УДК 665.657.27+666.232.6+66.097.63

НАНЕСЕННЫЕ НА МЕЗОПОРИСТЫЙ НОСИТЕЛЬ ТіО₂-Al₂O₃ КАТАЛИЗАТОРЫ ГЛУБОКОГО ОБЕССЕРИВАНИЯ ГАЗОЙЛЯ

© 2018 r. Nasser H. Shalaby^{1,*}, Samia A. Hanafi¹, Salah A. Hassan², Mamdouh S. Elmelawy¹

¹Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt ²Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt *E-mail: chem.shalaby@gmail.com Поступила в редакцию 28.02.2017 г.

Для приготовления мезопористого носителя TiO₂–Al₂O₃ использовали алюминиевою фольгу и крахмал как текстурный модификатор. Соединения активных металлов (Mo, Ni и Co) были нанесены на носитель методом последовательной пропитки по влагоемкости. Чтобы изучить влияние размера пор носителя, был приготовлен катализатор Ni–Mo на TiO₂–Al₂O₃. Спектры TПВ, микрографии ПЭМ и анализ методом БЭТ позволили установить, как промоторы (Ni или Co), TiO₂ и темплат (крахмал) влияют на восстановительную способность соединений Mo, морфологию активной фазы MoS₂ и на размеры пор катализаторов. Катализаторы испытывали в процессе гидроочистки газойля с использованием микрореактора с неподвижным слоем при P = 6 МПа, T = 320-400 °C, объемной скорости подачи сырья (LHSV) 0.5–4 ч⁻¹ и постоянном отношении H₂/сырье = 450. Было установлено, что промотирующий эффект преобладает над текстурным, так что катализатор, промотированный никелем, проявляет более высокую активность, чем Со-содержащая система. При использовании установки с одновременной загрузкой двух каталитических слоев удалось достичь содержания серы в конечном продукте менее 10 ppm.

Ключевые слова: гидрообессеривание, титан-алюминиевая шпинель, промотирующий эффект, двойной каталитический слой.

DOI: 10.7868/S0028242118030048

В последнее время все большее внимания во всем мире уделяется проблеме разработки процессов, направленных на получение чистых топлив. Сера является одним из нежелательных компонентов, входящих в состав газойля, является причиной коррозии агрегатных узлов установок. Выбросы SO_x, образующиеся в результате сгорания топлива в двигателях автомобилей, приводят к загрязнению воздуха, многим заболеваниям как человека, так и животных и растений [1].

Тонкая гидроочистка сырья является наиболее важным процессом для исследований в области катализа, направленного на защиту и сохранение окружающей среды [2]. Эффективность каталитического гидрообессеривания зависит, в основном, от метода приготовления катализатора и природы серосодержащих соединений. Основными серосодержащими соединениями в дизельных топливах являются тиолы, сульфиды, тиофен и его производные, тиофенолы, бензотиофен и дибензотиофен. Эти соединения могут образовываться в ходе крекинга боковых длинноцепочечных алкильных заместителей тиофена и (или) добавки сероводорода к олефинам вследствие циклизации [3]. Хорошо известно, что содержание этих соединений в добываемой нефти зависит от места ее залегания и от условий проведения процесса крекинга [4].

Большинство серосодержащих соединений может быть легко удалено путем гидроочистки сырья с использованием традиционных катализаторов. Алкилзамещенные дибензотиофены, такие как 4-метил- или 4,6-диметилдибензотиофен являются устойчивыми к гидроообессериванию, так как алкильные группы зашишают атом серы и препятствуют ее каталитическому извлечению. В нефтедобывающих регионах в результате длительной разработки нефтяных месторождений исчерпываются запасы "легких" нефтей с малой вязкостью и плотностью. Происходит постепенный переход на добычу высоковязких нефтей с повышенным содержанием асфальтено-смолистых веществ, серо- и азотсодержащих соединений [5]. Главной задачей в области гидрообессеривания газойля является соблюдение новых норм EPA Tier-II по содержанию серы и ароматических углеводородов в товарном продукте, без потери его качества [6]. Это значит, что для данного процесса необходимо разработать катализаторы, которые были бы эффективными при переработке такого сырья, как газойль.

Существует несколько подходов по созданию катализаторов, которые могут быть применены в процессе по гидрообессериванию. Первый – улучшение структурных характеристик систем (пористость, удельная поверхность). Второй – разработка композиционных каталитических систем, активными центрами в которых будут, например, синергически связанные частицы металлов [7]. С другой стороны, достичь оптимальной каталитической активности в процессе можно посредством модификации конструкции реакторов. В частности, можно использовать реакторы с последовательными каталитическими слоями, содержащие катализаторы с различными каталитическими характеристиками.

