УДК 665.635

ВЛИЯНИЕ ВВЕДЕНИЯ ВАНАДИЯ НА АКТИВНОСТЬ NiMo/Al₂O₃-КАТАЛИЗАТОРОВ В ГИДРООЧИСТКЕ ДИЗЕЛЬНЫХ ФРАКЦИЙ

© 2017 г. Н. Н. Томина*, Н. М. Максимов, А. В. Моисеев, А. А. Пимерзин

Самарский государственный технический университет, Самара, Россия *E-mail: tominann@yandex.ru Поступила в редакцию 11.05.2017 г.

Исследовано влияние введения V_2O_5 в NiMo/Al₂O₃-катализаторы на их активность в реакциях гидродесульфуризации (ГДС) и гидрирования компонентов нефтяных фракций. Активность синтезированных катализаторов определяли в процессах гидроочистки прямогонной дизельной фракции и легкого газойля коксования на проточной установке под давлением водорода. Наиболее активный в ГДС и гидрировании полициклических ароматических углеводородов (УВ) катализатор был синтезирован с использованием VMo₁₂-гетерополисоединений: активность в ГДС увеличилась на 6–10, в гидрировании ПАУ – на 11–13 отн. % при разных температурах. Показано увеличение активности в ГДС и гидрировании ПАУ на 2–5 отн. % регенерированного катализатора, дополнительно пропитанного соединением ванадия, по сравнению с регенерированным катализатором.

Ключевые слова: катализатор, модифицирование, ванадий, гетерополисоединения, гидродесульфуризация, гидрирование, гидроочистка.

DOI: 10.7868/S0028242117060156

Дизельные двигатели на 25–40% более экономичны, чем бензиновые [1], однако являются источником выбросов SO_x, твердых частиц или сажи [2]. Существенное расширение с конца прошлого столетия парка автомобилей с дизельными двигателями [3–7] привело к настоятельной необходимости использования малосернистого дизельного топлива (ДТ) [8, 9].

Газойли вторичного происхождения, легкий газойль каталитического крекинга (ЛГКК) и легкий газойль коксования (ЛГК) составляли в начале 2000 гг. в РФ до 36 мас. % сырья для производства ДТ [10]; их доля в сырье будет расти в связи с утяжелением добываемых нефтей и углублением их переработки. Общее содержание ароматических соединений в сырье колеблется в интервале 25–75%. Так, например, прямогонные дизельные фракции содержат 25-30% ароматических соединений, в то время как дистилляты каталитического крекинга – 50–75% [11]. ЛГКК отличается от прямогонных фракций высоким (до 75 мас. %) содержанием ароматических УВ. а ЛГК содержит большое количество олефинов (иодное число до 100 г I₂/100 г нефтепродукта). Серосодержащие соединения в составе ЛГКК и ЛГК на 90% относятся к т.н. остаточной сере [12]. Реакции гидрогенолиза серосодержащих соединений и гидрирования ненасыщенных УВ нефтяных фракций в процессе гидроочистки на сульфидных катализаторах являются конкурирующими [13]. По этой причине наличие в сырье большого количества газойлей вторичного происхождения резко снижает степень гидродесульфуризации, что требует повышения температуры в реакторе.

В России при гидроочистке дизельных фракций практически повсеместно применяются [14]. В связи с чем существует необходимость разработки высокоактивных отечественных катализаторов гидроочистки дизельных фракций. Эффективным способом повышения активности катализаторов гидроочистки является ведение модифицирующих добавок в классические композиции CoMo/γ-Al₂O₃, NiMo/γ-Al₂O₃ [13]. Одним из перспективных модификаторов для катализаторов гидроочистки служит ванадий [15].

