УДК 665.652.72:54-44:66.012.57

ИНТЕНСИФИКАЦИЯ ПРОЦЕССА ПОЛУЧЕНИЯ ДЛИННОЦЕПОЧЕЧНЫХ УГЛЕВОДОРОДОВ ПО МЕТОДУ ФИШЕРА– ТРОПША НА КОБАЛЬТАЛЮМОСИЛИКАГЕЛЕВОМ КАТАЛИЗАТОРЕ

© 2018 г. А. П. Савостьянов¹, Г. Б. Нарочный¹, Р. Е. Яковенко^{1,*}, С. А. Митченко^{1,2}, И. Н. Зубков¹

¹Южно-Российский государственный политехнический университет (НПИ) им. М.И. Платова, Новочеркасск Ростовской обл., Россия

²Институт физико-органической химии и углехимии им. Л.М. Литвиненко, Донецк, Украина

*E-mail: jakovenko@lenta.ru

Поступила в редакцию 29.04.2017 г.

Исследовано влияние соотношения H₂/CO, давления, температуры, кратности циркуляции реакционного газа на нанесенном промышленном кобальт—силикагелевом катализаторе по отношению к селективности образования углеводородов (УВ), в том числе длинноцепочечных C₃₅₊ в процессе синтеза Фишера—Тропша (ФТ). Изменение параметров варьировалось в диапазоне: давление 2.0 и 6.0 МПа; соотношение H₂/CO 1–5; кратность циркуляции 2–6; температура 150–240 °C; объемная скорость газа (ОСГ) 1000 ч⁻¹. Показано, что рециркуляция газа обеспечивает термическую стабильность в каталитическом слое, существенно повышает выход C₃₅₊, позволяет управлять групповым и фракционным составом синтезируемых продуктов.

Ключевые слова: синтез Фишера–Тропша, кобальт–силикагелевый катализатор, длинноцепочечные углеводороды С₃₅₊, режим циркуляции.

DOI: 10.7868/S0028242118010112

Синтетические длинноцепочечные УВ С₃₅₊ (церезин) представляют собой воскообразные вещества, которые являются ценным сырьем для нефтехимии. Гидропереработка церезина позволяет получать высококачественные топлива (бензиновое, авиационное, дизельное), а также смазочные материалы [1, 2]. Например, производимые на заводе Pearl синтетические моторные масла Shell Helix Ultra получают из длинноцепочечных УВ С₃₅₊ [3]. Кроме того, высококачественные воски используются и без дополнительной переработки в оборонной и пищевой промышленности, медицине и косметологии [4-6]. Особым спросом пользуется продукт марки "Церезин 100", с температурой каплепадения 100 °С и выше [7]. Получают его из синтез-газа (CO и H_2) по методу ΦT , что выгодно отличает этот продукт от природного церезина, извлекаемого из нефтяного сырья: он более высокоплавкий, преимущественно состоит из линейных алканов нормального строения, содержит меньше примесей.

Синтетический церезин в РФ относится к дефицитным продуктам: ранее его производство осуществлялось на Новочеркасском заводе синтетических продуктов (НЗСП) и на сегодняшний день оно утрачено. В настоящее время планируется возобновить выпуск этого продукта в г. Дзержинске Нижегородской области [8]. Для данного производства был разработан нанесенный кобальт—силикагелевый катализатор с производительностью по церезину, превышающей в 2 раза аналогичный показатель для промышленного осажденного кобальт—магний—циркониевого катализатора, применявшегося на НЗСП [9].

Количество вырабатываемого "Церезина 100" в синтезе ФТ зависит от производительности и селективности процесса по тяжелым высокомолекулярным УВ. Кроме них, в указанном процессе образуются и более легкие УВ (C_1-C_{34}), что обусловливает дополнительные затраты на технологические стадии по переработке, утилизации этих продуктов и снижает рентабельность производства церезина. Поэтому важно подобрать не только высокопроизводительный катализатор, но и условия, при которых протекает интенсивный синтез УВ с высокой селективностью по церезину (C_{35+}).

В промышленном синтезе церезина по методу ФТ стремятся к высоким значениям вероятности роста цепи ($\alpha > 0.9$) для повышения селективности по УВ C_{35+} . Величина α определяется из уравнения молекулярно-массового распределения (ММР) Андерсона-Шульца-Флори [10] и зависит не только от свойств катализатора, но и условий синтеза.

На выход и селективность тяжелых УВ в синтезе ФТ оказывают влияние давление, температура, объемная скорость подачи газа, соотношение H_2/CO и некоторые другие технологические параметры процесса [11, 12]. Производительность и конверсию СО в процессе ФТ можно регулировать за счет изменения температуры, циркуляции газа, нагрузки на катализатор. Комплексное изучение влияния всех указанных технологических факторов на получение длинноцепочечных УВ C_{35+} представляет не только практический, но и научный интерес.

