УДК 665.617:543.57

СТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ НЕФТЯНЫХ СМОЛ И ИХ ФРАКЦИЙ ПРИ ТЕРМОЛИЗЕ

© 2018 г. А. К. Головко^{1, *}, А. А. Гринько^{2, **}

¹Институт химии нефти СО РАН, Томск, Россия ²Национальный исследовательский Томский политехнический университет, Томск, Россия *E-mail: golovko@ipc.tsc.ru **E-mail: grinko@tpu.ru Поступила в редакцию 21.08.2017 г.

Проведено исследование смол нефти Усинского месторождения и их четырех фракций, полученных колоночной хроматографией. Изучены изменения структурных параметров смол и состав продуктов при термолизе фракций при температурах 200–245 и 450–495°С. В результате термолиза смол образуются газ, масла (углеводороды), вторичные смолы, асфальтены, твердые продукты. Фракции смол отличаются составом, структурой и, как следствие, термической стабильностью. Термическая стабильность сильно зависит от количества и функционального типа серы, структуры молекул смол. Фракции с максимальным содержанием алкилсульфидной серы являются наименее устойчивыми при термолизе.

Ключевые слова: нефтяные смолы, фракции, термолиз, превращения, структурные параметры. **DOI:** 10.1134/S002824211804007X

Смолы и асфальтены содержатся в значительных количествах в тяжелых нефтях и битумах [1, 2], добыча которых будет возрастать по мере того, как добыча легких и средних нефтей будет снижаться [3, 4]. Поэтому в настоящее время актуальны исследования, направленные на изучение состава, структуры этих высокомолекулярных компонентов нефти, поведения их в термических и каталитических процессах [5–8]. Полученные данные могут быть применены при поиске новых эффективных процессов переработки тяжелых нефтей, битумов [9–11], а также методов борьбы с асфальто-смоло-парафиновыми отложениями (АСПО), где смолы и асфальтены могут составлять значительную часть [12, 13]. Многие исследования направлены на изучение адсорбции, коллоидных свойств, структуры исходных смол и асфальтенов [14–16], при этом мало внимания уделяется их роли и поведению в термических процессах, склонности к образованию углеводородов (УВ), вторичных смол и асфальтенов и твердых продуктов (карбено-карбоидов). Всестороннее изучение может углубить понимание о структуре молекул смол и асфальтенов и механизмах их термических превращений.

Групповой и молекулярный состав ароматических УВ и их серосодержащих структурных аналогов в масляных фракциях продуктов термической деструкции смол и асфальтенов ранее исследован в работах [26, 36], однако поведение смол при термическом воздействии, изменение их структурно-групповых параметров, а также оценка влияния функционального состояния серы на термическую стабильность смол детально не охарактеризованы. Детальное исследование структурных особенностей исходных смол и продуктов конверсии имеют большое значение для дальнейшего эффективного преобразования тяжелого углеводородного сырья.

Настоящее исследование направлено на изучение и объяснение как нефтяные смолы превращаются в целевые продукты (компоненты легкокипящих фракций) при термическом воздействии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты исследования – смолы тяжелой нефти Усинского месторождения. Характеристика нефти представлена в [18]. Нефть характеризуется высокой плотностью (966.7 кг/м³), содержит 18.0% смол и 8.1% асфальтенов, 1.98 мас. % серы, 33.0 об. % фракций, выкипающих до 360°С.

Смолы из исходной нефти выделяли общепринятым способом [17], в качестве растворителей использовали *н*-гексан для отделения масел, этанол : бензол (1 : 1 по объему) для элюирования смол. Предварительное разделение смол на фракции, отличающиеся структурой и свойствами, позволит более детально изучить процессы их термического превращения. Поэтому полученные смолы методом колоночной хроматографии на силикагеле АСК делили на четыре фракции смесями растворителей различной полярности, как было описано в работе [18]. Соотношения смесей растворителей *н*-гексан/бензол и *н*-гексан/этанол подбирались такие, которые могли дать примерно одинаковые выходы фракций от исходной массы асфальтенов и смол.

