УЛК 547.562.39:542.943

ГИДРОПЕРОКСИДНЫЙ МЕТОД СИНТЕЗА 3,4-КСИЛЕНОЛА

© 2018 г. Е. А. Курганова¹, А. С. Фролов¹, Г. Н. Кошель^{1,*}, Т. Н. Нестерова², В. А. Шакун², О. А. Мазурин²

¹ Ярославский государственный технический университет, Ярославль, Россия ² Самарский государственный технический университет, Самара, Россия *E-mail: koshelgn@ystu.ru
Поступила в редакцию 12.07.2017 г.

Изучена реакция аэробного окисления 1,2-диметил-4-изопропилбензола до гидропероксида в присутствии N-гидроксифталимида и его производных. Установлено, что вплоть до конверсии углеводорода (УВ) 25—30% селективность образования третичного гидропероксида 1,2-диметил-4-изопропилбензола составляла более 90—95%. Предложен метод оценки каталитической активности фталимидных соединений в реакциях жидкофазного окисления 1,2-диметил-4-изопропилбензола с использованием значений энергий однократнозанятых молекулярных орбиталей ($\Delta E_{\rm O3MO}$) квантово-химического расчета.

Ключевые слова: N-гидроксифталимид, гидропероксид, окисление, 3,4-ксиленол, 1,2-диметил-4-изопропилбензол.

DOI: 10.7868/S0028242118030140

Ксиленолы (диметилфенолы) являются крупнотоннажными продуктами основного органического и нефтехимического синтеза. Они широко используются в производстве пластификаторов, синтетических смол, витаминов [1], мономеров для производства полимеров и пластмасс с более ценными свойствами, по сравнению с аналогичными материалами, полученными на основе фенола [2, 3]. В значительной степени увеличивается ценность индивидуальных изомеров ксиленолов, в том числе и 3,4-ксиленола, на основе которого производятся высокоэффективные пластификаторы (например, триксилилфосфаты) и высококачественные электротехнические изделия. Перспективно также применение 3,4-ксиленола для синтеза 3,3',4,4'-бензофенокситетракарбоновой кислоты – мономера для получения жидкокристаллических термотропных полимеров [4].

Основной источник промышленного получения ксиленолов — крезольные (фенольные) фракции, образующиеся при термической обработке топлив. Известные на сегодняшний день синтетические методы получения 3,4-ксиленола, такие как диазотирование ксилидинов и сульфонатный процесс не нашли своего широкого применения ввиду низких выходов и большого расхода вспомогательных материалов [2]. В литературе имеется информация о прямом региоселективном окислении о-ксилола до 3,4-ксиленола пероксидом водорода

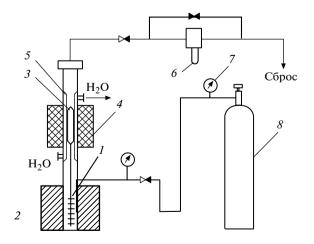
в присутствии катализатора. Несмотря на высокую селективность, конверсия УВ за 1 ч реакции составляет менее 1% [5]. В работе [6] описан синтез алкилфенолов реакцией аренов с перекоксидом фталоила с последующим гидролизом образующегося эфира фталоила. Также известен способ получения смесей изомеров диметилфенола, основанный на гидроксилировании ксилолов в присутствии молибденового катализатора [7] и фосфовольфрамата ванадия [8]. В работах показано, что конверсия исходного сырья не превышает 18% за 4 ч реакции. В этой связи разработка эффективного, отвечающего современным производственным и экологическим требованиям, метода получения 3,4-ксиленола, является актуальной задачей.