В работе [16] исследована активность СоМокатализаторов, приготовленных на носителях TiO_2-ZrO_2 и γ -Al₂O₃, модифицированных пропиткой солями V. Такое модифицирование приводит к значительному повышению селективности реакции ГДС дибензотиофена и 4,6-диметилдибензотиофена по маршруту с промежуточным гидрированием по отношению к маршруту прямой ГДС. Модифицирование катализаторов NiMo/ γ -Al₂O₃ путем введения в них V₂O₅ в количестве от 0.25 до 5 мас. % приводит к повышению как гидродесульфуризующей, так и гидрирующей активности по отношению к би- и трициклическим конденсированным ароматическим УВ [15, 17]. Показано, что при введении в алюмо-никель-молибде-

Соединение	Х-О	M=O	M-O _b -M	M-O _c -M
PVMo ₁₁ -ГПК	1063	948	861	766
VMo ₁₂ -ГПК	972	908	877	778
VM0 ₁₂ -ГПС	973	908	860	786

Таблица 1. Характеристические полосы в ИК-спектрах синтезированных соединений, см⁻¹

новый катализатор оксида V в мольном отношении V : Mo = 1 : 12 на поверхности катализатора образуется ванадиймолибденовое гетерополисоединение структуры Кёггина (12 ряда) [14], что приводит к повышению каталитической активности [13].

В работах [13, 17] было показано, что катализаторы, модифицированные ванадием, обладают повышенной гидрирующей активностью, поэтому исследование этих катализаторов достаточно актуально для сырья, содержащего газойли вторичного происхождения.

Цель данной работы — исследование активности NiMoV/Al₂O₃-катализаторов в реакции гидроочистки по отношению к компонентам ЛКГ, а также сравнение активности катализаторов, приготовленных с применением различных соединений ванадия. Рассмотрен также вариант модифицирования соединениями ванадия отработанного промышленного катализатора гидроочистки дизельных фракций с целью восстановления его активности.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

11-Молибдо-1-ванадофосфорная кислота $H_4[P(VMo_{11}O_{40})] \cdot nH_2O$ была синтезирована согласно работы [18], ванадиймолибденовая гетерополикислота $H_3[VMo_{12}O_{40}] \cdot nH_2O$ – согласно [19].

Для синтеза 12-молибдованадата аммония использовали метаванадат аммония NH₄VO₃ (х. ч.) и парамолибдат аммония (NH₄)₆Mo₇O₂₄ · 4H₂O (ПМА). При смешивании горячих растворов в стехиометрическом отношении в кислой среде происходит выпадение осадка [20]. Получившееся желтое кристаллическое соединение по результатам количественного анализа имеет мольное отношение Мо : V ≈ 12.5. Предполагаформула полученного соединения емая $(NH_4)_3[V(Mo_{12}O_{40})] \cdot nH_2O$. Структуру синтезированных соединений подтверждали методами ИКспектроскопии с Фурье-преобразованием (табл. 1). Характеристические полосы ИК-спектра полученных соелинений свилетельствует о том. что они относятся к классу гетерополисоединений.

Для синтеза катализаторов сравнения использовали парамолибдат аммония (ПМА) (NH₄)₆Mo₇O₂₄ · \cdot 4H₂O, х. ч. (AO "Вектон", ГОСТ 3765-78). В качестве соединений ванадия использовали метаванадат аммония NH₄VO₃, ч. (AO "Вектон", ГОСТ 9336-75) и оксид ванадия V_2O_5 , ч. д. а. (AO "Вектон", TУ 6-09-4093-88). Способ синтеза, соединения активных компонентов и содержание активных компонентов в катализаторах приведены в табл. 2.

Для образца 1 был приготовлен носитель $MoO_3-Al_2O_3$. Промышленный гидроксид алюминия $AlOOH \cdot H_2O$ был смешан с раствором $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$, подвергнут упариванию на водяной бане до влажности ~ 70 мас. % и экструдирован. Экструдаты высушены на воздухе при комнатной температуре в течение 12 ч, затем при температурах 60, 80, 120°C по 2 ч с последующим прокаливанием при 550°C. Носитель пропитан водным раствором Ni(NO₃)₂ · 6H₂O, ч. д. а. (AO "Вектон", ГОСТ 4055-78). Катализатор просушен на воздухе при температурах 60, 80, 120°C по 2 ч с последующим прокаливанием при 400°C.

Носитель $MoO_3 - V_2O_5 - Al_2O_3$ для образца 2 был приготовлен соэкструзией (NH_4)₆ $Mo_7O_{24} \cdot 4H_2O$ и V_2O_5 с AlOOH \cdot H₂O. Сушка и прокаливание носителя аналогичны режиму для образца 1. Носитель пропитан водным раствором $Ni(NO_3)_2 \cdot 6H_2O$, просушен и прокален аналогично образцу 1.