Несмотря на то, что процесс ФТ изучают в течение многих десятилетий, механизм образования УВ остается очень сложным и до конца неясным. Эта сложность, как полагают [13], обусловлена сочетанием множества факторов и процессов, таких как разная степень адсорбции реагентов, тепло- и массообмен в ходе реакции, накопление продуктов внутри пор катализатора и установление равновесного состояния пар-жилкость и т.д. Кинетика широкого спектра параллельных и последовательных реакций, свойственных синтезу ФТ, а также кинетика вторичных превращений первичных продуктов синтеза (например, гидрогенолиз олефинов или парафинов [14], реакция водяного газа) по отдельности достаточно просты, однако их взаимовлияние сильно усложняет анализ зависимости селективности синтеза ФТ от технологических параметров.

Проведенные ранее [15] исследования по получению высокомолекулярных УВ на выбранной каталитической системе в интервале давлений 0.1-2.0 МПа, температур 160-220 °С и объемных скоростей газа 60-300 ч⁻¹ показали, что увеличение давления способствует росту селективности и производительности по УВ С₃₅₊, а повышение температуры снижает эти показатели. Наибольшая производительность по церезину в исследованном диапазоне параметров для нанесенного кобальталюмосиликагелевого катализатора была достигнута при условиях $H_2/CO = 2$, P = 2.0 МПа, ОСГ 300 ч⁻¹и составила 3.6 кг/($M_{\text{кат}}^3$ ч). Однако остались невыясненными вопросы воздействия состава синтез-газа, кратности циркуляции газа, высокого давления и объемной скорости газа, а также взаимного влияния этих технологических факторов на процесс синтеза церезина.

Настоящая работа посвящена изучению влияния различных условий синтеза длинноцепочечных УВ С₃₅₊ на промышленном нанесенном кобальт—силикагелевом катализаторе с целью определения режимных факторов, интенсифицирующих процесс их получения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Выбор катализатора. Для исследований был выбран промышленный катализатор Co-Al₂O₂/SiO₂ селективного синтеза длинноцепочечных УВ по методу Фишера-Тропша, который был произведен на ЗАО "Самарский завод катализаторов" и используется на ФКП "Завод им. Я.М. Свердлова" [16]. Катализатор получен методом совместной пропитки силикагелевого носителя растворами солей нитратов Со и Al, с последующей его термообработкой в интервале температур 80-400 °С. Содержит 20 мас. % Со, 1 мас. % промотирующей добавки оксида Al [17]. В качестве носителя используется силикагель марки КСКГ (ГОСТ 3956-76, ООО "Салаватский катализаторный завод", Россия). Методика его получения и технология отработаны в промышленных условиях на оборудовании катализаторной фабрики и подробно описаны в работах [16, 17].

Методика каталитических испытаний. Каталитические исследования были выполнены на лабораторной проточно-циркуляционной установке (рис. 1), позволяющей: создавать давление в реакционной зоне до 10.0 МПа; реализовывать с помощью электромагнитного насоса 19 циркуляцию реакционного газа с различной кратностью, предварительно отделив продукты синтеза; моделировать различные составы синтез-газа.

Испытания осуществляли в реакторе 10 в изотермическом режиме, достигаемом за счет разбавления катализатора кварцевой крошкой в объемном соотношении 1 : 2 и отводом реакционного тепла кипящей жидкостью (водой). Реактор 10 (рис. 16) представляет собой нержавеющую стальную трубу 9 с внутренним диаметром 16 мм, оснащенную водяной рубашкой. По оси трубы размещен термопарный карман для измерения температуры по высоте каталитического слоя. Температуру кипения воды в рубашке 9 регулировали с помощью электропечи 13, регулятора "Термодат" 12 и редукционного клапана давления водяного пара 16. Загружали катализатор объемом 15 см³ и фракцией 2–3 мм.

Исследования проводили при давлениях 2.0 и 6.0 МПа, объемной скорости газа (ОСГ) 1000 ч⁻¹ в интервалах изменения объемного соотношения H_2/CO 1–5, кратностей циркуляции (K_{II}) 2.2–6 и температур 150–240 °С. Перед началом испытаний катализатор восстанавливали в токе водорода (400 °С, ОСГ 1000 ч⁻¹) до степени восстановления кобальта 50–55% [6] и активировали синтез-газом, содержащим 33 об.% СО и 67 об.% H_2 , при атмосферном давлении путем плавного подъема

Рис. 1. Схема лабораторной проточно-циркуляционной установки: а) 1, 2, 3, 21– регуляторы давления, 16 – редукционный клапан регулировки давления водяного пара, 4, 5, 6, 7, 20 – регуляторы массового расхода (MFC) "Bronkhorst", 8, 15 – манометры, 9 – водяная рубашка, 10 – реактор, 11 – термоэлементы, 12– регулятор температуры, 13 – электрическая печь, 14 – паросборник, 17 – обогреваемый сепаратор парафинов, 18 – сепаратор легких углеводородов, 19 – электромагнитный циркуляционный насос, 22 – газовые часы; б) эскиз лабораторного реактора.