Наиболее перспективным промышленным и приемлемым в техническом отношении способом получения 3,4-ксиленола может стать так называемый "окислительный" метод, базирующийся на доступном нефтехимическом сырье и хорошо отработанной технологии "кумольного" процесса совместного синтеза фенола и ацетона. В основе предлагаемого метода лежат три стадии: синтез 1,2-диметил-4-изопропилбензола (1,2-диметил-4-ИПБ), его жидкофазное окисление до третичного гидропероксида (*трет*П) и последующее кислотное разложение *трет*П 1,2-диметил-4-ИПБ до 3,4-ксиленола и ацетона по реакциям:

$$\begin{array}{c} \text{OOH} \\ \text{CH}_{\overline{3}}\text{CH}-\text{CH}_{\overline{3}} & \text{CH}_{\overline{3}}\text{C}-\text{CH}_{\overline{3}} & \text{OH} \\ \text{CH}_{\overline{3}}\text{CH}=\text{CH}_{\overline{2}} & \text{CH}_{\overline{3}} & \text{CH}_{\overline{3}} & \text{CH}_{\overline{3}} & \text{CH}_{\overline{3}} \\ \text{CH}_{\overline{3}} & \text{CH}_{\overline{3}} & \text{CH}_{\overline{3}} & \text{CH}_{\overline{3}} & \text{CH}_{\overline{3}} \\ \end{array}$$

Ключевой стадией, от которой во многом зависит эффективность всего процесса в целом, является жидкофазное окисление 1,2-диметил-4-ИПБ до mpem- $\Gamma\Pi$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


1,2-Диметил-4-изопропилбензол (1,2-диметил-4-ИПБ) был получен алкилированием о-ксилола по известной методике [9]. Синтезированный продукт имел следующие константы: $T_{\text{кип}}$ 201—203 °C, d_4^{20} 0.8802, n_D^{20} 1.5034. ИК-спектр (КВг), см $^{-1}$: 2961, 2925, 2890, 2870 (v CH₃), 1382, 1362 (Δ –CH(CH₃)₂), 3039, 3006, (=СН аром.), 1505, 1578 (ароматическое кольцо). На замещение 1,2,4 указывают полосы 818 см^{-1} и 879 см^{-1} . ИК-спектрометрический анализ проводили на приборе ИК-Фурье RX-1. Обработку спектров выполнили по программе "Spektrum", предоставленной фирмой PerkinElmer. Спектры записывались в области 4000-400 см в виде микрослоя между стеклами из бромида калия и в кювете с d = 0.0011 см, выполненной из бромида калия. ЯМР ¹H-спектр: 7.02 д (1H, H-6, ${}^{3}J = 7.68$); 6,98 д (1H, H-3, ${}^{4}J$ = 1.33); 6.92 д. д (1H, H-3, ${}^{3}J$ = 7.68, $^{4}J = 1.33$); 2.82–2.75 m (1H, H-4); 2.18 c (3H, 2-CH₃); 2.16 c (3H, 1-CH₃); 1.19—1.13 м (6H, 4'-CH₃, 4"-CH₃) ЯМР 1 H-спектры записаны с использованием ЯМР-спектрометра Bruker DRX 400 (400.4 МГц). Растворитель — смесь ДМСО-d6-CCl₄ внутренний эталон – тетраметилсилан.

Окисление 1,2-диметил-4-ИПБ проводили на установке проточно-замкнутого типа, которая позволяет замерять количество поглощенного в ходе реакции кислорода [9]. Окисление воздухом под давлением осуществляли в аппарате типа "УОСУГ" в реакторе, выполненном из стали 18ХН9Т [10]. Схема установки изображена на рис. 1.