Исходные (суммарные) смолы (C0) и их фракции (C1–C4) исследовали методом дериватографии, определили температуры разложения T_1 и T_2 . Температуры термолиза соответствовали температурам максимумов скоростей разложения по данным дериватографического анализа, при которых и проводили термолиз в автоклаве в инертной среде аргона в течение часа [19, 20, 25]:

Образцы смол:	C0	C1	C2	C3	C4
T_1 , °C:	200	235	245	230	245
<i>T</i> ₂ , °C:	450	455	470	470	495

Продукты термолиза после дегазации удаляли из автоклава растворением в хлороформе. Нерастворимый в хлороформе остаток принимали за твердые продукты. Продукты разделяли по растворимости: мальтены отделяли от асфальтенов растворением в н-гексане. Далее мальтены методом колоночной хроматографии на силикагеле АСК разделяли на масла (элюент – н-гексан) и смолы (элюент этанол : бензол, 1 : 1 по объему) [17]. Суммарные смолы, фракции смол и смолы термолиза (вторичные смолы) анализировали методом структурно-группового анализа, разработанным в ИХН СО РАН [21]. Молекулярные массы измеряли криоскопическим методом в нафталине на приборе "Крион", разработанном в ИХН СО РАН, при концентрации смол ~1 мас. %. ПМР-спектры регистрировали на Фурье-спектрометре AVANCE-AV-300 (растворитель – дейтерохлороформ, внутренний стандарт - гексаметилдисилоксан) при 1%-ной концентрации веществ. Содержание С и Н в смолах и асфальтенах определяли методами сожжения, общее содержание серы и азота определяли сожжением по Шенигеру [22] и окислительной деструкцией в реакторе Покровского [23].

Дериватографический анализ проводили (навеска вещества 100 мг) на дериватографе "Q-1000" в инертной атмосфере (гелий) со скоростью нагрева печи 10°С/мин от комнатной температуры до 900°С.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для исследования смол помимо хроматографического разделения (табл. 1) был применен их термолиз в широком температурном интервале [25], который дает более полную картину поведения смолистых компонентов при термическом воздействии (табл. 2, 3), однако не исключается образование соединений вследствие вторичных процессов [26]. Каждая фракция смол отличается по своим характеристикам, как было показано ранее [18, 27, 28]. Фракция С1 характеризуется высокой долей летучих компонентов, минимальной молекулярной массой, минимальным содержанием азота и кислорода, и довольно высоким содержанием серы. Для этой фракции наиболее характерны соединения, содержащие длинные алифатические цепи в молекулах. Для остальных фракций их количество снижается [18], летучие продукты флэш-пиролиза этой фракции характеризуются отсутствием полициклических соединений [27, 28]. Фракция С2 по своим структурным характеристикам близка фракции С1, однако заметно обеднена серой, но обогащена азотом (максимальное содержание) и кислородом, она не может быть высокополярной, сильноадсорбирующейся, какими являются, например, карбоновые кислоты, и, по всей видимости, обогащена соединениями сложноэфирного типа. В высокомолекулярных гексан-этанольных фракциях смол С3, С4 [18] аккумулируются вещества, содержащие повышенные количества всех гетероэлементов. Атомы серы встречаются в среднем почти в половине структурных фрагментов. Среди кислородсодержащих фрагментов значительно преобладают фрагменты с двумя атомами О. Алифатические структурные фрагменты в этих фракциях менее распространены, а конденсированные нафтеноароматические системы представлены шире (табл. 1, 2). Выход летучих продуктов флэш-пиролиза для С4 выше, чем для С3 и С2 [27, 28].

Как и для асфальтенов [25], для смол также характерны два температурных максимума термического разложения, при которых наблюдается наибольший выход жидких продуктов (табл. 3).

По результатам дериватографического анализа смол первый максимум 160-245°C соответствует распаду наиболее энергетически слабых мостиковых связей – алкилсульфидных, эфирных, сложноэфирных [1, 18, 25]. При втором температурном максимуме 450-495°С происходит деструкция углеродного каркаса молекул смол [1, 25]. Наименее термически стабильной является самая легкая фракция смол C1 (MM = 558) – суммарно при обоих температурных максимумах из нее получается максимальное количество масел и высокое (более 34%) газообразных продуктов при втором температурном максимуме. Как и следовало ожидать, при термолизе фракции смол C1 при 235° C (первом температурном максимуме) наблюдается наименьший выход твердых продуктов, т.к. она содержит меньше других в своем соста-

СТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ НЕФТЯНЫХ СМОЛ

Суммарные смолы	Содержание, %										
и их фракции	мас. %	С	C'	Н	Η'	Ν	N'	S	S'	0	O'
C0	100	81.18	100	9.32	100	1.07	100	2.91	100	5.52	100
C1	22.11	83.52	22.75	10.33	25.41	0.88	18.18	3.33	25.30	1.94	7.77
C2	25.61	81.23	25.63	9.57	26.30	1.26	30.16	1.77	15.58	6.17	28.63
C3	29.71	80.93	29.62	9.15	29.17	0.85	23.60	3.36	34.30	5.71	30.73
C4	22.57	79.16	22.01	8.27	20.03	1.33	28.05	3.20	24.82	8.04	32.87

Таблица 1. Содержание элементов в суммарных смолах и выделенных фракциях

С, H, N, S, O – мас. %; C', H', N', S', O' - содержание в каждой фракции, рассчитанное относительно суммарных смол (отн. %).

Таблица 2. Структурно-групповой анализ суммарных смол и их фракций
--

	Смолы и их фракции								
Параметры	C0	C1	C2	C3	C4				
Молекулярная масса (ММ), а.е.м.	812	558	640	780	849				
Число атомов в средней молекуле:									
С	54.93	38.84	43.32	52.60	56.01				
Н	75.08	57.18	60.76	70.80	69.66				
Ν	0.62	0.35	0.58	0.47	0.81				
S	0.74	0.58	0.35	0.82	0.85				
0	2.80	0.68	2.47	2.78	4.27				
H/C	1.37	1.47	1.40	1.35	1.24				
Кольцевой состав:									
K _a	4.20	2.42	3.08	3.55	4.27				
K _{Hac}	4.68	3.25	3.68	6.47	8.30				
Распределение атомов С, %:									
f_{a}	31.78	28.02	30.03	28.05	29.97				
$f_{\scriptscriptstyle m H}$	34.76	34.18	34.94	50.67	61.64				
f_{Π}	33.46	37.80	35.02	21.29	8.39				
Число углеродных атомов разного типа									
в средней молекуле:									
C_{π}	18.38	14.86	15.17	11.85	4.70				
$C_{_{\rm H}}$	19.10	13.28	15.14	25.95	34.52				
C_a	17.46	10.88	13.01	14.77	16.79				
C_{α}	7.42	4.60	4.97	6.97	8.42				
C_{γ}	5.07	4.04	3.95	4.34	3.84				
Число блоков в молекуле, <i>m</i> _a	1.78	1.36	1.51	1.63	1.80				

С_а – углерод ароматический; С_н – углерод в нафтеновых кольцах; С_п – углерод в алифатических цепях; С_α – углерод в α-положении к нафтеноароматическому ядру; С_γ – углерод в терминальных метильных группах; К_а – количество ароматических колец; К_{нас} – количество нафтеновых колец.

ве высокомолекулярных полициклических структурных фрагментов ($K_a = 2.42$; $K_H = 3.25$), с чем согласуется повышенный выход при температуре 455°C вторичных асфальтенов (4.62%) по сравнению с остальными, а также повышенный выход газообразных продуктов (34.16%). Поведение фракции С2 при термолизе схоже с фракциями С3 и С4, однако наблюдается несколько меньший выход масел и при низких температурах образуется довольно высокое по сравнению с остальными фракциями количество вторичных асфальтенов (5.07%), накопление которых в про-

НЕФТЕХИМИЯ том 58 № 4 2018

		Выход продуктов термолиза, мас. %									
Смолы, температура термолиза. °С		K	кидкие продукти	500	твердые						
			ла смолы асфальтены		143	продукты					
C0	200	10.30	50.79	6.56	5.04	27.31					
	450	19.51	3.14	0.00	22.80	54.55					
C1	235	16.24	80.34	1.05	2.34	0.03					
	455	10.10	10.69	4.62	34.16	40.43					
C2	245	2.29	91.24	5.07	1.36	0.04					
	470	4.53	1.50	0.16	24.53	69.28					
C3	230	9.21	78.37	1.99	2.21	8.22					
	470	10.65	4.31	0.01	20.13	64.90					
C4	245	11.31	83.23	0.84	3.37	1.25					
	495	8.90	2.19	0.22	22.14	66.55					

Таблица 3. Состав продуктов термолиза суммарных смол и фракций

дуктах термолиза может происходить за счет разрыва мостиковых эфирных, сложноэфирных связей.