Катализаторы 3-7 готовили методом двухстадийной пропитки носителя γ -Al₂O₃ по влагоемкости с промежуточной сушкой на воздухе при комнатной температуре в течение 12 ч, затем при температурах 60, 80, 120°С по 2 ч с последующим прокаливанием при 400°С. Последовательность введения компонентов активной фазы указана в табл. 2.

Отработанный промышленный катализатор гидроочистки дизельных фракций был подвергнут окислительной регенерации (образец 8) при температуре 200°С в течение 2 ч. На основе образца 8 приготовлены два реактивированных катализатора: образец 8 пропитали раствором лимонной кислоты (образец 9); V_2O_5 растворили в воде, подкисленной лимонной кислотой, и полученным раствором пропитали образец 8 (образец 10). Полученные образцы были высушены аналогично. Предположительно в растворе образовался цит-

рат ванадила $H_3[VOCit_3]$, где Cit = $C_6H_5O_7^{3-}$. Возможность образования этого соединения указана в [21]. Наличие в растворе этого комплексного иона делает активную фазу более подвижной, облегчает сульфидирование и повышает активность по сравнению с катализатором, не пропитанным

ВЛИЯНИЕ ВВЕДЕНИЯ ВАНАДИЯ

Ta6	блица 2. Способ синтеза, соединен	ия активных компонентов и	содержание активных компонен	тов в катализаторах					
U Z	Сотеритете Х	Соеди	інения активных компонентов		$S_{\mathrm{y}_{\mathrm{H}}},$	$D_{ m o \phi \phi},$	Соде м	ржани ас. %	le,
	donaciinati	соэкструзия с АІООН · Н ₂ О	I стадия пропитки	II стадия пропитки	м ² /г	Å	MoO ₃	NiO	V ₂ O ₅
-	Ni/Mo-Al ₂ O ₃	$(\mathrm{NH}_4)_6\mathrm{Mo}_7\mathrm{O}_{24}\cdot4\mathrm{H}_2\mathrm{O}$	Ni(NO ₃) ₂ · 6H ₂ O	I	220	130	12.2	4.3	I
5	Ni/MoV-Al ₂ O ₃	$(\rm NH_4)_6 Mo_7 O_{24} \cdot 4 H_2 O, V_2 O_5$	Ni(NO ₃) ₂ · 6H ₂ O	I	220	130	10.4	4.3	0.5
Э	NiMo/Al ₂ O ₃	I	$(\mathrm{NH}_4)_6\mathrm{Mo}_7\mathrm{O}_{24}\cdot4\mathrm{H}_2\mathrm{O}$	Ni(NO ₃) ₂ · 6H ₂ O	205	140	11.3	2.4	I
4	NiMoV/Al ₂ O ₃	I	(NH ₄) ₆ Mo ₇ O ₂₄ · 4H ₂ O, NH ₄ VO ₃	Ni(NO ₃) ₂ · 6H ₂ O	205	142	11.2	2.2	0.45
5	NiVMo ₁₂ FIIC/Al ₂ O ₃	I	$(\mathrm{NH}_4)_x[\mathrm{VMo}_{12}\mathrm{O}_{40}]\cdot n\mathrm{H}_2\mathrm{O}$	Ni(NO ₃) ₂ · 6H ₂ O	205	140	11.2	2.2	0.41
9	NiPVMo ₁₁ FIIK/Al ₂ O ₃	I	$\mathrm{H_{3}[PVMo_{12}O_{40}]} \cdot n\mathrm{H_{2}O}$	Ni(NO ₃) ₂ · 6H ₂ O	205	138	10.7	2.5	0.5
7	NiVMo ₁₂ FIIK/Al ₂ O ₃	I	$\mathrm{H_{3}[VMo_{12}O_{40}]} \cdot n\mathrm{H_{2}O}$	Ni(NO ₃) ₂ · 6H ₂ O	204	140	10.0	2.1	0.5
8	NiMo/Al ₂ O ₃ регенерированный	Нет	данных	-			21.5	4.2	
9	NiMo/Al ₂ O ₃ регенерированный (ЛК)	Нст	данных	Лимонная кислота			21.5	4.2	I
10	V—NiMo/Al ₂ O ₃ регенерирован- ный H ₃ [VOCit ₃]	Her	данных	H ₃ [VOCit ₃]	I	I	21.5	4.2	0.45

НЕФТЕХИМИЯ том 57 № 6 2017 689

Фракция	20	20	Содержание, мас. %	
Φρακιμη	ρ_4	n_D	общей серы	ПАУ
280-350°С (прямогонная дизельная фракция)	0.850	1.4782	2.29	6.47
300-400°С (легкий газойль коксования)	0.882	1.5022	2.06	14.32

Таблица 3. Характеристика нефтяных фракций, используемых для определения степени ГДС и степени гидрирования полициклических аренов

данным соединением после окислительной регенерации [22].