В настоящей работе представлен способ приготовления носителя полученного из оксидов алюминия (из отходов пищевой промышленности) и титана, а также катализатора на его основе для процесса гидрообессеривания газойля. Целью работы являлось создание мезопористой подложки, причем размер пор должен быть сопоставим с размерами молекул сырья, а также изучение NiMoS и CoMoS, нанесенных на полученный носитель, в процессе гидрообессеривания прямогонного газойля при использовании одного и двух слоев катализатора.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление титан-алюминиевого носителя (15%TiO₂-Al₂O₃). Получение AlCl₃ из отработанной алюминиевой фольги. Отработанную алюминиевую фольгу (использовавшуюся для хранения продуктов питания в ресторанах) собирали и тщательно промывали для удаления засохших на поверхности фольги жиров и других органических остатков. Очищенную фольгу разрезали на мелкие кусочки и растворяли в царской водке. Полученный раствор фильтровали, затем выпаривали под вакуумом с последующим выделением AlCl₃. Выделенную соль растворяли в дистиллированной воде, полученный раствор повторно выпаривали и получали перекристаллизованный AlCl₃·6H₂O.

Двухкомпонентный оксидный носитель получали методом совместного осаждения из водных растворов хлорида титана (Sigma-Aldrich) и хлорида алюминия (полученного по вышеописанной методике). AlCl₃·6H₂O и TiCl₄ растворяли в минимальном количестве дистиллированной воды при 60 °C при постоянном перемешивании до получения прозрачного раствора. Полученный раствор охлаждали до комнатной температуры, к нему при перемешивании добавляли крахмал (Sigma-Aldrich), диспергированный в дистиллированной воде, в молярном отношении C₆H₁₀O₅: (Al + Ti) = 2.5 [8]. К полученной смеси при постоянном перемешивании порциями добавляли NH₄OH (осаждающий агент) до достижения pH \sim 8.5. Для удаления хлоридов и избытка аммиака полученный осадок несколько раз промывали методом декантации. Осадок сушили при 80 °C, при этом он постепенно увеличивался в объеме. Высушенный твердый осадок измельчали и прокаливали 4 ч при 550 °C. Готовая композитная подложка была обозначена как (15% TiO₂-Al₂O₃)_w.

Используя вышеописанную методику, был приготовлен образец носителя того же состава, но без добавления крахмала и с применением коммерчески доступных химически чистых предшественников. Данная композиционная подложка была обозначена как (15% TiO₂-Al₂O₃)_a.

Приготовление катализатора. NiMo и CoMo катализаторы были приготовлены методом последовательной пропитки по влагоемкости. На первом этапе на носитель наносили Мо, используя в качестве его источника $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ (99.8%, Aldrich). Гептамолибдат растворяли в дистиллированной воде при перемешивании и затем добавляли пероксид водорода для увеличения растворимости. Кроме того, в раствор добавляли HNO₃ для регулирования кислотности раствора (pH ~2), чтобы исключить возможность образования осалка соединений молибдена. Затем к раствору, содержащему гомогенно диспергированный предшественник Мо, добавляли $(15\% TiO_2 - Al_2O_3)_w$ с медленным перемешиванием при 60 °С и выдерживали в течение 3 ч. Пропитанный носитель сушили при 120 °С [9]. Далее методом пропитки производили нанесение Ni или Co, используя Ni(NO₃)₂ · 6H₂O (Sigma-Aldrich) или Co(NO₃)₂·6H₂O (Aldrich). Эти соли растворяли в дистиллированной воде, затем носитель (15% TiO₂-Al₂O₃)_w, модифицированный Мо, погружали в получившиеся растворы при перемешивании в течение 2 ч, затем сушили при 120 °С в течение 6 ч и прокаливали при 550 °С 4 ч. Полученные катализаторы, (содержащие 3 мас.% NiO или CoO и 10 мас.% MoO₃) обозначали как NiMo/(15%TiO2-Al2O3), или CoMo/ $(15\% TiO_2 - Al_2O_3)_w$, соответственно. Следуя той же методике, NiO и MoO₃ наносили на поверхность $(15\% TiO_2 - Al_2O_3)_a$.

Методы исследования катализаторов. Определение площади поверхности по БЭТ и анализ размера пор проводили с помощью изотерм адсорбции-десорбции N₂, полученных при минус 196 °C на анализаторе Quantachrome Autosorb-1. Предварительная обработка образцов включала удаление легколетучих соединений при 200 °C в течение 3 ч.

Дифрактограммы регистрировали на приборе Brucker AXS-D8 Advance (Германия), используя пропущенное через Ni-фильтр излучение меди $(\lambda = 1.5405 \text{ Å})$ при 60 кВ и 25 мА со скоростью сканирования $8^{\circ}/20$ мин в диапазоне углов дифракции.