Стоит отметить интенсивную деструкцию фракции С4 при пониженной температуре термолиза с образованием довольно высокого количества масел (11.31%). Но наибольший вклал в образование углеводородов (масел) вносит фракция С1, которая деструктирует с образованием максимального их количества при обоих температурных максимумах (сопоставимо с С3 при втором температурном интервале). Повышенный выход масел при термолизе фракций С1 и С3, а также при низкотемпературном термолизе фракции С4 обусловлен их структурными особенностями. Деструкция, по всей вероятности, с выделением масел в случае высоких температур идет вследствие разрушения связей углерод-сера, а также С-С связей углеродного скелета, в т.ч. в нафтеновых циклах. Фракции С1, С3, С4 заметно обогащены серой (которая может располагаться как в составе парафиновых структурных фрагментов так и циклических) по сравнению с фракцией С2, поэтому дают больший выход масляных компонентов при термолизе. Повышенный выход масел при низких температурах термолиза фракции С4, вероятнее всего, связан с разрушением мостиковых алкилсульфидных фрагментов, а также мостиковых кислородсодержащих связей (фракция обогащена кислородом).

В результате термолиза суммарных смол при 450°С практически не образуется асфальтенов, однако фракция С1 генерирует их в заметном количестве (4.62%), тогда как при термолизе других фракций образование асфальтенов минимально. Асфальтены термолиза — это образованные при деструкции смол "вторичные" асфальтены, выделенные из жидких продуктов. Они состоят из большого числа близких по своим свойствам молекул, которые по составу и структуре схожи со смолами термолиза и могут легко превращаться друг в друга или переходить в твердые продукты в процессе термолиза [4], а также участвовать во вторичных процессах. Поэтому асфальтены, генерируемые смолами фракции С1, при термолизе суммарных смол могут перейти в состав твердых продуктов. Также интересен факт образования твердых продуктов при низкотемпературном термолизе суммарных смол. Полобный результат лля термолиза асфальтенов описан в работе [37], где при относительно низких температурах происходит образование нерастворимых в бензоле продуктов термической деструкции. Основной вклад в образование твердых продуктов вносят высокомолекулярные фракции С3, С4. Твердые продукты, получаемые при низкотемпературном термолизе суммарных смол, характеризуется по данным элементного состава высоким отношением H/C ~ 1.06, что нехарактерно для промышленного нефтяного кокса (Н/С ~ 0.5) [29]. Наибольший вклад в образование асфальтенов при пониженных температурах термолиза вносит фракция С2, в образование вторичных смол – фракции C1, C3.

В результате термолиза фракций смол C3 и C4 в низкотемпературной области наблюдается увеличение молекулярных масс (вторичные смолы имеют более высокую молекулярную массу по сравнению с исходными смолами (табл. 2, 4), что свидетельствует о разрыве слабых гетероатомных мостиковых связей, приводящих к образованию радикалов, которые впоследствии при рекомбинации образуют более крупные молекулы, переходящие в состав вторичных смол. Вероятно, в свою очередь другие молекулы, имеющие более высокую степень ароматичности, сшиваются и переходят в состав твердых продуктов. Эта закономерность характерна только для высокомоле-

Шифр	Содержание, %								MM,	H/C		
образца	С	C'	Н	Η'	Ν	N'	S	S'	0	O'	а. е. м.	II/C
C0 ²⁰⁰	80.46	40.33	10.11	44.14	1.99	75.68	3.01	52.54	4.43	32.66	723	1.50
C0 ⁴⁵⁰	80.12	3.10	9.23	3.11	0.98	2.88	2.23	2.41	7.44	4.23	428	1.38
C1 ²³⁵	83.70	80.52	11.82	91.94	0.83	75.78	1.78	42.95	1.87	77.45	385	1.68
C1 ⁴⁵⁵	84.36	10.80	9.20	9.52	0.91	11.05	1.36	4.37	4.17	22.98	303	1.30
C2 ²⁴⁵	80.91	90.88	10.32	98.39	1.06	76.76	1.64	84.54	6.07	89.76	600	1.52
C2 ⁴⁷⁰	83.87	1.55	9.15	1.43	0.89	1.06	0.85	0.72	5.24	1.27	376	1.30
C3 ²³⁰	79.72	77.20	9.75	83.51	1.08	99.58	2.96	69.04	6.49	89.08	1187	1.46
C3 ⁴⁷⁰	83.97	4.47	9.26	4.36	1.11	5.63	1.36	1.74	4.30	3.25	453	1.31
C4 ²⁴⁵	79.03	83.09	9.85	89.60	0.94	58.82	2.39	62.16	7.79	80.64	1100	1.48
C4 ⁴⁹⁵	84.20	2.33	9.32	2.47	0.97	0.08	1.31	0.90	4.20	1.14	487	1.32

