (в 1.6 раза). Видимо по этой причине у композитов на основе NaHMM процесс крекинга занимает большее место.

Кроме кислотных центров определенной силы, катализаторы изомеризации должны иметь достаточное количество металлических центров вблизи кислотных. Природа этих центров и их ко-

Рис. 3. Зависимость активности 0.1%- и 0.35%-ных Pt-катализаторов на Fe(2.5)NaHMM и Fe(2.5) СаНММ при 400°С от суммарного содержания сильных и средних к.п. (а) и общей кислотности (b); 1a – 0.1%-ный Pt /Fe(2.5)CaHMM, 2a – 0.35%-ный Pt/Fe(2.5)CaHMM, 3a – 0.1% Pt /Fe(2.5)NaHMM, 3b – 0.1% Pt/Fe(2.5)CaHMM, 2b – 0.35% Pt /Fe(2.5)CaHMM, 3b – 0.1% Pt/Fe(2.5)CaHMM, 2b – 0.35% Pt /Fe(2.5)CaHMM, 3b – 0.1% Pt/Fe(2.5)NaHMM, 4b – 0.35% Pt /Fe(2.5)NaHMM, 4b – 0.35% Pt/Fe(2.5)NaHMM.

Рис. 4. Электронномикроскопический снимок 0.1%-ного Pt/FeCaHMM (a) 0.35%-ного Pt/FeCaHMM (б). (Увеличение 66000).

Рис. 5. Электронномикроскопический снимок 0.1%-ного Pt/FeNaHMM (а) и 0.35%-ного Pt/FeNaHMM (б). (Увеличение 66000).

личество могут сказаться на активности и направлении реакции.

Методом просвечивающей электронной микроскопии ранее нами в работе [24] изучена дисперсность Pt/FeCaHMM- (а) и Pt/FeNaHMM-(b) катализаторов с различным содержанием платины (рис. 4 и 5). Микродифракционные картины электронномикроскопических снимков представлены широкими наборами колец и рефлексов. Значения расчетных межплоскостных расстояний приведены для каждой фазы.

Электронномикроскопический снимок 0.1%-ного Pt/FeCaHMM-катализатора представлен обширными скоплениями мелких плотных частиц с размерами 70–90 Å, расположенных на поверхности носителя. Плотные частицы кольца микродифракционной картины соответствуют металлической платине (JCPDS,4-802): 2.27; 1.96; 1.39; 1.18. Наряду с металлической Pt на поверхности носителя найдено обширное скопление мелких плотных частиц размером 40–100 Å, которые по микродифракционной картине были идентифицированы как Pt₃Fe – Isoferroplatinum ((JCPDS, 29-716): 2.23; 1.93; 1.37; 1.17. 0.1%-ный Pt-контакт содержит также α -Fe (JCPDS, 6-696): 2.03; 1.43; 0.91; 0.83 и смесь фаз Fe(Fe)₂O₄ (JCPDS, 28-491); β PtO₂ (JCPDS, 371-281), Al₂Pt (JCPDS, 3-1006), FeSiO₄ (JCPDS, 34-170): 3.56; 2.83; 2.63; 2.26; 1.44, CaO · 2FeO (JCPDS, 6-602), η Fe₂O₃ (JCPDS, 21-920). При увеличении количества Pt в катализаторе на электронномикроскопических снимках (рис. 4б) можно видеть обширное скопление агрегатов из мелких частиц платины размером 40–50 Å и крупные частицы с признаками кубической огранки и размером 300–600 Å. По микродиффракционным данным состав этих частиц может быть отнесен к смеси фаз: $H_2Pt(OH)_6$ (JCPDS, 32-439), Fe₂O₃ (JCPDS, 21-920), FeFe₂O₄ (JCPDS, 28-491), CaFeO₄(JCPDS, 3-804), FeAl₂SiO₅(OH)₂, Fe(OH)₂ (JCPDS, 13-89), AlFeO₃ (JCPDS, 20-24): 3.15; 2.9; 2.66; 1.48; 1.44.

При переходе к Pt/FeNaHMM (рис. 5) на электронномикроскопическом снимке можно видеть мелкие плотные частицы Pt размером 70-100-150 Å, а также скопления плотных частиц Рt и AlPt₃ размером 40–50–150 Å. Микродиффракционным методом были идентифицированы фазы Pt₃Fe(JCPDS,29-1423): 2.22; 1.57; 1.36; 1.17, α-Fe (JCPDS, 6-696) размером от 50-70 до 150 Å, в виде небольших агрегатов из плотных частиц. С ростом количества Pt до 0.35% в PtFeNaHMM-контакте наблюдается скопление мелких и крупных частиц, для которых характерен кубический мотив огранки. Размер отдельных мелких частиц Pt. присутствующих на поверхности носителя, составляет ~50 Å. Микродифракционная картина для 0.1%-ного Pt-контакта крупных агрегатов представлена большим набором колец и может быть отнесена к смеси фаз: Pt (JCPDS, 4-802) Pt₃Fe (JCPDS, 29-1423), α-Fe (JCPDS, 6-696): 2.03; 1.43; 1.17; 0.91; 0.83, FeO (JCPDS, 6-615): 2.49; 2.18; 1.52; 1.3; 1.24; 0.99, AlPt₃ (29-70), Pt₃Si (17-670). Для 0.35% Рt-контакта найдены: Pt; Pt₃Fe (JCPDS, 29-714); Fe Fe₂O₄ (JCPDS, 28-491): 2.44; 2.34; 2.03; 1.55; 1.4.