Дифференциальную сканирующую калориметрию (ДСК) и термогравиметрический анализ (ТГА) проводили с использованием прибора SDT-Q600 V20.5 Pouild 15 со скоростью нагрева 5 °С мин⁻¹ при скорости потока азота 100 мл мин⁻¹.

Особенности морфологии и микроструктур в исследуемых образцах были изучены с применением сканирующего электронного микроскопа (СЭМ) модели SEM JEOL 5300 (Япония) и просвечивающего электронного микроскопа (ПЭМ) модели JEOL-2000EX при ускоряющем напряжении в 100 кВ.

Эксперименты по температурно-программированному восстановлению (H_2 -TПВ) катализаторов проводили на приборе Chembet-3000 в диапазоне температур от 24 до 1000 °C, используя смесь 10 мол.% H_2/N_2 (85 мл мин⁻¹) и скоростью нагрева 10 °C мин⁻¹.

Оценка каталитической активности. Исходное сырье было предоставлено Каирским нефтеперерабатывающим заводом. Его физико-химические характеристики представлены в табл. 1.

Каталитические испытания проводили в двух режимах:

1. Однослойная загрузка, когда каждый катализатор исследовался индивидуально.

2. Двуслойная загрузка, то есть загрузка катализаторов CoMo/ $(15\% TiO_2 - Al_2O_3)_w$ и NiMo/ $(15\% TiO_2 - Al_2O_3)_w$ двумя слоями в один реактор с отношением по массе 1:1.

Гидрообессеривание проводили в проточном микрореакторе высокого давления, который был выполнен из нержавеющей стали и имел длину 50 см, внутренний и внешний диаметры 1.9 и 2.7 см, соответственно. Реактор разделен на три зоны; каждая из которых снабжена собственным нагревательным элементом и контроллером температуры. Водород подавали в установку из баллона, жидкое сырье закачивали в верхнюю часть реактора с помощью поршневого насоса.

После загрузки рассчитанного количества катализатора систему сначала опрессовывали азотом в течение 4 ч. Затем катализатор активировали смесью 2 мас.% ДМДС/циклогексан при скорости подачи H₂ 0.5 мл · мин⁻¹ и скорости подачи сырья 0.5 мл · мин⁻¹ (LHSV = $4 \cdot 4^{-1}$), поддерживая температуру 260 °C в течение 3 ч, а затем 360 °C в течение 3 ч.

Условия гидрообессеривания: P = 6.0 МПа, T = 325-400 °C, LHSV = 0.5-4 ч⁻¹, объемное отношение H₂/сырье = 450. Во всех опытах жидкие продукты анализировали в соответствии со стандартной методикой ASTM (табл. 1).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Характеристика катализатора. Текстурный анализ. Характеристики поверхности, рассчитанные методом БЭТ для смешанных оксидных носителей, таких как $(15\%\text{TiO}_2-\text{Al}_2\text{O}_3)_w$ или $(15\%\text{TiO}_2-\text{-Al}_2\text{O}_3)_a$, а также для NiMo или CoMo катализаторов представлены в табл. 2. Из таблицы видно, что текстурная модификация смешанного оксидного носителя крахмалом может привести к заметному увеличению площади поверхности ($S_{\text{БЭТ}}$) носителя и изменению объема пор (V_{Π}) и их среднего диаметра (D_{Π}).

Оптимальная температура прокаливания, применяемая в этом исследовании, составляла 550 °С, так как более низкие температуры прокалки могут привести к неполному сжиганию крахмала, увеличивая тем самым остаток углерода и уменьшая площадь поверхности носителя и размеры пор. Повышение температуры прокаливания может привести к полному сжиганию крахмала и, как следствие, к уменьшению остаточного углерода. Тем не менее, это также связано с уменьшением удельной площади поверхности и размеров пор, по-видимому, за счет спекания [10]. Степень адсорбции N_2 уменьшается вследствие нанесения NiMo или CoMo на оксидные носители, приводящего к уменьшению площади

Параметр	Значение	Метод				
Удельная плотность, 60/60 °F Коэффициент преломления, 20 °C	0.8340 1.46417	ASTM D289-65 ASTM D1218-92				
Групповой состав,%:		Силикогелевая колонка				
Σ насыщенные УВ	74					
Σ ароматические УВ	26					
содержание S, мас.%	0.76	АSTM D294-90 (РФСА)				

Таблица 1. Физико-химические характеристики газойля

Таблица 2. Характеристики поверхности исследуемых образцов

$S_{\rm БЭТ}{\rm m}^2{\rm g}^{-1}$	V_{Π} мл г ⁻¹	<i>D</i> _п нм	Образец
272	0.56	8.42	$(15\% TiO_2 - Al_2O_3)_w$
218	0.35	6.32	$(15\% \text{TiO}_2 - \text{Al}_2 \text{O}_3)_a$
236	0.42	7.33	$NiMo/(15\%TiO_2-Al_2O_3)_w$
243	0.39	7.41	$CoMo/(15\%TiO_2-Al_2O_3)_w$
188	0.26	6.11	$NiMo/(15\%TiO_2-Al_2O_3)_a$

поверхности, но с меньшим влиянием на размеры пор. Данный факт может быть связан с включением в пористую структуру носителя наночастиц NiMo или CoMo, что, в свою очередь, может затруднять последующую адсорбцию N₂.