Определение содержания Мо, V и Ni в катализаторах проводили рентгенофлуоресцентным методом. Калибровки по элементам проведены по сертифицированным образцам. Катализаторы, полученные в оксидной форме, перед проведением каталитических испытаний подвергали сульфидированию с целью перевода оксидов активных металлов в сульфидную форму.

Для катализаторов 1–7 определены показатели пористой структуры, полученные методом низкотемпературной адсорбции азота при температуре 77 К на порозиметре Quantochrome Autosorb-1. Удельную поверхность рассчитывали методом БЭТ при относительном парциальном давлении $P/P_0 = 0.2$. Средний размер пор, $D'_{3\phi\phi}$, определяли по адсорбционной кривой с использованием модели Баррета–Джойнера–Халенда (ВЈН) при относительном парциальном давлении $P/P_0 = 0.99$. Характеристики пористой структуры всех исследованных катализаторов близки, и разница пористой структуры не может оказывать существенного влияния на результаты определения каталитической активности.

Образцы, отобранные после испытания, промывали легкой прямогонной бензиновой фракцией в аппарате Сокслетта в течение 30 мин для удаления с поверхности частиц остатков сырья гидроочистки, затем сушили при 100°С в течение 1 ч. Анализы проводили на термоанализаторе "Setaram" в интервале температур от 20 до 550°С в токе воздуха. Регистрировались тепловые эффекты физико-химических процессов, протекающих в образце в результате термического воздействия.

Количественное определение конденсированных ароматических УВ проводили согласно [23] на спектрофотометре Shimadzu UV-1700 (Япония). Измеряли оптические плотности *D* раствора дизельного топлива в *н*-гептане на характеристических длинах волн 225, 230, 255 и 375 нм. Во всех случаях поглощение на длине волны 375 нм отсутствовало, следовательно, из трициклических ароматических УВ в пробах присутствовали производные фенантрена, но не антрацена. Рассчитывали также содержание (мас. %) бициклических ароматических (БАУ) и трициклических ароматических УВ (ТАУ). Содержание кокса на отработанных катализаторах определяли количественным окислением до CO_2 с последующим его газохроматографическим определением [24]. Содержание сульфидной серы на отработанных катализаторах определяли по методике, аналогичной методике определения серы в твердых нефтепродуктах [12]. Степень сульфидирования рассчитывали, исходя из стехиометрической. Считалось, что при полном сульфидировании образуются соединения NiS и MoS₂, сульфидирование ванадия не учитывалось.

Газофазное сульфидирование высушенных оксидных катализаторов проводили непосредственно в реакторе гидрогенизационной проточной установки (рис. 1). Загрузка катализатора в реактор составляла 8 см³.

Катализатор нагревали в токе смеси ~70 об. % $H_2S c H_2$ (расход смеси 5 л/ч) в течение 2 ч до температуры 400°С с выдержкой при этой температуре в течение 2 ч. Характеристика прямогонной дизельной фракции и легкого газойля коксования, использованных в качестве сырья гидроочистки, приведена в табл. 3.

В исходной фракции и гидрогенизатах определяли содержание серы, би- и трициклических ароматических УВ (далее БАУ и ТАУ). Вычисляли степень гидродесульфуризации (ГДС) – $\alpha_{\Gamma Д C}$, степень гидрирования бициклических ароматических углеводородов – $\alpha_{\text{БАУ}}$, степень гидрирования трициклических ароматических углеводородов – $\alpha_{\text{ТАУ}}$, степень гидрирования полициклических ароматических ароматических углеводородов – $\alpha_{\text{ТАУ}}$, степень гидрирования полициклических ароматических углеводородов – $\alpha_{\text{ТАУ}}$.