Оксидаты анализировали на содержание ГП 1,2-диметил-4-ИПБ иодометрическим титрованием. Гидропероксид выделяли из продуктов окисления методом экстракции 90%-ным водным раствором метанола. Процесс проводили в двугорлой колбе, снабженной магнитной мешалкой, водяной баней, обратным холодильником и термометром. В колбу загружали 100 мл исходной смеси и 100 мл экстрагента после чего подвергали интенсивному

перемешиванию в течение 20 мин при 20 °С. Затем реакционную массу выдерживали до полного расслаивания. ГП выделяли из экстракта вакуумной ректификацией. Характеристики полученного ГП 1,2-диметил-4-ИПБ: $T_{\rm кип}$ 90–93 °С при 1 мм рт.ст., n_D^{20} 1.5232, d_4^{20} 1.014. ИК-спектр (КВг), см⁻¹: 3349 (v –O–OH), 2963, 2925, 2896, 2872 (v СН₃) 1382, 1362 (Δ СН₃), 1460, 1510, 1600 (ароматическое кольцо), 1220, 1168 (С–O–O).

3,4-Ксиленол получен кислотным разложением трет-ГП 1,2-диметил-4-ИПБ. В трехгорлую колбу, снабженную мешалкой и термометром, загружали 50 мл ГП 1,2-диметил-4-ИПБ, 50 мл ацетона, 0.14 мл концентрированной серной кислоты (массовая доля 95%). Процесс проводили при температуре 45 °C и постоянном перемешивании до полного разложения ГП. Хроматографический анализ продуктов кислотного разложения ГП осуществляли на хроматографе "Хроматек-кристалл 5000.2" с пламенно-ионизационным детектором. Колонка капиллярная СК-5 длиной 30 м и диаметром 0.32 мм (состав фазы: 5% фенил-, 95% диметилполисилоксан). Газ-носитель — азот, расход 2 см³/мин. Программированный подъем температуры от 80 до 200 °C со скоростью 8 °C/мин. Константы синтезированного 3,4-ксиленола: $T_{\text{плав}}$ 64 °C, d_4^{20} 1.023. ИК-спектр (КВг), см⁻¹: 3222,

Рис. 1. Установка для жидкофазного окисления: I – автоклав, 2 – электропечь, 3 – магнитная мешалка, 4 – электромагнит, 5 – холодильник, 6 – реометр, 7 – редуктор, 8 – баллон со сжатым воздухом.

3017 (v O–H), 1509, 1379 (ароматическое кольцо), (Δ CH₃), 1240 (C–O–H). Замещение 1,2,4 подтверждается наличием полос 852 см⁻¹ и 810 см⁻¹. Спектр ЯМР¹H, Δ , м.д.: 8.95 с (1H, OH); 6.88 д (1H, H-5, 3J = 8.02); 6.56 д (1H, H-2, 4J = 2.92); 6.47 д. д (1H, H-6, 3J = 8.02, 4J = 2.92); 2.12 с (3H, 3-CH₃); 2.08 с (3H, 4-CH₃).

Квантово-химические расчеты проводили полуэмпирическим квантово-химическим методом РМ7 (неограниченный метод Хартри—Фока) с использованием программного комплекса МОРАС 2012 [11].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Установлено, что при окислении 1,2-диметил-4-ИПБ в присутствии ГП изопропилбензола (ИПБ) в качестве инициатора, при температуре 130 °С за 1 ч реакции конверсия УВ составляет 12—14%, а селективность образования *температуре* 1,2-диметил-4-ИПБ не превышает 85% [12]. Наряду с *температуре* 1,2-диметил-4-ИПБ, в выбранных условиях, образуются диметилксилилкарбинол, диметилацетофенон, ксилиловая кислота и формальдегид. До последнего времени указанные выше недостатки устранить не удалось, что в значительного" метода синтеза 3,4-ксиленола совместно с ацетоном.

Повысить скорость окисления 1,2-диметил-4-ИПБ в 2—3 раза и селективность образования *тем* прем-ГП 1,2-диметил-4-ИПБ до 90—95% удалось за счет использования N-гидроксифталимида (N-ГФИ), который успешно проявил себя, как катализатор, в процессах окисления ароматических УВ [13—20]. Выбор N-ГФИ в качестве катализатора обусловлен доступностью исходных веществ и простотой его получения.