Сравнение электронномикроскопических снимков в зависимости от количества платины и обменной формы ММ показало, что с ростом содержания Pt (чисто визуально) количество более крупных частиц Pt растет, а более мелких снижается. Однако количественный расчет распределения частиц металла по размерам на основании полученных данных не представляется возможным. Результаты свидетельствуют о сильном взаимодействии нанесенного металла с носителем с образованием интерметаллидов, оксидов, солей. Обнаружено формирование отдельных мелких частиц Pt с размером 50 Å в 0.35%-ном Pt/FeNaHMM в то время как в 0.35%-ном Pt/FeCaHMM мелкие частицы агрегируются в более крупные образования. Это может быть обусловлено влиянием пористой структуры носителя на дисперсность металлических частиц. В случае 0.35%-ного Pt/FeNaHMM количество микропор в ~2 раза выше, чем в 0.35%-ного Pt/FeCaHMM. Возможно высокая кислотность и недостаточное количество металлической платины у 0.1%-ного Pt-контактов создают условия

формирования циклобутановых промежуточных комплексов, дающих при распаде дизамещенные гексаны.

На основании полученных результатов сделан вывод о формировании нанодисперсных частиц Pt на поверхности Fe-пилларированного MM и о сильном взаимодействии нанесенного металла с носителем с образованием интерметаллидов и оксидов. Поскольку активность катализаторов с образованием дизамещенных изобутанов растет с уменьшением количества платины, можно говорить о влиянии дисперсности частиц на направление процесса изомеризации.

Самостоятельный интерес представляет вопрос о присутствии на поверхности катализатора частиц металлического железа. Его появлению, очевидно, способствует платина при восстановлении катализатора в токе водорода. Появление металлического железа наряду с частицами Fe²⁺ для 0.1% контакта подтверждено также методом Мессбауэровской спектроскопии [25]. Мессбауэровские параметры 0.1 и 0.35 Pt-катализаторов приведены табл. 6.

На поверхности катализатора, как это видно из приведенных данных, присутствуют различные формы железа разной степени восстановленности. Из анализа литературы по механизмам изомеризации н-алканов следует, что каталитическим центром изомеризации являются металлический и кислотный центры. В представленной работе достаточно высокую активность проявили платиновые контакты, нанесенные на пилларированные железом монтмориллониты в Na- и Caформах. Возможно железо вместе с платиной и кислотными центрами входит в состав каталитического центра изомеризации алканов. Наряду с Рt-центрами работают, вероятно, Pt-Fe-центры, поставляющие водород с различными энергиями связи, которые вносят свой вклад в образование продуктов изомеризации н-гексана: С₆-моно и С₆-диизомеров а также С₇-изомеров на стадии гидрирования промежуточных комплексов, поскольку, согласно [26], перемещение двойной связи в комплексах осуществляется только в присутствии водорода. В связи со сказанным интересны данные, полученные в [27]. По мнению авторов в сульфат-циркониевой Pt-содержащей системе изомеризации н-гексана металлические поверхностные атомы платины являются активаторами и поставщиками водорода для гидрирования полициклических и ароматических углеводородов – предшественников кокса. Платина, локализованная в порах цеолитных катализаторов, находясь в ионном состоянии, участвует в активации водорода гидридного переноса или активации кислотных центров.

Высокая прочность предлагаемых катализаторов, повышенные выходы C₆- и C₇-ди- и триизо-

	Is, мм/с	Qs, мм/с	Н, кЭ	S* отн., %	
0.1Pt/FeNaHMM	0.34	0.74		29	Fe ³⁺
	0.41	0.89		51	Возможно β-FeOOH
	0.95	2.51		20	Fe ²⁺
0.1Pt/FeCaHMM	0.35	0.82		17	Fe ³⁺
	0.41	0.94		39	Возможно β-FeOOH
	1.08	2.41		38	Fe ²⁺
	0.04	0.00	329	5	α-Fe
	0.36	-0.20	492	20	
0.35Pt/FeNaHMM	0.38	0.85		73	Fe ³⁺
	1.03	2.46		27	Fe ²⁺
0.35Pt/FeCaHMM	0.39	0.86		57	Fe ³⁺
	1.06	2.41		43	Fe ²⁺

Таблица 6. Параметры Мессбауэровской спектроскопии 0.1- и 0.35%-ного Pt-катализаторов на пилларированных железом монтмориллонитах

меров из *н*-гексана на низкопроцентных Pt-катализаторах с применением доступных и дешевых природных материалов, достаточно высокая конверсия *н*- гексана, говорят о возможности их использования в изомеризации низкооктановой легкой нафты с получением высокооктановых изомеров.