Таблица 4. Содержание элементов во вторичных смолах термолиза

C0²⁰⁰, C0⁴⁵⁰ – вторичные смолы – продукты термолиза суммарных смол при температурах 200, 450°С соответственно; C1²³⁵, C1⁴⁵⁵ – вторичные смолы – продукты термолиза фракции смол C1 при температурах 235, 455°С соответственно. Для остальных вторичных смол обозначения подобные

С, H, N, S, O – массовая доля элементов в исходном образце (мас. %); С', H', N', S', O' - доля элементов в расчете на исходный образец, перешедших во вторичные смолы (отн. %).

кулярных фракций С3 и С4, при термолизе фракций С1, С2 и суммарных смол молекулярная масса снижается. Но стоит отметить, что в случае суммарных смол и фракции С2 снижение молекулярной массы по сравнению с фракцией С1 выражено менее резко.

Сообразно возрастанию молекулярной массы меняются и структурно-групповые параметры вторичных смол, полученных при термолизе высокомолекулярных фракций С3, С4 — увеличивается число структурных блоков, число атомов углерода в ароматических структурах, число гетероатомов, количество атомов углерода в парафиновых цепях (табл. 5).

Для вторичных смол термолиза фракций С1, С2 наблюдается обратная картина, за исключением возрастания доли парафинового углерода (C_п). При высоких температурах термолиза за счет деструкции углеродного каркаса молекул смол резко снижается молекулярная масса, число нафтеновых структурных элементов, но возрастает ароматичность молекул. Рост числа атомов углерода в парафиновых цепочках и уменьшение доли нафтеновых колец в средних молекулах вторичных смол в низкотемпературном интервале термолиза может происходить из-за перераспределения структурных блоков в другие продукты термолиза в процессе их радикальной сшивки. Для всех фракций также характерно увеличение структурных блоков во вторичных смолах по сравнению с исходными. Эти процессы при высоких температурах термолиза могут происходить за счет сшивки деструктированных структурных блоков, увеличение доли углерода в парафиновых структурных фрагментах — за счет вторичных радикальных процессов.

Различие в термической стабильности нефтяных смол обусловлены их структурными особенностями. Чем больше доля атомов углерода в парафиновых цепях и меньше в нафтеновых и ароматических фрагментах, тем меньше термическая стабильность молекулы. Несомненно, влияние на термическую стабильность и реакционную способность смол и асфальтенов, оказывает высокое содержание кислород- и азотсодержащих структурных групп. Исследование их функционального состава, превращений в термических процессах и влияния на выход полезных продуктов – компонентов легкокипящих фракций – является предметом дальнейших исследований, в том числе с применением метода химической деструкции.

Большое и, вероятно, основное влияние оказывает содержание и функциональный тип атомов серы. Известно, что сера в структуре высокомолекулярных компонентов нефти находится преимущественно в двух состояниях — в составе алкилсульфидных фрагментов и в циклических структурах (тиофеновые, тиациклановые) [2, 30, 31]. Основываясь на данных по термической стабильности сераорганических соединений, в которых атом серы находится в определенной функциональной группе [32–35], возможно оценить количество функциональных типов серы в молекулах смол — по разности относительного содержания серы в смолах до термолиза (принятого за 100%) и доли серы S', сосредоточенной во вторич-