Исследования методом РФА. На рис. 1 представлены дифрактограммы носителя $(15\% TiO_2 - Al_2O_3)_w$, NiMoS- и CoMoS-содержащих катализаторов. Из анализа дифрактограммы образца носителя $(15\% TiO_2 - Al_2O_3)_w$ следует, что в его структуре наблюдается фаза γ -Al₂O₃ (карточка JCPDS № 77, в-396) [11]. Типичных пиков для фазы TiO₂ (анатаз) (JCPDS карты № 04-0477) [11] не обнаружено, что можно объяснить высокой степенью дисперсности наночастиц Ti в структуре алюминиевой матрицы, а также возможным перекрыванием пиков Ti и Al.

Что касается сульфидных фаз NiMo и CoMo, то, несмотря на их значительное содержание в структуре катализатора, характеристические пики для данных фаз обнаружены не были в соответствии с (PDF-IDD) [11]. Это может указывать на существование металлических наночастиц. Также весьма вероятно, что их более сильное взаимодействие с Ті может проявляться за счет фазы Al_2O_3 , то есть с образованием аморфной фазы, содержащей Ni, Mo, O и S [12].

Термический анализ. На рис. 2 представлены результаты, полученные методами ТГА и ДСК, высушенного титан-алюминиевого предшественника (приготовленного без текстурного темплата) в диапазоне 35–1000 °С. Как видно из рис. 2, уменьшение веса изучаемого образца происходило ниже 550 °С. Первую потерю веса (16%) наблюдали ниже 200 °С. Также проявлялся эндотермический пик с максимумом при 100 °С, который соответствует первой потере массы. Этот процесс, по-видимому, связан с удалением физически адсорбированной воды из образца.

Вторую потерю веса (40%) наблюдали в диапазоне 200—550 °С. При 280 °С проявлялся максимум эндотермического пика, что связно с потерей химически связанной воды, а также с полным разложением гидроксидов металлов в структуре прекурсора, которые не полностью окислились до оксидов при прокаливании образца перед анализом [13]. Также для изучаемого образца характерно наличие трех экзотермических пиков при 430, 500 и 794 °C, которые, по всей видимости, соответствуют процессам кристаллизации фазы анатаза [14], γ -Al₂O₃ и к-Al₂O₃. Пик, относящийся к фазе к-Al₂O₃, совпадает с пиком от TiO₂ (рутил) [15]. В целом, полученные термические характеристики позволяют прогнозировать прокаливание носителей при 550 °C.

Морфология образцов. При помощи СЭМ получены микрографии носителя $(15\% TiO_2 - Al_2O_3)_w$, прошедшего прокалку (рис. 3а). Из полученных данных следует, что γ -Al₂O₃ представляет собой однородную микроструктуру [16]. Было установлено, что добавление титана в матрицу из оксида алюминия приводит к развитию мезопористой структуры в полученной системе оксидов.

На рис. Зб и Зв показаны катализаторы (NiMo/ $(15\% TiO_2 - Al_2O_3)_w$ и CoMo/ $(15\% TiO_2 - Al_2O_3)_w$) в сульфидной форме. Полученные микрографии свидетельствуют о наличии типичной фазы MoS₂

Рис. 1. Рентгенограммы изучаемых образцов.

Рис. 2. Кривые ТГА и ДСК (15%TiO₂-Al₂O₃)_{*a*}.

Рис. 3. Микрографии образцов: $a - (15\% TiO_2 - Al_2O_3)_w$; $6 - NiMo/(15\% TiO_2 - Al_2O_3)_w$; $B - CoMo/(15\% TiO_2 - Al_2O_3)_w$.

с гексагональной кристаллической решеткой. MoS_2 кластеры, которые связаны с активными металлами по краям структур, перпендикулярны к носителю, и, вероятно, обладают более слабым *Me*-носитель взаимодействием, по сравнению с MoS_2 кластерами, у которых активные металлы включены в базовый слой. Для NiMoS фазы (рис. 36) характерно образование однослойных кластеров MoS_2 (NiMo-S Tип I) и небольшого количества MoS_2 многослойных кластеров (NiMo-S Тип II) [17].