Изучение влияния температуры на аэробное окисление 1,2-диметил-4-ИПБ в присутствии N-ГФИ проводили в интервале от 110 до 140 °C на установке проточно-замкнутого типа при атмосферном давлении.

Как видно из табл. 1, повышение температуры со 110 до 130 °C приводит к равномерному увеличению скорости окисления. Максимальная конверсия УВ достигается за 1 ч реакции при температуре 130 °C и составляет примерно 29%. Достигнутые при этом показатели скорости окисления и накопления ГП (рис. 2) в полной мере соответствуют аналогичным показателям жидкофазного инициированного окисления ИПБ, а в ряде случаев превосходят их.

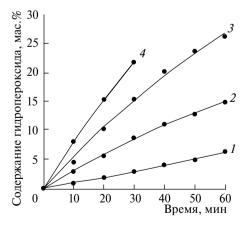

Селективность образования *тил-4-ИПБ* во всех экспериментах была не ниже 92-95%, что в значительной степени превышает

Таблица 1. Влияние температуры на селективность образования *температуры* на селективность образования *температуры* на селективность образования *температуры* и конверсию 1,2-диметил-4-ИПБ при его жидкофазном окислении. Содержание катализатора (N- Γ ФИ) — 1.7 мас.%

Темпера- тура, °С	Время реак- ции, ч	Селективность образования <i>трет</i> ГП 1,2-диметил-4-ИПБ,%	Конверсия 1,2-диме- тил-4-ИПБ,%	
110		97.8	6.4	
120	1	94.9	15.7	
130		91.7	28.6	
140	0.5	93.8	23.2	

этот показатель при использовании инициатора. При окислении 1,2-диметил-4-ИПБ воздухом под давлением 5 атм. при температуре 125—130 °C в течение 1 ч конверсия УВ составила 24.2%, что аналогично показателям окисления этого УВ в стеклянном реакторе кислородом при атмосферном давлении.

Изменение концентрации N-ГФИ от 0.8 до 1.7 мас.% приводит к увеличению скорости окисления УВ (табл. 2) и накопления ГП (рис. 3). Дальнейшее повышение содержания катализатора является нежелательным ввиду его ограниченной растворимости. Известно, что использование полярных растворителей, таких как ацетонитрил, при аэробном окислении ИПБ и циклогексилбензола позволяет увеличить растворимость N-ГФИ и снизить температуру реакции до $40-60\,^{\circ}$ С [21—23]. Однако применение растворителей, по

Рис. 2. Влияние температуры на реакцию жидкофазного окисления 1,2-диметил-4-ИПБ. Содержание катализатора *N*-ГФИ 1.7 мас.%. T, °C: I=110, 2-120, 3-130, 4-140.

нашему мнению, в процессах жидкофазного окисления 1,2-диметил-4-ИПБ и ИПБ нецелесообразно, т.к. приведет к значительному усложнению технологии концентрирования ГП.

Из табл. 3 видно, что при повторном использовании N-ГФИ в процессе жидкофазного окисления 1,2-диметил-4-ИПБ его каталитическая активность не снижается в течение, как минимум, 5 циклов.

Аналогичные результаты по повторному использованию N-ГФИ при окислении ИПБ были получены в работе [21].

Полученные ранее результаты по жидкофазному окислению целого ряда алкилароматических УВ [9, 24—26] в присутствии *N*-ГФИ доказывают возможность использования "окислительного" метода в качестве универсального способа получения не только 3,4-ксиленола, но и других (метил)фенолов.