Процесс гидроочистки проводили на лабораторной проточной установке под давлением водорода. Условия проведения процесса: давление водорода 3.5 МПа, объемная скорость подачи сырья 2.5 y^{-1} , объемное соотношение водород : сырье 450 нл/л. Температура в реакторе 340, 360, 390 и 410°С.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Ранее было показано, что добавки метаванадата аммония в носитель $NiMo/Al_2O_3$ -катализаторов в количестве 0.25-1.00 мас. % V_2O_5 повышают их активность в гидрогенолизе серосодержащих и гидрировании ароматических соединений [15, 17]. В данной работе исследована возможность ис-

691

Рис. 1. Схема проточной установки под давлением водорода: 1 – баллон с водородом, 2 – редуктор, 3 – бюретка с сырьем, 4 – насос, 5 – манометр, 6 – реактор, 7 – холодильник, 8 – фильтр, 9 – сепаратор высокого давления, 10 – сепаратор высокого давления, 11 – манометр, 12 – редуктор, 13 – ротаметр, 14 – пробоприемник, 15–19, 21–22 – вентили, 20 – предреактор для сульфидирования катализатора.

пользования V_2O_5 в качестве исходного соединения для приготовления катализаторов NiMoV/ γ -Al₂O₃.

 V_2O_5 нерастворим в воде, однако легко образует коллоидный раствор при обработке азотной или соляной кислотой, который в высшей степени устойчив, его можно упаривать, после упаривания он легко восстанавливается при добавлении воды [25]. Эти свойства коллоидного раствора в сочетании с наличием кислой среды создают хорошие условия для образования ванадиймолибденового гетерополикомплекса на гидротермальной стадии синтеза NiMoV/ү-Al₂O₃-катализатора. Введение в носитель на стадии его синтеза пептизированного азотной кислотой V₂O, при последующем синтезе NiMo/Al₂O₃-катализатора и образовании ванадиймолибденового комплекса приводит к повышению каталитической активности. Максимальное повышение активности наблюдается при введении V2O5 в мольном отношении V: Mo = 1: 12, что полтверждается сравнением активности образцов 1 и 2 (табл. 1, рис. 2). Активность катализаторов определяли в процессе гидроочистки прямогонной дизельной фракции.

Как видно из приведенных данных (рис. 2), при всех температурах испытания активность Ni/MoV-Al₂O₃ (катализатор 2) выше, чем у Ni/Mo-Al₂O₃ (катализатор 1). Наиболее заметна разница в гидрировании ТАУ при высоких температурах. Эта особенность модифицированного катализатора очень важна для гидроочистки высокоароматизированных фракций, газойлей вторичного происхождения, вакуумного газойля и масляных фракций. Дезактивация гетерогенных катализаторов

дезактивация тетерогенных катализаторов вследствие коксовых отложений — одна из главных проблем в промышленной химии. Кривые дифференциального термического анализа (ДТА) позволяют провести сравнительную оценку характера сульфидных соединений активных металлов и отложений кокса на поверхности катализаторов, а это, в свою очередь, позволяет сделать предварительные выводы о стабильности работы катализатора, во всяком случае, о стойкости его к отравлению отложениями кокса. Ранее ДТА был, в частности, применен к изучению отложений кокса на катализаторах риформинга [26].

Для восстановления активности катализаторов в промышленности проводят окисление коксовых отложений [27]. При этом образуются связи активных металлов (Мо и Ni) с носителем (Al_2O_3). Для реактивации, или восстановления активности, катализаторов необходимо разрушить или ослабить связи активных металлов с носителем, что возможно при обработке катализаторов раствором комплексного соединения (например, лимонной кислоты) [21]. Возможно также внесение дополнительного количества активных компонентов или модификаторов.

На рис. 3 приведена сравнительная каталитическая активность регенерированного промышленного катализатора (образец 8), катализатора, реактивированного обработкой лимонной кислотой (образец 9) и реактивированного обработкой

Рис. 2. Зависимость степени ГДС ($\alpha_{\Gamma Д C}$) (а), гидрирования би- и трициклических ароматических углеводородов (α_{EAY} , α_{TAY}) (б, в) от температуры процесса для Ni/MoO₃-V₂O₅-Al₂O₃-катализатора (1) и Ni/MoO₃-Al₂O₃-катализатора (2).