температуры до значений конверсии CO 45–50%. Затем температуру понижали, устанавливали заданные параметры процесса (давление, ОСГ, соотношение H_2/CO , кратность циркуляции) и выполняли каталитические испытания. После установления стационарного состояния системы "катализатор – реакционная среда", определяемого по отсутствию заметного падения каталитической активности на определенном временном отрезке испытаний, осуществляли балансовые опыты продолжительностью 90–120 ч, предварительно удалив продукты из сепараторов 17, 18.

В процессе опыта анализировали состав газа на входе и выходе из реактора, рассчитывали основные показатели процесса – степень превращения СО, селективность по газообразным и С₅₊ УВ, производительность катализатора. По окончании опыта фиксировали количество полученных УВ и реакционной воды, определяли фракционный и групповой составы УВ, содержание спиртов. Рассчитывали материальный баланс опыта, погрешность которого не превышала 2.5%.

Анализ газообразных компонентов осуществляли методом газо-адсорбционной хроматографии на хроматографе марки Кристалл 5000 с детектором по теплопроводности. Использовали колонки: первая – Наузер R, для анализа УВ С₁–С₅ и СО₂ (газ-носитель – гелий, расход – 15 мл/мин); вторая – молекулярные сита NaX, для анализа СО, H₂, N₂ (газ-носитель – аргон, расход – 15 мл/мин). Режим – температурно-программированный, 80-240 °С, скорость нагрева 8 °С/мин. Фракционный состав жидких УВ определяли методом фракционирования, выделяя фракции УВ в зависимости от температуры кипения, в том числе с температурой кипения выше 450 °С (церезин), групповой состав – методом капиллярной газо-жидкостной хромато-масс-спектрометрии на газовом хроматографе Agilent GC7890 с масс-селективным детектором MSD5975С и капиллярной колонкой HP-5MS.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты каталитических испытаний катализатора $Co-Al_2O_3/SiO_2$ селективного синтеза длинноцепочечных УВ по методу ФТ приведены в табл. 1.

Пикл	№ п/п	<i>T</i> ,°C	<i>Р</i> , МПа	Соотношение H ₂ /CO		K	Продол- житель-	X _{co} ,	Селективность, %				Производи-
				свежий	в рецикле	ц	ность опыта, ч	%	CH ₄	C ₂ -C ₄	C ₅₊	CO ₂	$C_{5+}, \kappa r/(M_{\kappa a T}^3 \cdot ч)$
1	1	214	2.0	1	1	0	100	16	6.1	5.8	87.3	0.8	42
	2	214	2.0	2	2	0	150	54	10.7	8.4	80.1	0.7	102
	3	214	2.0	3	3	0	100	64	25.9	12.2	61.4	0.4	62
	4	214	2.0	4	4	0	100	66	32.2	13.6	53.8	0.4	43
	5	214	2.0	5	5	0	100	69	37.5	13.8	48.3	0.4	36
2	6	185	2.0	2	2	0	20	8	4.4	5.5	90.1	-	14
	7	190	2.0	2	2	0	20	12	6.4	8.9	85.0	0.1	21
	8	205	2.0	2	2	0	20	38	8.7	6.9	84.1	0.4	68
	9	210	2.0	2	2	0	20	48	9.1	8.4	82.0	0.5	82
	10	225	2.0	2	2	0	50	76	16.1	10.4	72.1	1.4	115
3	11	195	6.0	1.85	1.83	2.2	100	15	18.6	26.3	54.5	0.6	18
	12	200	6.0	1.85	1.81	2.2	20	32	13.3	15.8	70.5	0.4	49
	13	205	6.0	1.85	1.78	2.2	50	47	9.8	10.4	79.6	0.2	78
	14	210	6.0	1.85	1.74	2.2	20	58	10.3	6.7	82.8	0.2	110
	15	225	6.0	1.85	1.2	2.2	50	83	9.7	5.6	83.1	1.5	152
	16	225	6.0	1.85	0.9	4	50	84	9.5	5.1	83.5	1.9	159
	17	225	6.0	1.85	0.84	6	50	84	9.1	5.2	83.7	2.0	159

Таблица 1. Влияние условий реакции на селективность и производительность катализатора

Таблица 2. Каталитические характеристики процесса в зависимости от соотношения H_2/CO в синтез-газе: T = 214 °C, P = 2.0 МПа, $OC\Gamma = 1000$ ч⁻¹

Соотношение	V OT	G _{C5+} ,	Продити	Фрак	~	a / a *			
H ₂ /CO	$\Lambda_{\rm CO},\%$	$K\Gamma/(M_{Kat}^3 \cdot \Psi)$	продукты	C ₅ -C ₁₀	C ₁₁ -C ₁₈	C ₁₉ -C ₃₄	C ₃₅₊	α	0/11
1	16	42	<i>н</i> -парафины	2.1	24.8	57.4	4.9	0.86	0.11
			олефины	0.9	8.8	0.0	0.0		
			спирты	1.1	0.0	0.0	0.0		
2	54	102	<i>н</i> -парафины	12.5	42.3	42.1	2.3	0.81	0.007
			олефины	0.73	0.0	0.0	0.0		
			спирты	0.07	0.0	0.0	0.0		
5	69	36	<i>н</i> -парафины	15.8	48.4	34.7	0.6	0.75	0.005
			олефины	0.45	0.0	0.0	0.0		
			спирты	0.05	0.0	0.0	0.0		