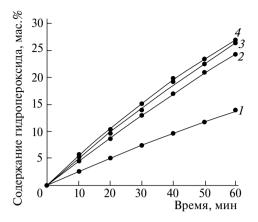

Четырехступенчатой экстракцией 90%-ным водным раствором метанола была получена смесь,

Таблица 2. Влияние концентрации катализатора (N-ГФИ) на селективность образования третичного ГП 1,2-диметил-4-ИПБ и конверсию 1,2-диметил-4-ИПБ при его жидкофазном окислении. Время реакции — 1 ч, температура — 130 °C

Содержание катализатора, мас.%	Селективность образования <i>трет</i> -ГП 1,2-диметил-4-ИПБ, %	Конверсия 1,2-диме- тил-4-ИПБ, %	
0.8	96.1	14.4	
1.1	92.3	26.3	
1.7	91.7	28.6	
2.5	90.9	29.4	
3.3	91.2	29.5	

Таблица 3. Повторное использование катализатора в процессе окисления 1,2-диметил-4-ИПБ. Температура — 120 °C; содержание катализатора N-ГФИ — 2.0 мас.%; время реакции — 1.5 ч

Цикл	Селективность образования ГП 1,2-диметил-4-ИПБ, %	Конверсия 1,2-диме- тил-4-ИПБ, %	
1	96.4	14.9	
2	96.2	14.8	
3	96.4	15.1	
4	96.4	15.1	
5	96.7	14.7	

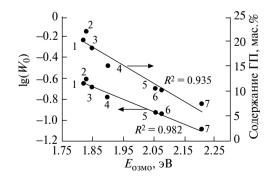
Рис. 3. Влияние концентрации *N*-ГФИ на реакцию жидкофазного окисления 1,2-диметил-4-ИПБ. Концентрация катализатора, мас.% от загрузки: I-0.8; 2-1.1; 3-1.7; 4-3.3. Время реакции — 60 мин, температура — 130 °C.

состоящая из 97.2 мас.% ГП и 2.8% 1,2-диметил-4-ИПБ, которая была подвергнута кислотному разложению в присутствии концентрированной (95 мас.%) серной кислоты в качестве катализатора. Реакцию проводили в течение 1 ч. Соотношение растворитель (ацетон) : ГП : серная кислота составляло 1:1:0.005 по массе. 3,4-Ксиленол и ацетон были выделены из продуктов реакции ректификацией, выход которых составил 90-95% и 80-85% соответственно.

Одним из направлений увеличения эффективности окисления 1,2-диметил-4-ИПБ до *трет* Пможет стать модификация N-ГФИ. Из табл. 4 видно, что наличие в молекуле N-ГФИ электронодонорных заместителей (метильная, фенильная группы) способствует повышению скорости окисления 1,2-диметил-4-ИПБ. В то же время, электроноакцепторные заместители (хлор, бром) приводят к ее снижению.

Для оценки каталитической активности N-ГФИ и его производных использован квантово-химический расчет разницы энергии однократно занятой молекулярной орбитали радикалов субстрата (1,2-диметил-4-ИПБ) и катализаторов — $\Delta E_{\rm озмо}$.

Из табл. 4 видно, что все исследуемые фталимидные соединения будут проявлять каталитические свойства при аэробном окислении 1,2-диметил-4-ИПБ, так как рассчитанные значения $\Delta E_{\rm O3MO}$ находятся в интервале 0 до 4 эВ [27].


В то же время, наибольшей активностью будут обладать соединения с наименьшим значением $\Delta E_{\rm ОЗМО}$. По результатам квантово-химического расчета к таким соединениям можно отнести 4-фенил-N- Γ ФИ, 4-метил-N- Γ ФИ, 3-метил-N- Γ ФИ

№	Катализатор	$\Delta E_{\rm O3MO}$, \ni B	Содержание ГП 1,2-диметил-4-ИПБ, мас.%	Селективность образования <i>трет</i> ГП 1,2-диметил-4-ИПБ, %	Конверсия 1,2-диметил-4-ИПБ, %
1	4-Фенил- <i>N</i> -ГФИ	1.85	18.4	95.9	19.2
2	4-Метил- <i>N</i> -ГФИ	1.83	21.7	94.7	22.9
3	3-Метил- <i>N</i> -ГФИ	1.82	19.9	94.8	20.1
4	<i>N</i> -ГФИ	1.90	14.9	94.9	15.7
5	4-Бром- <i>N</i> -ГФИ	2.06	10.4	96.3	10.8
6	4-Хлор- <i>N</i> -ГФИ	2.08	9.9	96.7	11.4
7	1,2,3,4-Тетрабром- <i>N</i> -ГФИ	2.21	7.2	97.2	7.4