лимонной кислотой с дополнительной пропиткой соединением ванадия (образец 10) в реакциях ГДС и гидрирования ПАУ. Как видно из приведенных данных, образцы 9 и 10 демонстрируют более высокую активность в ГДС, чем просто регенерированный образец 10, а в гидрировании ПАУ образец 10 проявляет значительно более высокую активность.

Проведен также ДТА для катализаторов 1 и 2. В табл. 4 приведены полученные данные. У ката-

Рис. 3. Зависимость степени ГДС ($\alpha_{\Gamma \Pi C}$) (а), гидрирования полициклических ароматических углеводородов ($\alpha_{\Pi A Y_3}$) (б) от температуры процесса для NiMo/Al₂O₃ регенерированного (8), NiMo/Al₂O₃ регенерированного (7), NiMo/Al₂O₃ регенерированного H₃[VOCit₃] (10) катализаторов.

лизатора 2 наблюдается высокая активность в гидрировании ПАУ, которые являются предшественниками кокса, что приводит к меньшим отложениям кокса после испытания. В результате второй экзотермический пик, связанный с окислением кокса, слабо выражен, без четкого температурного максимума. Это позволяет предположить, что в данном случае мы имеем дело с предкокса, имеющими шественниками разную химическую природу, и не перешедшими в состояние графитированного кокса. На поверхности отработанного катализатора находятся отложения кокса, окисление которых дает растянутый экзотермический пик. Для катализатора 1 наблюдается четкий максимум второго экзотермического пика, что свидетельствует о большей одно-

НЕФТЕХИМИЯ том 57 № 6 2017

N⁰	Описание	Температура, °С					
образца		начала	максимума	конца	максимума	конца	
1	Ni/Mo-Al ₂ O ₃	100	220	285	400	460	
2	Ni/MoV–Al ₂ O ₃	98	190	240	375	420	

Таблица 4. Параметры пиков ДТА-кривых отработанных образцов 1 и 2 (табл. 1)

родности химического состава коксовых отложений. Температура максимума этого пика для образца, не содержащего V_2O_5 , равна 400°С, что свидетельствует о наличии более графитированного кокса на его поверхности по сравнению с NiMoV/Al₂O₃ образцом. Введение 0.5 мас. % V_2O_5 привело к снижению содержания кокса на катализаторе 2 по сравнению с катализатором 1 с 3.45 до 1.70 мас. %. Степень сульфидирования Ni и Мо (по сравнению со стехиометрической) изменилась с 24.3 (образец 1) до 43.4% (образец 2).

Было высказано предположение об образовании в процессе синтеза NiMo/Al₂O₃ катализаторов с добавками ванадия ванадиймолибденового гетерополисоединения 12 ряда [14], которое в процессе сульфидирования приводит к образованию более активной фазы, чем парамолибдат аммония. С целью прямой проверки предположения об образовании ГПС в процессе приготовления катализатора по аналогии с синтезом других аммонийных солей ГПК молибдена 12 ряда [28] было синтезировано гетерополисоединение 12 ряда с ванадием в качестве комплексообразователя $(NH_4)_x[V(MoO_3)_{12}] \cdot nH_2O$ (далее $VMo_{12}\Gamma\Pi C$). Соединение было использовано для приготовления катализатора (образец 5, табл. 1). Для сравнения приготовлены катализаторы с использованием ПМА и $NH_4VO_3(Ni-Mo/Al_2O_3)$ (образец 3) и Ni-MoV/Al₂O₃ (образец 4). Катализаторы готовили последовательной пропиткой Al₂O₃ соединениями Mo, V и Ni с промежуточной сушкой и прокаливанием после каждой стадии пропитки. Сушку проводили при 60-110°С в течение 6 ч. С целью сохранения на поверхности катализатора структуры гетерополианиона применяли мягкие условия прокаливания (400°С, 2 ч). Условия проведения процесса гидроочистки такие же, как для катализаторов, приготовленных соэкструзией, за исключением температур процесса, которые составляли 360, 390 и 410°С. Определена степень гидрогенолиза серосодержаших соединений и гидрирования полициклических ароматических, входящих в состав ЛГК (табл. 3) в присутствии этих катализаторов в процессе гидроочистки в зависимости от температуры. Полученные температурные зависимости приведены на рис. 4.