* массовое отношение УВ олефины/парафины

Влияние состава синтез-газа. Имеются многочисленные исследования по влиянию соотношения H_2/CO на синтез ФТ. Однако представляло интерес показать отклик нашей каталитической системы на варьирование состава синтез-газа по отношению к селективности образования УВ, в том числе длинноцепочечных C_{35+} , при более высокой нагрузке по перерабатываемому синтез-газу (ОСГ 1000 ч⁻¹, температуре 214 °C, давлении 2.0 МПа). Мы обнаружили, что в изотермических условиях степень конверсии СО монотонно увеличивается с ростом отношения H_2/CO от 1 до 5, а производительность катализатора проходит через максимум (табл. 1, 2).

При этом растет селективность по отношению к газообразным УВ (CH₄ и C₂-C₄), тогда как по жидким C₅₊- она уменьшается (рис. 2).

Эти тенденции, как правило, наблюдаются для большинства катализаторов ФТ (например, [13, 18, 19]) и связаны с ускорением обрыва углеводородной цепи и, соответственно, снижением вероятности ее роста α. Наибольшее количество УВ С₃₅₊ в продуктах синтеза зафиксировано для H₂/CO = 1 и составило 4.9%, что вдвое больше, чем для синтез-газа с классическим соотношением H₂/CO, равным 2 (табл. 2). Это вполне ожидаемый результат, поскольку с ростом соотношения Н₂/СО увеличивается покрытие каталитической поверхности водородом, что приводит к обрыву цепи в процессе гидрирования. Косвенно на это указывает и показатель отношения олефины/парафины (о/п), снижение которого свидетельствует об усилении влияния вторичной реакции гидрирования олефинов при увеличении парциального давления водорода. Спирты обнаружены в следовых количествах и их выход постепенно падает с ростом величины H₂/CO (табл. 2).

Изучение ММР продуктов C_{5+} показало, что с ростом содержания водорода в синтез-газе происходит смещение максимума кривой распределения продуктов в сторону образования УВ с короткой цепью (рис. 3).

Так, для $H_2/CO = 1$ получено относительно широкое бимодальное MMP с двумя максимумами при n = 15-16 и n = 26-27. Повышение соотношения H_2/CO изменяет характер MMP полученных парафинов, постепенно сужая его до унимодального и смещая максимум в сторону более легких УВ от n = 18-19 при $H_2/CO = 2$ до n = 14-15 при $H_2/CO = 5$. Такой сдвиг максимума на диаграмме MMP является, очевидно, следствием увеличения скорости обрыва цепи с ростом соотношения H_2/CO .

Рис. 2. Влияние отношения H_2/CO на селективности по CH_4 , C_2-C_4 и жидким углеводородам C_{5+} : T = 214 °C, P = 2.0 МПа, $OC\Gamma = 1000 \text{ y}^{-1}$.

Таким образом, обеднение синтез-газа водородом ($H_2/CO < 2$) увеличивает селективность по требуемым продуктам C_{35+} . Однако в этих условиях конверсия CO а, следовательно, и производительность катализатора существенно подавлены (табл. 1, 2). Конверсию CO можно повысить за счет подъема температуры синтеза, но это приведет к росту селективности по газообразным УВ (CH₄ и C₂-C₄) и снизит производительность процесса по УВ C₅₊ [20].

Особенности синтеза ФТ при высоком давлении (6.0 МПа) в режиме рециркуляции газа. Для увеличения производительности по отношению к требуемым тяжелым парафинам использовали высокое давление и рециркуляцию газа в сочетании с обедненным по водороду синтез-газом ($H_2/CO = 1.85$ в свежем синтез-газе). Необходимо

V	H ₂ /CO		V 0%	G _{C5+} ,	Протидац	Фракі	ционный	~	0/17		
лц	свежий	в рецикле	$\Lambda_{\rm CO}, \%$	$K\Gamma/(M_{Kat}^3 \cdot \Psi)$	продукты	C ₅ -C ₁₀	C ₁₁ -C ₁₈	C ₁₉ -C ₃₄	C ₃₅₊	u	0/11
2.2	1.85	1.2	83	152	<i>н</i> -парафины	7.4	30.6	23.3	27.6	0.929	0.12
					олефины	0.5	0.0	0.0	0.0		
					спирты	3.4	6.9	0.3	0.0		
4	1.85	0.9	84	159	<i>н</i> -парафины	5.8	28.9	18.7	28.8	0.931	0.20
					олефины	0.6	0.4	0.0	0.0		
_					спирты	5.7	10.7	0.4	0.0		
6	1.85	0.84	84	159	<i>н</i> -парафины	5.1	27.6	17.6	29.2	0.932	0.24
					олефины	0.5	0.5	0.0	0.0		
					спирты	6.8	12.3	0.4	0.0		