	Образцы вторичных смол после термолиза										
Параметры	в низкотемпературном интервале						в высокотемпературном интервале				
	C0 ²⁰⁰	C1 ²³⁵	C2 ²⁴⁵	C3 ²³⁰	C4 ²⁴⁵	C0 ⁴⁵⁰	C1 ⁴⁵⁵	C2 ⁴⁷⁰	C3 ⁴⁷⁰	C4 ⁴⁹⁵	
Молекулярная масса, а. е. м.	723	385	600	1187	1100	428	303	376	453	487	
Число атомов в средней молекуле:											
С	48.48	26.85	40.41	78.86	74.22	28.58	21.30	26.28	31.70	34.17	
Н	72.52	45.15	61.43	114.8	107.5	39.19	27.65	34.13	41.61	45.03	
Ν	1.03	0.23	0.45	0.92	0.74	0.30	0.20	0.24	0.36	0.34	
S	0.68	0.21	0.31	1.10	0.82	0.30	0.13	0.10	0.19	0.20	
0	2.00	0.45	2.28	4.81	5.36	1.99	0.79	1.23	1.22	1.28	
H/C	1.50	1.68	1.52	1.46	1.48	1.37	1.30	1.30	1.31	1.32	
Кольцевой состав:											
K _a	3.58	0.99	2.93	6.59	5.93	2.52	1.71	2.58	2.98	3.07	
K _{Hac}	2.14	1.40	0.77	1.28	0.17	1.23	2.34	0.80	0.71	0.67	
Распределение атомов С, %:											
f_{a}	29.25	20.80	31.43	33.50	33.11	39.50	39.56	49.28	49,75	50.24	
$f_{ m H}$	18.02	20.75	7.66	6.47	1.15	16.78	45.03	12.22	8.95	7.86	
f_{Π}	52.74	58.45	60.91	60.03	65.74	43.72	15.41	38.50	41,30	41.90	
Число углеродных атомов											
разного типа в средней молекуле:											
C_a	14.18	5.59	12.70	26.42	23.99	11.29	8.43	12.95	15.77	17.17	
C _H	8.73	5.57	3.10	5.10	0.83	4.79	9.59	3.21	2.84	2.69	
C _π	25.56	15.70	24.61	47.34	47.62	12.49	3.28	10.12	13,09	14.32	
C_{α}	5.94	3.07	5.48	10.26	10.02	4.38	3.72	3.40	6.47	6.33	
C_{γ}	4.19	3.77	3.83	7.41	6.89	2.13	1.48	2.02	1.75	1.79	
Число блоков в молекуле, <i>m</i> _a	1.63	1.22	1.48	2.30	2.17	1.38	1.19	1.80	2.58	3.10	

Таблица 5. Структурно-групповой анализ вторичных смол, полученных в низко- и высокотемпературных интервалах термолиза

Таблица 6. Содержание серы в асфальтенах и коксе – продуктах термолиза суммарных смол и фракций смол

Ofpasau	Содержание серы							
Образец	S, мас. %	S', отн. %						
K ^{C0} 450	2.35	44.05						
K ^{C1} 455	1.28	15.54						
K ^{C2} 470	1.34	52.45						
K ^{C3} 470	2.46	47.52						
K ^{C4} 495	2.54	52.82						
A ^{C1} 455	2.16	3.00						
A ^{C2} 470	2.74	0.25						
A ^{C4} 495	2.32	0.16						

 $K^{C}450$ — образец твердого продукта, полученный термолизом суммарных смол при 450°С; $K^{C1}455...K^{C4}495$ — образцы твердых продуктов, полученные термолизом фракций смол C1...C4 при температурах 455...495°С; $A^{C1}455...A^{C4}455$ — асфальтены, полученные термолизом фракций смол C1...C4 при температурах 455...495°С; S' — содержание серы в образцах твердых продуктов относительно количества серы в суммарных смолах и фракциях смол до термолиза. ных смолах, асфальтенах и твердых продуктах термолиза (табл. 4, 6), полученных при высоких температурах (ВТ) 450–495°С.

Таким образом, оценивалось количество алкилсульфидного ($S_{суль\phi}$) и циклического ($S_{цикл}$) функциональных типов серы:

$$\begin{split} \mathbf{S}_{\text{суль}\boldsymbol{\varphi}} &= 100 - \mathbf{S}_{\text{втор_смол_BT}}' - \mathbf{S}_{\text{тв.пр._BT}}' - \mathbf{S}_{\text{ас}\boldsymbol{\varphi}_\text{BT}}',\\ \mathbf{S}_{\text{шикл}} &= 100 - \mathbf{S}_{\text{суль}\boldsymbol{\varphi}}, \end{split}$$

где S' — относительное содержание серы в продуктах термолиза — во вторичных смолах (S'_{втор_смол_ВТ}), твердых продуктах (S'_{тв. пр._ВТ}) и асфальтенах (S'_{асф_ВТ}S), полученных при 450— 495°C, в пересчете на содержание серы в исходных смолах (табл. 7, рисунок).