Таблица 4. Корреляция значений $\Delta E_{\text{озмо}}$ с экспериментальными данными по окислению 1,2-диметил-4-ИПБ до ГП. Температура — 120 °C, время реакции — 1 ч, содержание катализатора — 1.7 мас.%

и *N*-ГФИ. Меньшую каталитическую активность проявляют аналоги *N*-ГФИ, содержащие в бензольном кольце электроноакцепторные заместители. Эти результаты хорошо согласуются с экспериментально полученными данными (рис. 4, табл. 4), что подтверждает правомерность предлагаемого метода оценки каталитической активности фталимидных соединений в процессе окисления 1,2-диметил-4-ИПБ.

По-видимому, электронодонорный заместитель в ароматическом ядре N-оксильного радикала (PINO $^{\bullet}$) будет повышать спиновую плотность на атоме кислорода, и поэтому его реакционная способность будет возрастать. В то же время,

Рис. 4. Зависимость начальной скорости окисления 1,2-диметил-4-ИПБ и содержания *трет* Π 1,2-диметил-4-ИПБ от энергии однократно занятой молекулярной орбитали при использовании различных фталимидных катализаторов. 1-7 — номера в табл. 4.

электроноакцепторные заместители снижают спиновую плотность на атоме кислорода, что согласуется с полученными ранее результатами.

Механизм окисления УВ в присутствии N-ГФИ описан в работах [21–23, 28, 29]. Установлено, что при взаимодействии молекулы N-ГФИ с радикалом инициатора или пероксильным радикалом (ROO $^{\bullet}$) окисляющегося вещества образуется PINO $^{\bullet}$, который способен с высокой селективностью отрывать атом водорода от С—Н-связи алкиларенов (RH) с образованием соответствующих алкильных радикалов (R $^{\bullet}$). Образующийся С-центрированный радикал в присутствии кислорода превращается в пероксильный радикал, который в свою очередь взаимодействует с N-ГФИ с образованием PINO $^{\bullet}$ и ГП (ROOH).

Таким образом, экспериментально апробирован высокоселективный метод синтеза третичного гидропероксида 1,2-диметил-4-изопропилбензола жидкофазным окислением 1,2-диметил-4-изопропилбензола в присутствии *N*-гидроксифталимида, составляющий основу единого универсального метода получения метилфенолов совместно с ацетоном, отвечающий современным экологическим и экономическим требованиям.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ. Задание ФГБОУ ВПО "ЯГТУ" № 2014/259 на выполнение государственных работ в сфере научной деятельности в рамках базовой части государственного задания, а также в рамках базовой части государственного задания ФГБОУ ВПО "СамГТУ" (код проекта: 1708).