Таблица 3. Каталитические характеристики процесса ФТ в зависимости от кратности циркуляции (K_{μ}) синтез-газа: $T = 225 \,^{\circ}$ С, P = 6.0 MПa, ОСГ = 1000 ч⁻¹

отметить, что такой технологический прием, как рецикл по газу в синтезе ФТ, дополнительно способствует снижению соотношения Н₂/СО на входе в реактор (табл. 1), что благоприятствует росту селективности по C_{5+} , в том числе и по C_{35+} . Еще одно преимущество от использования режима рециркуляции газа проявляется в повышении линейной скорости газа в реакторе при постоянном расходе подаваемого в него свежего синтез-газа. Это предотвращает появление горячих пятен в слое катализатора, характерных для установок, работающих в проточном режиме, позволяет поддерживать квазиизотермический режим работы реактора при высоких степенях конверсии СО [21]. Действительно, аксиальный градиент температуры в слое катализатора не превышал 3 °С даже в самых жестких из используемых в настоящей работе условий – при общем давлении 6.0 МПа, температуре 225 °С и малых значениях коэффициента кратности циркуляции ($K_{\rm u}$ = 2.2). С другой стороны, выключение циркуляции газа в этих условиях приводило к неконтролируемому росту температуры в каталитическом слое и, как следствие, спеканию катализатора.

а) Влияние рециркуляции. Результаты испытаний влияния кратности циркуляции при высоком давлении и температуре 225 °С представлены в табл. 3.

С ростом коэффициента рециркуляции газа от 2.2 до 6 немного повысилась степень конверсии CO (~1%), соответственно увеличилась производительность катализатора по УВ С5+, что привело к изменению распределения продуктов (табл. 3): выход длинноцепочечных УВ C_{35+} увеличился на ~2%, содержание олефинов возросло вдвое. Такое перераспределение полученных продуктов отразилось и на небольшом росте коэффициента α, и на почти двукратном увеличении параметра о/п. Очевидная причина повышенного образования олефинов с ростом кратности циркуляции газа – изменение состава синтез-газа в режиме газового рецикла. Смешивание непрореагировавшего синтез-газа со свежим делает состав входящего в реактор синтез-газа более обедненным водородом (табл. 1, 3), что и приводит к преимущественному образованию олефинов.

Таким образом, рециркуляция отработанного синтез-газа, совмещенная с высоким давлением, является эффективным технологическим приемом, позволяющим обеспечить интенсивный синтез тяжелых (воскообразных) УВ. Выход С₃₅₊ при давлении 6.0 МПа, ОСГ 1000 ч⁻¹ и кратностях циркуляции 4–6 вырос, в сравнении с проточным режимом при P = 2.0 МПа и ОСГ 300 ч⁻¹, почти в 13 раз (от 3.6 до 46.4 кг/м³_{кат} · ч) [15]. Кроме того, циркуляция дает возможность работать при высоких нагрузках по газу, а, следовательно, повышать производительность установки за счет создания в каталитическом слое стабильного температурного режима. Такой режим трудно осуществить

Рис. 3. Молекулярно-массовое распределение продуктов C₅₊ при разных соотношениях H₂/CO = 1 (a), 2 (б), 5 (в); T = 214 °C; P = 2.0 МПа; ОСГ = 1000 ч⁻¹.

без циркуляции, поскольку синтез ФТ относится к энергонапряженным процессам и с ростом количества перерабатываемого газа на единицу объема катализатора растет термическая неустойчивость реактора, приводящая к локальным перегревам и спеканию катализатора [22].

б) Влияние температуры. Влияние температуры в процессе ФТ на различных катализаторах при давлениях до 4.0 МПа хорошо изучено и считается, что независимо от природы катализатора скорость реакций синтеза ФТ и селективность образования легких УВ С₁-С₄ возрастают с повышением температуры, тогда как селективность по

Пролити	T °C	Ċ		о / п			
продукты	<i>I</i> , C	C ₅ -C ₁₀	C ₁₁ -C ₁₈	C ₁₉ -C ₃₄	C ₃₅₊	α	0/11
н-Парафины	205	7.9	17.9	22.1	47.1	0.96	_
	225	7.4	30.6	23.3	27.6	0.93	_
изо-Парафины	205	2.4	0.0	0.0	0.0	_	_
	225	0.5	0.0	0.0	0.0	_	_
Олефины	205	2.5	0.2	0.0	0.0	_	0.028
	225	3.4	6.9	0.3	0.0		0.119

Таблица 4. Распределение C₅₊ продуктов в синтезе ФТ при P = 6.0 МПа; ОСГ = 1000 ч⁻¹; $K_{\mu} = 2.2$

УВ С₅₊ падает [23]. И это действительно наблюдалось на нашем катализаторе при давлении 2.0 МПа (№ 6–10 табл. 1).