Образец, очевидно, содержит наночастицы MoS_2 со средним размером ~10 нм (от 9 до 13 нм). В общем, в структуре сульфидированого катализатора $NiMo/(15\%TiO_2-Al_2O_3)_w$ катализатора наблюдается наличие MoS_2 -подобных структур, состоящих из небольших упорядоченных фрагментов, наклонных и, по всей видимости, находящихся во взаимодействии с поверхностью носителя. Алюминий представлен в образце в виде малых по размеру частиц, размер которых обусловлен введением диоксида титана (15 мас.%) в структуру носителя. Полученная мезопористая структура, по-видимому, усиливает проникновение молекул исходного сырья, что приводит к протеканию реакции внутри пористой системы носителя.

В случае сульфидированного CoMo/(15%TiO₂— -Al₂O₃)_w катализатора (рис. 3в) в его структуре наблюдается наличие параллельных и перпендикулярных нанотрубок, характеризующихся неравномерным распределением. Некоторые углеродные наноструктуры представлены в виде полых, многостенных нанотрубок [18]. Кроме того, на данных нанотрубчатых структурах, входящих в состав (15%TiO₂—Al₂O₃)_w, расположены отдельные сферические наночастицы CoMoS со средним размером ~2 нм. Активная фаза, по-видимому, существует в виде однослойных структур.

Температурно-программированное восстановление (H₂-TПВ). Для изучения процессов взаимодействия в синтезированных каталитических системах было

проведено исследование H_2 -ТПВ для оксидов MoNi и MoCo, нанесенных на носители 15%TiO₂(-Al₂O₃)_w и (15%TiO₂-Al₂O₃)_a (рис. 4). Для сравнения были изучены индивидуальные оксиды, нанесенные Mo, Co и Ni на изучаемые носители. Что касается образца (Ni/(15%TiO₂-Al₂O₃)_w, то можно предположить, что все три пика относятся к структурам, где никель находится в состоянии Ni²⁺ с различным окружением. Пик при 621 °C относится к протеканию процесса восстановления массивной структуры NiO [19], а пики при 723 и 888 °C характеризуют процесс образования Ni-соединений, которые находятся в сильном взаимодействии с носителем и располагаются в пористой системе.

При анализе данных с использованием Со-содержащего катализатора установлено, что взаимодействия металла с носителем могут приводить к значительному увеличению температуры восстановления фазы оксида кобальта (до 578, 818 и 1014 °C). В работе [21] было показано, что восстановление Co₃O₄ до Co происходит в два этапа: Co₃O₄ \rightarrow CoO \rightarrow Co (ГП) и Co (ГЦК) при температурах от 200 до 400 °C и от 220 до 330 °C

Рис. 4. Результаты, полученные методом ТПВ исследуемых образцов.

для индивидуальных оксидных образцов и нанесенных на носитель, соответственно. Также можно отметить, что восстановленные частицы Со, по всей видимости, могут встраиваться в поры носителя.

С другой стороны, для Мо-содержащего образца характерно наличие двух основных пиков и плеча. Низкотемпературный пик (около 642 °C) относится к частичному восстановлению ($Mo^{6+} \rightarrow Mo^{4+}$) аморфных реакционноспособных, многослойных оксидов Мо или частиц Мо с октаэдрическиой структурой кристаллической решетки [22]. Высокотемпературные пики (958–1020 °C) могут характеризовать протекание процесса глубокого восстановления частиц Мо, включая высокодисперсные частицы Мо с тетраэдрической структурой. Наличие плеча свидетельствует о наличии промежуточно-восстанавливаемой кристаллической фазы орторомбического MoO₃ [20].

Сравнение спектров ТПВ для Ni- или Со-содержащих систем, нанесенных на Мо/(15% TiO₂--Al₂O₃)_w (рис. 4а и 4б) позволило установить, что Ni эффективнее способствует увеличению восстановительной способности частиц Мо (особенно первого пика реакционноспособного Мо с октаэдрической структурой кристаллической решетки), чем Со. В случае Ni-содержащей системы восстановление оксидных структур начинается примерно при 489 °C, а Со-содержащей системы – при 578 °С. Это наблюдение может объяснить тот факт, что Ni проявляет большую активность во многих процессах гидрообессеривания, чем Со. Изменение в восстановительной способности Mo-Ni и Mo-Co может быть связано с разницей в виде поверхностных взаимодействий. Можно предположить, что фазы Ni-Mo-O или Co-Mo-O, образованные посредством такого взаимодействия, являются предшественниками фаз Ni-Mo-S или Co-Mo-S, которые являются активными центрами протекания реакции удаления серосодержащих соединений из субстратов [23].

Каталитическая активность. Оценку каталитической активности в процессе гидрообессеривания газойля при использовании NiMo и CoMo катализаторов проводили путем наблюдения за изменением концентрации серы.