Авторы выражают признательность сотрудникам лаборатории физических методов исследования института А.Р. Бродскому, Л.В. Комашко и В.И. Яскевичу за получение и интерпретацию данных электронной и Мессбауэровской спектроскопии.

Работа выполнена при частичной поддержке гранта МОН РК АР05132064.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ясакова Е.А., Ситдикова А.В., Ахметов А.Ф. // Нефтегазовое дело. 2010. № 1. С. 1.
- 2. Смирнов В.К., Талисман Е.Л., Капустин В.М. // Нефтепереработка и нефтехимия. 2005. № 2. С. 14.
- 3. Костенко А.В., Гоев М.М., Феркель Е.В., Соловых А.Н., Шакун А.Н., Федорова М.Л. //Нефтепереработка и нефтехимия. 2006. № 2. С. 58.
- 4. *Hollo A., Hancsot.J., Kallo D.* // Applied Catal. A: General. 2002. V. 229. № 1–2. P. 93.
- Chen C.Y., Quyang X., Zones S.I., Banach S.D., Elomari S.A., Davis T.M., Ojo A.F. // Microporous and Mesoporous Materials. 2012. V. 164. P. 71.

- 6. *Travkina O.S., Kuvatova R.Z., Pavlova I.N., Ramadan A.K.* // Petrol. Chemistry. 2016. V. 56. № 1. P. 41.
- Sinha A.K., Sivasanker S. // Catalysis Today. 1999.
 V. 49. № 1–3. P. 293.
- Konnov S.V., Sushkevich V.L., Monachova Yu.V., Yushenko V.V., Knyazeva E.E., Ponomareva O.A., Nanova I.J. // Studies in Surface Science and Catalysts. 2008. V. 174. P. 1167.
- 9. Кузнецов П.Н., Твердохлебов В.П., Кузнецова Л.И., Казбанова А.В., Мельчаков Д.А., Довженко Н.Н. // Журнал Сибирского федерального университета. Серия техника и технология. 2011. № 4. С. 438.
- Смоликов М.Д., Казанцев К.В., Затолокина Е.В., Кирьянов Д.И., Паукштис Е.А., Белый А.С. // Кинетика и катализ. 2013. Т. 51. № 4. С. 608.
- 11. *Уржунцев Г.А., Ечевский Г.В.* // Катализ в промышленности. 2018. Т. 18. № 1. С. 60.
- 12. *Yadav G.D., Nair J.J.* // Microporous and Mesoporous Materials. 1999. V. 33. № 1–3. P. 1.
- Yamoguchi T. // Applied Catal. A: General. 2001. V. 222. № 1–2. P. 237.
- Issaadi R., Garin F., Chitour Ch. E. // Catalysis Today. 2006. V. 113. № 3–4. P. 174.
- 15. Issaadi R., Garin F., Chitour Ch. E., Maire G. // Appl. Catalysis. 2001. V. 207. № 1–2. P. 323.
- Issaadi R., Garin F. // Applied Catalysis. 2003. V. 243. № 2. P. 367.
- 17. Закарина Н.А., Малимбаева М.М., Акулова Г.В. // Доклады НАН РК. 2009. № 1. С. 12.
- Balsi S., Gokcay E., Chitour Ch. E. // Turkish Journ. of Chemistry. 2009. V. 33. № 6. P. 843.

НЕФТЕХИМИЯ том 58 № 5 2018

- Akcay M. // Applied Catal. A: General. 2005. V. 294. № 2. P. 156.
- Moronto A., Obeto T., Carruyo G., Solano R., Sanchez J., Gonzalez F., Huerta L // Applied Catal. A: General. 2008. V. 334. № 1–2. P. 173.
- Timofeeva M.N., Khankhasaeva S.Ts., Chesalov Yu. A., Tsybulya S.V., Panchenko V.N., Dashinamzhilova E.Ts. // Applied Catal. B: Environ. 2009. V. 88. № 1–2. P. 127.
- 22. Абрамова А.В., Сливинский Е.В., Гольдфарб Ю.Я. // Кинетика и катализ. 2005. № 5. С. 801.
- 23. Акурпекова А.К., Волкова Л.Д., Закарина Н.А. // Известия НАН РК. Серия хим. 2009. № 2. С. 9.
- 24. Zakarina, N.A., Kim, O.K., Volkova, L.D. Canysheva I.S., Dalelkhan, O., Zhumadullaev, D.A.,

Komashko, L.V. // Proceedings of EuropaCat-XII. 2015. P. 144.

- 25. Закарина Н.А., Бродский А.Р., Яскевич В.А., Манакова И.А., Комашко Л.В., Волкова Л.Д., Ким О.К. // Сборник трудов XIV Междунар. науч. конференции: Мессбауэровская спектроскопия и ее применения. 2016. С. 142.
- Казанский В.Г. // Журн. физ. химии. 1985. Т. 59. № 5. С. 1057.
- 27. Смоликов М.Д., Гончаров В.Б., Садовская Е.М., Казанцев К.В., Затолокина Е.В., Кирьянов Д.И., Паукитис Е.А., Бальжинимаев Б.С., Белый А.С. // Катализ в промышленности. 2013. № 6. С. 51.