Неожиданно оказалось, что при трехкратном увеличении давления (с 2.0 до 6.0 МПа) селективность по образующимся УВ имеет обратную тенденцию с ростом температуры, т.е. по C_{5^+} увеличивается, а по C_1-C_4 уменьшается (рис. 4). Также увеличивается селективность процесса ФТ по отношению к ненасыщенным УВ.

Соотношение между олефинами и парафинами (о/п) в продуктах реакции возросло почти в четыре раза в интервале температур 205–225 °C (табл. 4).

Такой результат может быть следствием нескольких причин. Во-первых, с ростом температуры растет степень конверсии СО и, соответственно, парциальное давление паров образующейся воды. Последняя, как известно, ингибирует гидрирование олефинов [24], что приводит к увеличению соотношения о/п. Во-вторых, наблюдаемый эффект может быть вызван рециркуляцией газа: смешение отработанного синтез-газа со свежим в режиме рецикла понижает соотношение H_2/CO на входе в реактор (табл. 3), что

Рис. 4. Влияние температуры на селективность по отношению к CH₄, C₂-C₄ и C₅₊ (P = 6.0 МПа, H₂/CO = = 1.85, ОСГ = 1000 ч⁻¹, $K_{\mu} = 2.2$).

способствует образованию олефинов. Наконец, повышение температуры несколько уменьшает время контакта в наших условиях, что снижает вклад вторичных реакций гидрирования олефинов.

С другой стороны, изменение фракционного состава С₅₊ продуктов в зависимости от температуры оказалось вполне ожидаемым - с ростом температуры селективность по длинноцепочечным УВ снижается (табл. 4). Так, содержание тяжелых УВ С₃₅₊ преобладает в продуктах, полученных при низкой температуре опыта (205 °C), тогда как при более высокой температуре (225 °С) их количество сократилось почти вдвое, а основными продуктами стали парафины С11-С18. Такое перераспределение результирующих УВ отразилось и на небольшом изменении вероятности роста цепи α от 0.96 до 0.93 (табл. 4). Однако при 205 °С степень конверсии СО не превышает 47%, и, как следствие, при этих условиях наблюдается низкая производительность катализатора по синтезируемым УВ (табл. 1).

Одной из причин необычного роста селективности по УВ C_{5+} с температурой при высоком давлении может быть режим рециркуляции, который способствует снижению соотношения H_2/CO на входе в реактор синтеза ФТ (ср. № 11–14, табл. 1). Однако такое относительно небольшое обеднение водородом реакционного газа не может быть ответственным за общее наблюдаемое увеличение селективности по C_{5+} УВ. В экспериментах № 15–17 (табл. 1) отмечается значительно большее снижение соотношения H_2/CO , тогда как селективность по этим УВ почти не изменяется.

Более вероятной причиной наблюдаемых эффектов, по-видимому, является влияние реакционной воды. Являясь одним из основных продуктов синтеза ФТ, она может оказывать позитивное воздействие на селективность по УВ C_{5+} [25–29]. При подъеме температуры растет конверсия СО, увеличивается парциальное давление паров воды в реакционной смеси и это должно способствовать росту селективности по указанным УВ [25, 26].

Рис. 5. Скорость дезактивации катализатора $(R_{\pi\kappa}\% \cdot q^{-1})$ в зависимости от температуры при P = 6.0 МПа.

Однако обе эти гипотезы (изменение состава синтез-газа и эффект роста парциального давления воды) не объясняют, почему одновременное увеличение скорости синтеза ФТ и селективности по C_{5+} с температурой не наблюдается при более низком (2.0 МПа) общем давлении синтез-газа. Очевидно, помимо приведенных выше факторов, имеются и другие причины необычного отклика каталитической системы на изменение температуры при высоком давлении.

в) Влияние давления. Повышение общего давления до 6.0 МПа положительно влияет на скорость синтеза ФТ и селективность по C_{5+} , обеспечивая существенное увеличение производительности по этим УВ (табл. 1), что согласуется с литературными данными [19, 20]. Особо следует отметить значительное увеличение селективности по тяжелым (воскообразным) УВ при высоком давлении. Она оказалась на порядок выше при 6.0 МПа в циркуляционном режиме по сравнению с величинами, наблюдавшимися в синтезе ФТ при 2.0 МПа в проточном режиме (ср. табл. 2 и табл. 3).

Действительно, в процессе синтеза ФТ при давлении 6.0 МПа отмечается существенное увеличение выхода тяжелых УВ С₃₅₊, которое, однако, сопровождается ростом скорости дезактивации катализатора. Это потребовало дополнительных исследований по влиянию процесса дезактивации катализатора в СФТ в наших условиях.

Исследование дезактивации катализатора при высоком давлении. Установлено, что при давлении 6.0 МПа падение степени конверсии СО на кобальт—алюмосиликагелевом катализаторе во времени (т) описывается уравнением (1):

$$X_{\rm CO} = (X_{\rm CO})_0 - R_{\rm ДK} \times \tau \tag{1}$$

 $X_{\rm CO}, \%$ 85 80 75 70 65 60 55 50 45 40 10 20 30 50 0 40

Рис. 6. Влияние продолжительности работы катализатора на степень конверсии СО при P = 6.0 МПа, T = 225 °C (1) и 205 °C (2).