Рассчитанные значения относительного содержания алкилсульфидной и циклической

Содержание различных типов серы в суммарных смолах и фракциях смол. Алксульф – алкилсульфидный функциональный тип серы, Цикл – циклический функциональный тип серы.

функциональных типов серы в суммарных смолах и их фракциях представлены на рисунке.

Закономерно наименее насыщенная циклическими структурами и потому менее термически стабильная фракция С1 содержит максимальное количество алкилсульфидной серы (77.09 отн. %). Максимум шиклического типа серы приходится на фракции С2 и С4. Во фракции С3 содержание алкилсульфидной серы несколько выше, чем для С2 и С4, чем объясняется повышенный выход масел при термолизе этой фракции и смещение первого температурного максимума в сторону низких температур относительно фракции С2. В целом, можно говорить о том, что наиболее высокомолекулярные фракции смол, в которых сера находится в большей степени в структуре циклических фрагментов, более термически устойчивы (фракции С3, С4 и С2). Стоит отметить, что смолы содержат больше алкилсульфидной серы по сравнению с асфальтенами [25] и. главным образом, по этой причине характеризуются меньшей термической стабильностью.

Таким образом, разделение на фракции суммарных смол и последующий их термолиз позволил установить вклад разных фракций смол в продукты термолиза. Наибольший вклад в образование твердых продуктов вносят высокомолекулярные фракции C3, C4, в образование асфальтенов термолиза и вторичных смол — фракции C1, C2, C3. Основной вклад в образование углеводородов (масел) при термолизе суммарных смол вносят фракции C1, C3.

Выделенные фракции смол различаются по термической устойчивости, которая зависит от их молекулярной массы (размера молекул) и относительного содержания алкилсульфидного типа серы в молекулах. Чем выше молекулярная масса смолистых веществ, тем вероятнее, что в них сера будет находиться в составе нафтеноароматического углеродного каркаса и тем будет выше их термиче-

НЕФТЕХИМИЯ том 58 № 4 2018

ская стабильность. Похожая тенденция наблюдается и для асфальтенов усинской нефти [25].

Более обстоятельное изучение вопроса о структуре вторичных смол и асфальтенов, образующихся при термолизе как исходных смол, так и исходных асфальтенов, механизма их образования в термических процессах, позволит уточнить структурные особенности исходных смол и асфальтенов, найти новые эффективные способы управления реакциями термического крекинга тяжелого углеводородного сырья. Также интересен вопрос о составе и механизме образования нерастворимого твердого остатка, что требует дальнейших детальных исследований с применением пиролитических, рентгеноструктурных и др. физико-химических методов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сергиенко С.Р., Таимова Б.А., Талалаев Е.И. Высокомолекулярные неуглеводородные соединения нефти. М.: Наука, 1979. 269 с.
- Поконова Ю.В. Химия высокомолекулярных соединений нефти. Л.: Изд-во Ленингр. ун-та, 1980.172 с.
- 3. Дорохин В.П., Палий А.О. // Нефтепромысловое дело. 2004. № 5. С. 47.
- 4. Гарушев А.Р. // Нефтепромысловое дело. 1993. № 10. С. 3.
- 5. Storm D.A., Barresi R.J., Sheu E.Y., Bhattacharya A.K., DeRosa, T.F. // Energy and Fuels. 1998. V. 12. P. 120.
- Arash Karimi, Kuangnan Qian, William N. Olmstead, Howard Freund, Cathleen Yung and Murray R. Gray. // Energy and Fuels. 2011. V. 25. P. 3581.
- Camilo A. Franco. Nashaat N. Nassar, Tatiana Montoya, Marco A. Ruíz, and Farid B. Cortés // Energy and Fuels. 2015. V. 29. P. 1610.
- Judah M. J.-B. Mierau, Nancy Zhang, Xiaoli Tan, Alexander Scherer, Jeffrey M. Stryker, Rik R. Tykwinski and Murray R. Gray // Energy and Fuels. 2015. V. 29. P. 6724.