Конверсия серосодержащих соединений и степень гидрирования ПАУ в присутствии катализатора NiVMo₁₂ГПС/Al₂O₃ максимальна. Минимальная конверсия наблюдается в присутствии

НЕФТЕХИМИЯ том 57 № 6 2017

NiMo/Al₂O₃-катализатора, промежуточная конверсия — в присутствии образца, приготовленного с применением ПМА и NH₄VO₃ (NiMoV/Al₂O₃). Эти данные подтверждают предположение о том, что повышение степени ГДС и гидрирования ПАУ при введении ванадия в Ni–Mo/ γ -Al₂O₃-катализаторы связано с образованием в процессе синтеза ванадиймолибденового соединения 12 ряда.

Использование для синтеза катализаторов гетерополикислот (ГПК), имеющих очень хорошую растворимость в воде, более удобно, чем использование сравнительно малорастворимых аммонийных солей ГПК. Использование ГПК позволяет получить катализаторы гидроочистки с более высоким содержанием гидрирующего ком-

Рис. 4. Зависимость степени ГДС ($\alpha_{\Gamma Д C}$) (а) и гидрирования ПАУ ($\alpha_{\Pi A Y}$) (б) от температуры процесса для катализаторов NiMo/Al₂O₃ (3), NiMoV/Al₂O₃ (4) и NiVMo₁₂ГПС/Al₂O₃ (5).

Рис. 5. Зависимость степени ГДС ($\alpha_{\Gamma Д C}$) (а) и гидрирования ПАУ ($\alpha_{\Pi A Y}$) (б) от температуры процесса для катализаторов NiMo/Al₂O₃ (3), NiPVMo₁₁/Al₂O₃ (6) и NiVMo₁₂ГПК/Al₂O₃ (7).

понента (до 20–25 мас. % MoO_3), однако, с целью сравнения с образцами 1–5 были синтезированы образцы 6 и 7, имеющие близкие к образцам 1–5 количества активных компонентов. Результаты определения ГДС и гидрирующей активности катализаторов 3 (образец сравнения), 6 и 7 приведены на рис. 5.

Как видно из приведенных данных, образцы, приготовленные на основе ГПК, проявили существенно более высокую активность в ГДС и гидрировании ПАУ, чем образец на основе ПМА. Максимальную активность проявил образец, для синтеза которого была использована смешаннолигандная РVMo₁₁ГПК. Степень гидрирования ПАУ в присутствии катализатора на основе VMo₁₂-ГПС при 340–390°C в 1.5 – 2 раза выше, чем на образце сравнения.

Таким образом, показано, что в присутствии NiMoV/ γ -Al₂O₃-катализаторов, содержащих 0.5 мас. % V₂O₅ наблюдается высокие степени ГДС и гидрирования ПАУ в составе прямогонной дизельной фракции и легкого газойля коксования. Высказано предположение, что это объясняется образованием в процессе синтеза NiMoV/ γ -Al₂O₃-ка-

тализаторов гетерополисоединения молибдена 12 ряда с ионом ванадия в качестве комплексообразователя.

Показано, что активность этого катализатора в ГДС и гидрировании максимальна по сравнению с другими NiMoV/Al₂O₃-катализаторами. Показано, что во всех случаях повышение степени гидрогенолиза серосодержащих соединений сопровождается повышением степени гидрирования ПАУ. Высокая активность в реакциях гидрирования ПАУ способствует снижению отложений кокса на поверхности катализаторов на основе ГПС. Показана возможность реактивации отработанного катализатора с лимонной кислотой, а также реактивации с помощью ЛК и V_2O_5 .

Работа выполнена в рамках ФЦП "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014—2020 годы" (соглашение № 14.577.21.0173 от 27.10.2015, уникальный идентификатор прикладных научных исследований и экспериментальных разработок (проекта) – RFMEFI57715X0173).