Время, ч

где $(X_{CO})_0$ — значение степени конверсии в начальный момент времени и $R_{\rm ДK}$ — скорость снижения конверсии CO, то есть скорость дезактивации катализатора. Такая дезактивация быстрее происходит при высоких давлениях (рис. 5, 6) и это согласуется с данными работ [25, 26]. Однако, хотя катализатор в большей степени предрасположен к дезактивации при высоком давлении 6.0 МПа по сравнению с работой при умеренном давлении 2.0 МПа, скорость такой дезактивации быстро уменьшается с ростом температуры (рис. 5).

Дезактивация катализатора влечет за собой увеличение селективности по метану и C_2-C_4 за счет уменьшения селективности по УВ C_{5+} (рис. 7). С учетом этого в табл. 1 приведены начальные значения соответствующих параметров.

Одной из причин дезактивации катализатора могут быть образующиеся в синтезе ФТ тяжелые воски [25-27]. Блокируя активную поверхность и закупоривая поры катализатора, они затрудняют массоперенос реагентов к активной поверхности контактной массы [30]. Можно полагать, что накапливающиеся тяжелые воски и являются ответственными за наблюдаемые эффекты при высоком давлении синтез-газа. Тогда повышение температуры будет способствовать удалению восков, освобождению активной поверхности и ослаблению внутридиффузионных ограничений. Считается [31], что полученные экспериментальные значения кажущейся энергии активации меньше, чем обычно ожидаемые для химической реакции, могут указывать на возможные ограничения массопереноса внутри частиц. Для реакций ФТ на кобальтовом катализаторе, протекающих в кинетической области, значения кажущейся энергии активации находятся в пределах 93-103 кДж/моль [32]. При проведении оценки

Рис. 7. Влияние продолжительности работы катализатора на селективность процесса СФТ при T = 205 °C и P = 6.0 МПа.

ограничения массопереноса при давлениях 2.0 и 6.0 МПа в интервале температур 200-225 °C значения кажущейся энергии активации составили 86 и 70 кДж/моль соответственно для давлений 2.0 и 6.0 МПа, что свидетельствуют о наличии внутридиффузионного торможения. Это может быть обусловлено, с одной стороны, использованием частиц катализатора крупного гранулометрического размера 2–3 мм, с другой – диффузионными ограничениями массопереноса внутри частиц, нарастающими с повышением давления. Связанное с этим снижение общей концентрации реагентов внутри частиц катализатора часто сопровождается и увеличением отношения H₂/CO внутри гранул катализатора, что способствует процессу метанирования [23].

На основании данной работы можно сделать следующие выводы:

1. Рост общего давления оказывает положительное влияние на реакции ФТ, приводя к увеличению и скорости и селективности образования длинноцепочечных УВ: производительность по C_{35+} при давлении 6.0 МПа оказалась на порядок выше, чем при давлении 2.0 МПа.

2. С увеличением кратности циркуляции при постоянной температуре в продуктах возрастает содержание олефинов, обусловленное изменением состава синтез-газа при осуществлении газового рецикла. Смешивание непрореагировавшего синтез-газа со свежим обедняет реакционный газ водородом, что способствует более обширному образованию олефинов.

3. Работа в режиме рециркуляции газа позволяет поддерживать термическую стабильность в реакторе, предотвращая появление горячих пятен в слое катализатора. 4. Увеличение температуры при общем давлении 6.0 МПа приводит к росту конверсии СО и способствует одновременному увеличению селективности и производительности катализатора по C_{5+} продуктам. Повышение температуры сдвигает массив результирующих C_{5+} парафинов в сторону более легких продуктов, с меньшим числом атомов углерода. В тоже время, при умеренном давлении 2.0 МПа наблюдается обычный для синтеза ФТ отклик катализатора на температуру, т.е. селективность по C_{5+} с температурой уменьшается.

5. С ростом температуры увеличивается селективность образования олефинов, что проявляется в почти четырехкратном росте отношения олефины/парафины от 0.028 до 0.119 при изменении температуры от 205 до 225 °C.

6. Катализатор более склонен к дезактивации при общем давлении 6.0 МПа по сравнению с работой при давлении 2.0 МПа. Однако скорость дезактивации катализатора при высоком давлении быстро падает с температурой.

7. Одной из причин дезактивации катализатора может быть блокировка активных центров тяжелыми УВ, которые затрудняют массоперенос реагентов к активной поверхности катализатора.

Обнаруженные особенности работы катализатора при высоком давлении в режиме рециркуляции газа могут оказаться полезными для использования в промышленном синтезе ФТ.