Эффективность процесса гидрообессеривания можно представить следующим математическим выражением:

$$HDS = \frac{S_{\text{исх.}} - S_{\text{конеч.}}}{S_{\text{исх.}}} \times 100\%,$$

где S_{исх.} и S_{конеч.} – содержание серы в сырье и конечных продуктах, соответственно [24]. Результаты по изучению влияния различных параметров

НЕФТЕХИМИЯ том 58 № 3 2018

процесса (температура и LHSV) на каталитическую активность представлены далее по тесту.

Однослойный проиесс. Влияние температуры реакции. Температура реакции играет важную роль в процессе гидрообессеривания. Как следует из данных, приведенных в табл. 3, эффективность процесса гидрообессеривания возрастает с ростом температуры реакции, и ее значение близко к 100% при 400 °C и LHSV $0.5 \, \text{ч}^{-1}$. Высокая температура способствует образованию вакансий на краях кристаллов MoS₂, которыми являются координационно ненасыщенные активные центры молибдена [25]. Наибольшую эффективность катализатора NiMo/(15%TiO₂- $-Al_2O_3)_w$ по сравнению с другими катализаторами, по-видимому, можно объяснить тем, что Ni эффективнее повышает восстановительную способность частиц Мо, чем Со. Следует отметить, что промотирующий эффект Ni-содержащих катализаторов более выраженный, чем у Со-содержащих систем, за счет более интенсивного образования сульфидных вакансий. вследствие чего возрастает число активных центров [26]. Наибольшая эффективность Ni-содержащего катализатора с использованием текстурного темплата также может быть связана с его текстурными характеристиками, ввиду того что размеры пор сопоставимы с размерами молекул ароматических соединений, входящих в состав газойля. Необходимо также отметить, что основной вклад в эффективность данных каталитических систем вносят каталитические активные центы, а не текстурные характеристики носителя (табл. 2, 3).

Влияние LHSV. Как видно из табл. 3, эффективность процесса гидрообессеривания зависит от значения LHSV, которое по ходу экспериментов варьировали от 0.5 до 4 ч⁻¹, при работе в рабочем интервале температур 320–400 °С и при постоянных значениях P = 6.0 МПа и объемном отношении H₂/сырье = 450. Конверсия серосодержащих соединений снижается по мере увеличения значения LHSV.

Показатель LHSV отражает время, которое необходимо реагенту для достижения активных центров катализатора. По мере увеличения LHSV время контакта субстрата с катализатором уменьшается и, как следствие, уменьшается конверсия. В то же время, время контакта увеличивается с уменьшением значения LHSV. Оптимальным значением LHSV является 0.5 ч^{-1} , при котором степень очистки от серы превышает 99% во всем интервале рабочих температур (табл. 3). При LHSV = 0.5 ч⁻¹ катализатор NiMo/(15%TiO₂--Al₂O₃)_w демонстрирует наиболее высокую каталитическую активность в гидрообессеривании, проводимом с использованием одного слоя катализатора (концентрация серы снижается с 55 до 16 ррт) (табл. 3) и при повышении температуры от 320 до 400 °C. Наименьшую каталитическую ак-

_	Температура, °С														
rop	320				360					400					
13 a'	LHSV, ч ⁻¹				LHSV, ч ⁻¹				LHSV, ч ⁻¹						
гали	0.5	1	2	4	Эффек-	0.5	1	2	4	Эффек-	0.5	1	2	4	Эффек-
Kaı	Содержание серы			тивность*, %	Содержание серы			тивность*, %	Содержание сер			еры	тивность*, %		
	В П]	в продукте (ppm)			в продукте (ррт)				в продукте (ррт)						
(a)	55	132	212	341	99.3	29	60	124	206		16	28	41	58	99.8
(b)	67	146	240	370	99.1	33	75	139	228		26	38	46	77	99.65
(c)	253	415	551	812	96.7	142	233	380	563		64	111	208	293	99.15
(d)	_	_	_	_	_	_	_	_	_	_	6	_	-	_	99.92

Таблица 3. Результаты по изучению каталитической активности исследуемых систем (P = 6 МПа, $H_2/сырьe = 450$)

*Эффективность(%) рассчитана при LHSV = 0.5 ч^{-1}

(a) NiMo/ $(TiO_{2(15\%)} - Al_2O_3)_w$

(b) NiMo/(TiO_{2(15%)}-Al₂O₃)_a

(c) CoMo/ $(TiO_{2(15\%)} - Al_2O_3)_w$

(d) CoMo/(TiO_{2(15%)}-Al₂O₃)^w // NiMo/(TiO_{2(15%)}-Al₂O₃)_w (реактор с двухслойной загрузкой катализаторов)

тивность проявила система CoMo/ $(15\% TiO_2 - Al_2O_3)_w$, при использовании которой концентрация серы снижалась с 281 до 75 ppm при аналогичных условиях эксперимента. Данный факт можно объяснить тем, что наличие частиц Со, по-видимому, усиливает взаимодействие частиц Мо с носителем, что влияет на их восстановительную способность и на эффективность процесса в целом.