СПИСОК ЛИТЕРАТУРЫ

- Сборник научных трудов. Кислородсодержащие соединения из нефтяного сырья. М.: ЦНИИТЭнефтехим, 1989. 143 с.
- 2. *Харлампович Г.Д.*, *Чуркин Ю.В.* Фенолы. М: Химия. 1974. 376 с.
- 3. *Кружалов Б.Д., Голованенко Б.И.* Совместное получение фенола и ацетона. М.: Наука. 1963. 200 с.
- 4. *Киреев В.В.* Высокомолекулярные соединения. М.: Высшая школа. 1992. 512 с.
- Marx S., Kleist W., Baiker A. // J. of Catalysis. 2011.
 № 281. P. 76.
- 6. Yuan C., Liang Y., Hernandez T., Berriochoa A., Houk K.N., Siegel D. // Nature. 2013. № 499. P. 192.
- 7. Zhang D., Gan L., Xue W., Zhao X., Wang S., Wang Y. // Chem. Lett. 2012. № 41. P. 369.
- 8. *Kamata K., Yamaura T., Mizuno N.* // Angew. Chem. Int. Ed. 2012. № 51. P. 1.
- 9. Кошель Г.Н., Курганова Е.А., Румянцева Ю.Б., Иванова А.А., Смирнова Е.В., Плахтинский В.В., Кошель С.Г. // Пат. РФ № 2466989 РФ. 2012.
- 10. Эмануэль Н.М., Денисов Е.Т., Майзус З.К. Цепные реакции окисления углеводородов в жидкой фазе. М.: Наука, 1965. 375 с.
- 11. MOPAC2012 [Электронный ресурс]. Режим доступа: http://openmopac.net/MOPAC2012.html
- Курганова Е.А., Фролов А.С., Данилова А.С. // Известия вузов. Химия и хим. технология. 2014. Т. 57. № 10. С. 72.
- 13. *Ishii Y., Sakaguchi S., Iwahama T. //* Adv. Synth. Catal. 2001. T 343. № 5. P. 393.
- 14. *Koshino N., Cai Y., Espenson J.H.* // J. Phys. Chem. A. 2003. № 107. P. 4262.
- 15. Hermans I., Vereecken L., Jacobs P.A., Peeters J. // Chem. Commun. 2004. № 9. P. 1140.

- Ishii Y., Sakaguchi S. // Catalysis Surveys from Japan. 1999. № 3. P. 27.
- 17. *Курганова Е.А., Румянцева Ю.Б., Кошель Г.Н., Иванова А.А., Смирнова Е.В.* // Химическая промышленность сегодня. 2012. № 4. С. 20.
- Recupero F., Punta C. // Chem. Rev. 2007. № 107.
 P. 3800.
- 19. *Sheldon R.A., Arends I.W.C.E.* // J. of Molecular Catalysis A: Chemical. 2006. № 251. P. 200.
- 20. Wei Deng, Yan-ping Wan, Hui Jiang, Wei-Ping Luo, Ze Tan, Qing Jiang, Can-Cheng Guo. // Catal. Lett. 2014. T. 144. № 2. P. 333.
- 21. *Kasperczyk K.*, *Orlińska B.*, *Zawadiak J.* // Cent. Eur. J. Chem. 2014. V. 12. № 11. P. 1176.
- 22. *Orlińska B., Zawadiak J.* // Reac. Kinet. Mech. Cat. 2013. № 110. P. 15.
- 23. *Fukuda O., Sakaguchi S., Ishii Y. //* Adv. Synth. Catal. 2001. V. 343. № 8. P. 809.
- 24. Кошель Г.Н., Смирнова Е.В., Курганова Е.А., Румянцева Ю.Б., Плахтинский В.В., Кошель С.Г. // Катализ в промышленности. 2012. № 1. С. 7.
- Курганова Е.А., Румянцева Ю.Б., Кошель Г.Н., Иванова А.А., Смирнова Е.В. // Химическая промышленность сегодня. 2012. № 4. С. 20.
- 26. Frolov A.S., Kurganova E.A., Koshel' G.N., Nesterova T.N. // European J. of Anal. and Appl. Chem. 2015. № 1. P. 16.
- 27. Мацуи С., Курода Х., Хирокане Н., Макио Х., Такаи Т., Като К., Фудзита Т., Камимура М. // Пат. РФ № 2186767. 2002.
- 28. Опейда И.А., Компанец М.А., Кущ О.В., Ястребова Е.Г. // Нефтехимия. 2009. Т. 49. № 5. С. 409.
- 29. Sapunov V.N., Koshel' G.N., Rumyantseva Yu.B., Kurganova E.A., Kukushkina N.D. // Petrol. Chemistry. 2013. V. 53. № 3. P. 171.