- Chianelli R.R. Rendina D., Hauptmann E.G., Lucchesi P.J., Torres B. // Energy and Fuels. 2014. V. 28. P. 1750.
- Glaucia H.C. Prado and Arno de Klerk // Energy and Fuels. 2014. V. 28. P. 4458
- Galukhin An.V., Erokhin A.A., Osin Y.N., Nurgaliev D.K. // Energy and Fuels. 2015. V. 29. P. 4768.
- 12. *Тронов В.П.* Механизм образования смоло-парафиновых отложений и борьба с ними. М.: Недра, 1970. 192 с.
- Иванова Л.В., Буров Е.А., Кошелев В.Н. // Электронный научн. журн. "Нефтегазовое дело". 2011. № 1. С. 15.
- Jeramie J. Adams // Energy and Fuels. 2014. V. 28. P. 2831.
- Joëlle Eyssautier, Didier Frot, Loïc Barré // Langmuir. 2012. V. 28. P. 11997.
- Zewen Liao, Jing Zhao, Patrice Creux, Chupeng Yang // Energy and Fuels. 2009. V. 23. P. 6272.
- Современные методы исследования нефтей / Под ред. Богомолова А.И., Темянко М.Б., Хотынцевой Л.И., Абрютина Н.Н. Л.: Недра, 1984. с. 431.
- Гринько А.А., Головко А.К. // Нефтехимия. 2011. Т. 51. № 3. С. 204. [Petrol. Chemistry. 2011. V. 50. № 3. Р. 192].
- 19. Дмитриев Д.Е., Головко А.К. Нефтехимия. 2010. Т. 50. № 2. С 118. [Petrol. Chemistry. 2010. V. 50. № 2. Р. 106]
- 20. Гринько А.А., Головко А.К. // Химия в интересах устойчивого развития. 2011. Т. 19. № 3. С. 327.
- Камьянов В.Ф., Большаков Г.Ф. // Нефтехимия. 1984. № 4. С. 450.
- 22. Климова В.А. Основные микрометоды анализа органических соединений. М.: Химия, 1975. 288 с.
- Чумаченко М.Н., Хандрик Т.А., Соснина Н.П., Воротникова В.А. // Химия и технология топлив и масел. 1983. № 5. С. 39.

- 24. Калугина Н.П. Инфракрасная спектрометрия нефтей и конденсатов / Под ред. Глебовской Е.А., Бабаева Ф.Р., Мухаммедова П.Р. Ашхабад: Илым, 1990. 240 с.
- Гринько А.А., Головко А.К. // Нефтехимия. 2014. Т. 54. № 1. С. 43. [Petrol. Chemistry. 2014. V. 54. № 1. Р. 39].
- 26. Гринько А.А., Мин Р.С., Сагаченко Т.А., Головко А.К. // Нефтехимия. 2012. Т. 52. № 4. С. 249].
- 27. Антипенко В.Р., Гринько А.А., Меленевский В.Н. // Известия Томского политехнического университета. 2011. Т. 319. №3. С. 129.
- 28. Антипенко В.Р., Гринько А.А., Меленевский В. Н. // Нефтехимия. 2014. Т. 54. № 3. С. 176. [Petrol. Chemistry. 2014. V. 54. №3. Р. 178].
- 29. Походенко Н.Т. Брондз Б.И. Получение и обработка нефтяного кокса. М.: Химия, 1986. 311 с.
- Камьянов В.Ф., Аксенов В.С., Титов В.И. Гетероатомные компоненты нефтей. Новосибирск: Наука, 1983. 240 с.
- Mitra-Kertley S., Mullins O.C., Ralston C.Y., Sellis D., Pareis C. // Appl. Spectroscopy. 1998. V. 52. № 12. P. 1522.
- 32. Воронков М.Г., Дерягина Э.Н. // Успехи химии. 2000. Т. 69. № 1. С. 90.
- Dartiguelongue C., Behar F., Budzinski H., Scacchi G., Marquaire P.M. // Org. geochemistry. 2006. V. 37. P. 98.
- 34. Красюков А.Ф. Нефтяной кокс. М.: Химия, 1966. 264 с.
- 35. *Караулова Е.Н.* Химия сульфидов нефти. М.: Наука, 1970. 204 с.
- 36. Гринько А.А., Мин Р.С., Сагаченко Т.А., Головко А.К. // Нефтехимия и нефтепереработка. 2012. № 4. С. 24
- 37. Спейт Дж. // Нефтехимия. 1989. № 6. С. 723.