Суммируя все полученные результаты по опытам с применением однослойной загрузки катализатора в реактор, можно сделать вывод, что концентрация серы в продуктах превышает 10 ppm (выше допустимого предела по содержанию серы в субстрате) и является неприемлемой. С целью увеличения степени очистки сырья от серосодержащих соединений в следующей части работы рассмотрен способ гидробессеривания с применением двуслойной загрузки катализаторов.

Двуслойная загрузка катализаторов. Основная задача этой части исследования заключается в том, чтобы уменьшить содержание серы в газойле менее чем до 10 ррт (допустимый предел по содержанию серы в сырье). Традиционно для этих целей используются современные установки по производству дизельного топлива со сверхнизким содержанием серы, которые позволяют проводить исследования с использованием каскадов реакторов или с использованием реактора с многослойной загрузкой катализатора [27]. Первый реактор (в случае использования каскадов реакторов) с загруженным катализатором или первый слой катализатора (в случае использования реактора с многослойной загрузкой катализатора) предназначены для эффективного удаления химически активной серы путем прямого обессеривания,

а также для максимально возможного удаления сернистых соединений, трудно поддающихся переработке путем гидрогенизации при использовании Co–Mo- или Ni–Mo-систем [28]. При использовании такого аппаратурного оформления необходимо принимать во внимание, что следует подбирать подходящие катализаторы, а также условия реакции. Также должно учитываться влияние H_2S , образующегося в ходе процесса гидрообессеривания сырья. Ni–Mo-системы более распространены в процессах по гидрообессеринию, хотя он и менее подходит для ингибирования процесса конверсии газойля на этапе гидрообессеривания, чем Co–Mo-системы [29].

В данном исследовании использовали реактор с двумя слоями катализатора: верхний слой – катализатор (Co-Mo/(15%TiO₂-Al₂O₃)_w), а нижний слой $-Ni-Mo/(15\%TiO_2-Al_2O_3)$. Катализаторы загружали в массовом отношении 1:1. Как видно из табл. 3, такая компоновка каталитических слоев позволяет повысить эффективность процесса гидрообессеривания газойля, достичь желаемого уровня серы <10 ррт в конечном продукте. При проведении экспериментов с использованием одновременной загрузки двух слоев катализаторов СоМо/NiMo удалось достичь наиболее высокой каталитической активности по сравнению с опытами при использовании однослойной загрузки катализатора (NiMo/(15%TiO₂-Al₂O₃)_w). Для достижения наименьших концентраций серы в продуктах также необходимыми условиями процесса являются высокие температуры или низкие значения LHSV. При соблюдении всех вышеописанных параметров возможно получить продукт, соответствующий требованиям спецификации Euro IV по сере в сверхчистых дизельных топливах [30].

289

С точки зрения катализа (учитывая экономические и экологические аспекты), данная работа описывает простой и быстрый метод приготовления композиционного мезопористого катализатора из отработанного алюминия, модифицированного 15 мас.% TiO₂ с использованием крахмала, натурального и дешевого текстурного темплата. Представлены сравнительные результаты по изучению носителя, приготовленного без применения текстурного темплата. Катализаторы представляли собой молибден с промоторами (Ni или Co), нанесенные на специально приготовленный носитель. При изучении прокаленного носителя TiO₂-Al₂O₃, приготовленного с использованием текстурного темплата, было установлено, что γ -Al₂O₃ в образце представлен в виде однородной микроструктурированной фазы, введение титана в матрицу из оксида алюминия приводит к развитию мезопористости в структуре носителя. Присутствие частиц Ni или Co, а также крахмала, по всей видимости, увеличивает восстановительную способность частиц Мо, изменяют морфологию активной фазы MoS₂ и приводит к увеличению размера пор катализаторов. Методом ТПВ установлено, что Ni обладает более высоким промотирующим эффектом по сравнению с Со. Полученные микрографии катализаторов (активированных) показали, что катализатор NiMoS/(15%TiO₂-Al₂O₃)_w состоит из MoS₂-подобной структуры, содержащей небольшие упорядоченные фрагменты, наклонные и, скорее всего, взаимодействующие с носителем. Фаза оксида алюминия представлена в структуре в виде отдельных, малых по размеру частиц, чей размер обусловлен введением Ті в структуру носителя. Для фазы CoMoS характерны несколько параллельных и перпендикулярных черных нанотрубок с неравномерным распределением в виде полых многослойных структур.