Работа выполнена при поддержке Российского научного фонда (грант РНФ № 14-23-00078) с использованием оборудования ЦКП "Нанотехнологии"ЮРГПУ (НПИ).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Hanaoka T., Miyazawa T., Shimura K., Hirata S. //* Chem. Eng. J. 2015. V. 263. P. 178.
- 2. Bouchy C., Hastoy G., Guillon E., Martens J.A. // Oil & Gas Science and Technology. 2009. V. 64. P. 91.
- 3. http://www.shell.com/about-us/major-projects/pearlgtl.html (дата обращения 29.07.2017).
- Bekker M., Louw N.R., Jansen Van Rensburg V.J., Potgiete J. // Int. J. Cosmet. Sci. 2013. V. 35. P. 99.
- 5. http://www.sasolwax.com (дата обращения 01.03.2017).
- 6. Яковенко Р.Е., Нарочный Г.Б., Бакун В.Г., Астахов А.В., Савостьянов А.П. // Изв. вузов. Северо-Кавказский регион. Техн. науки. 2014. № 6. С. 92.
- ГОСТ 7658-74 Церезин синтетический высокоплавкий. Технические условия.
- Савостьянов А.П., Нарочный Г.Б., Яковенко Р.Е., Астахов А.В., Земляков Н.Д., Меркин А.А., Комаров А.А. // Катализ в пром-сти. 2014. № 3. С. 43 [Catalysis in Industry. 2014. V. 6. № 3. Р. 212].

- 9. Лапидус А.Л., Голосман Е.З., Стрижакова Ю.А. // Химия твердого топлива. 2011. № 3. С. 36.
- 10. Weststrate C.J., van Helden P., Niemantsverdriet J.W. // Catal. Today. 2016. V. 275. P. 100.
- 11. *Khodakov A.Y., Chu Wei, Fongarland P. //* Chem. Rev. 2007. V. 107. P. 1692.
- 12. Pena D., Griboval-Constant A., Lecocq V., Diehl F., Khodakov A.Y. // Catal. Today. 2013. V. 215. P. 43.
- Todic B., Nowicki L., Nikacevic N., Bukur D.B. // Catal. Today. 2016. V. 261. P. 28.
- 14. Peng X., Cheng K., Kang J., Gu B., Yu X., Zhang Q., Wang Y. // Angew. Chem. 2015. V. 127. P. 4636.
- Савостьянов А.П., Нарочный Г.Б., Яковенко Р.Е., Бакун В.Г., Земляков Н.Д. // Катализ в пром-сти. 2014. № 4. С. 27. [Catalysis in Industry. 2014. V. 6. № 4. P. 292].
- Нарочный Г.Б., Савостьянов А.П., Яковенко Р.Е., Бакун В.Г. // Катализ в промышленности. 2016. № 1. С. 37 [Catalysis in Industry. 2016. V. 8. № 2. Р. 139].
- Savost'yanov A.P., Yakovenko R.E., Sulima S.I., Bakun V.G., Narochnyi G.B., Chernyshev V.M., Mitchenko S.F. // Catal. Today. 2017. V. 279. P. 107.
- Steynberg A.P., Dry M.E. (Eds.) / Studies in Surface Science and Catalysis. Elsevier. 2004. V. 152.
- Rytter E., Tsakoumis N.E., Holmen A. // Catal. Today. 2016. V. 261. P. 3.

- 20. Dinse A., Aigner M., Ulbrich M., Johnson G.R., Bell A.T. // J. Catal. 2012. V. 288. P. 104.
- Yakovenko R.E., Narochnyi G.B., Savost'yanov A.P., Kirsanov V.A. //Chem. and Petrol. Engineering. 2015. V. 51. № .3–4.
- 22. *Деревич И.В.* // Теплофизика высоких температур. 2007. Т. 45. № 4. С. 588.
- 23. Botes F.G., Niemantsverdriet J.W., Loosdrecht J. // Catal. Today. 2013. V. 215. P. 112.
- 24. Iglesia E. // Stud. Surf. Sci. Catal. 1997. V. 107. P. 53.
- Storsæter S., Borg Ø., Blekkan E.A., Holmen A. // Catal. J. 2005. V. 231. P. 405.
- Storsæter S., Borg Ø., Blekkan E.A., Tøtdal B., Holmen A. // Catal. Today. 2005. V. 100. P. 343.
- 27. Borg Ø., Yu Z., Chen D., Blekkan E.A., Rytter E., Holmen A. // Top. Catal. 2014. V. 57. P. 491.
- Frøseth V., Storsæter S., Borg Ø., Blekkan E.A., Rønning M., Holmen A. // Appl. Catal. A: Gen. 2005. V. 289. P. 10.
- 29. Hibbitts D.D., Loveless B.T., Neurock M., Iglesia E. // Angew. Chem. Int. Ed. Engl. 2013. V. 52. P. 12273.
- 30. Iglesia E. // J. Catal. 1993. V. 143. P. 345.
- Саттерфилд Ч. / Массопередача в гетерогенном катализе. Пер. с англ. А.Р. Брун-Цехового. М.: Химия, 1976. 240 с.
- Yates I. C., Satterfield C.N. // Energy&Fuels. 1991.
 V. 5. P. 168.