СПИСОК ЛИТЕРАТУРЫ

- Stanislaus A., Marafi A., Rana M.S. // Catal. Today. 2010. V. 153. Iss. 1–2. P. 2.
- Phirun S., Lu M., Tim K., Liang F., Jai K.S. // J. Air Waste Manag. Assoc. 2005. V. 55. Iss. 7. P. 993.
- 3. *Митусова Т.Н., Калинина М.В.* // Нефтепереработка и нефтехимия. 2004. № 10. С.12.
- 4. *Кашин О.Н., Ермоленко А.Д., Фирсова Т.Г., Рудин М.Г. //* Нефтепереработка и нефтехимия. 2005. № 5. С. 34.
- Krylov I.F., Emel'yanov V.E., Nikitina E.A., Vizhgorodskii B.N., Rudyak K.B. // Chemistry and Technology of Fuels and Oils. 2005. V. 41. Iss. 6. P. 424.
- 6. Логинов С.А., Капустин В.М., Луговской А.И., Рудяк К.Б., Лебедев Б.Л. // Нефтепереработка и нефтехимия. 2001. № 11. С. 59.
- Топлива. Смазочные материалы. Технические жидкости. Ассортимент и применение. Справочник под ред. Школьникова В.М. М: Химия, 1999. 372 с.
- 8. Федоринов И.А., Анисимов В.И., Морошкин Ю.Г., Дьяченко Е.Ф., Кислицкий К.А.// Нефтепереработка и нефтехимия. 2006. № 1. С. 10.
- Постановление Правительства РФ от 27 февраля 2008 г., № 118, г. Москва. Технический регламент "О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и топочному мазуту". // Российская газета. 2008. 5 марта. № 47 (4604). С. 24.
- 10. Томина Н.Н., Пимерзин А.А., Моисеев И.К. // Российский химический журнал. Т. 52. 2008. № 4. С. 41.
- Stanislaus A., Marafi A., Rana M.S. // Catalysis Today. 2010. V. 153. P. 1.

НЕФТЕХИМИЯ том 57 № 6 2017

- 12. *Рыбак Б.М.* Анализ нефти и нефтепродуктов. М.: Гостоптехиздат, 1962. С. 432.
- Topsøe H., Clausen B.S., Massoth F.E. Hydrotreating catalysis. Science and technology. / Catalysis-Science and Technology. Anderson J.R., Boudart M., Eds. Berlin, Heidelberg, New York: Springer-Verlag, 1996. V. 11. 310 p.
- Дмитриевский А.Н. // Бурение и нефть. 2012. № 1. С. 4.
- 15. Томина Н.Н., Логинова А.Н., Шарихина М.А. // Нефтехимия. 1989. Т. 29. № 1. С. 25.
- 16. Wang C.-M., Tsai T.-C., Wang I. // J. of Catalysis. 2009. V. 262. P. 206.
- Томина Н.Н., Пимерзин А.А., Логинова А.Н., Шарихина М.А. Жилкина Е.О., Еремина Ю.В. // Нефтехимия. 2004. Т. 44. № 4. С. 274.
- Ressler T., Timpe O., Girgsdies F., Wienold J., Neisius T. // J. of Catalysis. 2005. V. 231. P. 279.
- Quan-Zheng Zh., Can-Zhong L., Wen-Bin Y., Chuan-De W., Ya-Qin Y., Ying Y., Jiu-Hui L., Xiang H. // J. Cluster Sci. 2003. V. 3. P. 381.

- 20. *Никитина Е.А.* Гетерополисоединения. М.: Госхимиздат, 1962. 326 с.
- Музгин В.Н., Хамзина Л.Б., Золотавин В.Л., Безруков И.Я. Аналитическая химия ванадия. М.: Наука, 1981. 216 с.
- 22. Beuther H., Flinn R.A. // Ind. Eng. Chem. Prod. Res. Dev. 1963. V. 2. P. 53.
- 23. Сирюк А.Г., Зимина К.И. // ХТТМ. 1963. № 2. С. 52.
- Галимов Ж.Ф., Дубинина Г.Г., Масагутов Р.М. Методы анализа катализаторов нефтепереработки. М.: Химия, 1973. 191 с.
- 25. *Реми Г.* Курс неорганической химии. М.: Мир, 1966. Т. 2. С. 117.
- Островский Н.М. Кинетика дезактивации катализаторов. Математические модели и их применение. М.: Наука, 2001. 333 с.
- 27. Marafi M., Stanislaus A., Furimsky E. Handbook of spent hydroprocessing catalysts. Elsevier, 2010. P. 191.
- 28. *Ключников Н.Г.* Руководство по неорганическому синтезу. М.: Химия, 1965. С. 339.