Изучение процесса гидрообессеивания газойля на разработанных катализаторах проводили в микрореакторе, в стационарном слое катализатора. Было установлено, что каталитическая активность и изменение физико-химических характеристик используемых катализаторов согласуются между собой. Основной вклад в эффективность каталитических систем вносят каталитические активные центы, а не текстурные характеристики носителя. Было установлено, что природа предшественников, используемых для приготовления носителя, не влияет на активность катализаторов.

СПИСОК ЛИТЕРАТУРЫ

- Gao D., Duan A., Zhang X., Zhao Z., Hong E., Li J., Wang H. // Appl. Catal. B. Environ. 2015. V. 165. P. 269.
- Ali S.A., Ahmed S., Ahmed K.W., Al-Saleh M.A. // Fuel Process. Technol. 2012. V. 98. P. 39.
- НЕФТЕХИМИЯ том 58 № 3 2018

- Marafi A., Al-Hindi A., Stanislaus A. // Fuel Process. Technol. 2007. V. 88. P. 905.
- 4. Landau M.V. // Catal. Today. 1997. V. 36. P. 393.
- Murti S.D.S., Yang H., Choi K.H., Korai Y., Mochida I. // Appl. Catal. A. 2003. V. 252. P. 331.
- Sano Y., Choi K.H., Korai Y., Mochida I. // Appl. Catal. B. Environ. 2004. V. 53. P. 169.
- Lecrenay E., Sakanishi K., Mochida I. // Catal. Today. 1997. V. 39. P. 13.
- Lai W., Song W., Pang L., Wu Z., Zheng N., Li J., Zheng J., Yi X., Fang W. // J. Catal. 2013. V. 303. P. 80.
- Rocha A.S., Faro. A.C. Jr., L. Oliviero, Gestel J.V., Maugé F. // J. Catal. 2007. V. 252. P. 321.
- Al-Fatesh A.S.A., Fakeeha A.H. // J. Saudi Chem. Soc. 2012. V. 16. P. 55.
- 11. JCPDS Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, (1989).
- 12. Leyva C., Ancheyta J., Rana M.S., Marroquín G. // Fuel. 2007. V. 86. P. 1232.
- Tichit D., Lhouty M.H., Guida A., Chiche B.H., Figueras F., Auroux A., Bartalini D., Garrone E. // J. Catal. 1995. V. 151. P. 50.
- Tanaka Y., Suganuma M. // J. Sol-Gel Sci. Tech. 2001. V. 22. P. 83.
- Eliassi A., Ranjbar M. // Int. J. Nanosci. Nanotechnol. 2014. V. 10. № 1. P. 13.
- Hensen E.J.M, Kooyman P.J., van der Meer Y., van der Kraan A.M, de Beer V.H.J., van Veen J.A.R., van Santen R.A. // J. Catal. 2001. V. 199. P. 224.
- 17. *Li G., Li W., Zhang M., Tao K. //* J. Appl. Catal. A. 2004. V. 273. P. 233.
- Chung C.C., Chung T.W., Yang T.C.-K. // Ind. Eng. Chem. Res. 2008. V. 47. P. 2301.
- Hernández-Huesca R., Mérida-Robles J., Maireles-Torres P., Rodríguez-Castellón E., Jiménez-López A. // J. Catal. 2001. V. 203. P. 122.
- Klimova T., Peña L., Lizama L., Salcedo C., Gutiérrez O.Y. // Eng. Chem. Res. 2009. V. 48. P. 1126.
- 21. James O.O., Maity S. // J. Pet. Technol. Altern. Fuels. 2016. V. 7. № 1. P. 1.
- Marzari J.A., Rajagopal S., Miranda R. // J. Catal. 1995. V. 156. P. 255.
- 23. *Maity S.K., Ancheyta J., Soberanis L., Alonso F. //* Appl. Catal. A. 2003. V. 250. P. 231.
- 24. Mochizuki T., Itou H., Toba M., Miki Y., Yoshimura Y. // Energy Fuels. 2008. V. 22. P. 1456.
- Sun M., Adjaye J., Nelson A.E. // Appl. Catal. A. 2004. V. 263. P. 131.
- González-Cortés S.L., Rodulfo-Baechler S.M.A., Xiao T., Green M.L.H. // Catal. Lett. 2006. V. 111. № 1–2. P. 57.
- 27. Duker A. // Hydroc. Proc. 2008. V. 87. № 2. P. 59.
- 28. Choi K.-H., Kunisada N., Korai Y., Mochida I., Nakano K. // Catal. Today. 2003. V. 86. P. 277.
- Bataille F., Lemberton J.-L., Michaud P., Pérot G., Vrinat M., Lemaire M., Schulz E., Breysse M., Kasztelan S. // J. Catal. 2000. V. 191. P. 409.
- 30. Ho T.C. // Catal. Today. 2004. V. 98. P. 3.