УДК 541.124:541:127:541.128+542.3.08:542.943+544.433+544.47+547.541+547.56

ЗАКОНОМЕРНОСТИ ОКИСЛЕНИЯ И НАКОПЛЕНИЯ ПРОДУКТОВ ПРЕВРАЩЕНИЯ ТРОЙНОЙ СИСТЕМЫ ГИДРОХИНОН–ЭПОКСИД СТИРОЛА–*n*-ТОЛУОЛСУЛЬФОКИСЛОТА В ПОЛЯРНОМ РАСТВОРЕ

© 2017 г. Л. В. Петров*, В. М. Соляников

Институт проблем химической физики РАН, Черноголовка, Московская обл., Россия *E-mail: plv@icp.ac.ru Поступила в редакцию 27.10.2016 г.

Введение 1,4-дигидроксибензола (гидрохинона) в окисляемую двойную систему эпоксид стирола*пара*-толуолсульфокислота в растворе 90 об. *% трет*-бутанола с 10 об. *%* хлорбензола увеличивает скорость расходования эпоксида и скорость поглощения системой кислорода с накоплением бензальдегида. Соотношение скоростей реакции поглощения O₂ и брутто-расходования эпоксида стирола в тройной системе гидрохинон–эпоксид стирола–*п*-толуолсульфокислота ($V_{O_2}/V_{\ni C}$) \approx 0.24 (343 K), что в 3.5 раза превышает аналогичный показатель двойной системы эпоксид – кислота.

Ключевые слова: кинетика, катализ, эпоксид стирола, *n*-толуолсульфокислота, гидрохинон, *mpem*бутанол, бензальдегид, молекулярный кислород. **DOI:** 10.7868/S0028242117040116

Результаты изучения кислотно-каталитических реакций гетеролитического раскрытия эпоксидных циклов с участием воды (гидролиз), спиртов (алкоголиз), аминов и фенолов представляют собой капитальный вклад в химию эпоксидов [1].

В последние десятилетия эта интернациональная тематика, расширяясь и становясь формально более многоликой, многообразной, все чаще ориентируется на получение конкретных, обычно с утилитарным прицелом результатов. При этом особое внимание исследователей направлено на совершенствование орудий вскрытия эпоксидного цикла, модифицирование известных и синтез новых катализаторов селективного действия. Типичные примеры: кооперативный органокатализ Бренстедовского типа в алкоголизе эпоксида стирола [2], фенолсодержащие макроциклические диамиды – катализаторы высокорегиоселективного превращения эпоксидов [3], промотированная железом реакция анилина с эпоксидом стирола [4], катализированное хлоридом церия расщепление эпоксидов с участием ароматических аминов [5], катализ реакции эпоксидов с ароматическими аминами в водных средах органовисмутовым трифлатным комплексом [6], изучение влияния растворителей на региоселективность раскрытия цикла эпоксида стирола диаминами [7].

Коренное отличие наших работ от [2–7] в предмете исследований: мы выясняем природу и механизм появления свободных радикалов в ка-

тализированном раскрытии цикла эпоксида, в том числе при действии кислотного катализатора, модифицированного органическими добавками. Радикалообразование при кислотно-каталитическом превращении эпоксида стирола (ЭС) обнаружено двадцать лет назад [8]. Ароматические амины, реагируя с ЭС в подкисленном растворе ацетонитрила, ускоряют окисление кислородом двойной системы (ДС) эпоксид стирола-*n*-толуолсульфокислота (ТСК) [9]. По поглощению кислорода привычно оценивается квазирадикальный маршрут, сопутствующий основному гетеролитическому пути превращения ЭС. Эта методика использована в исследовании эффекта ускорения окисления ДСЭС-ТСК при введении третьего компонента, 1,4-дигидроксибензола (гидрохинона).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все опыты проведены при температуре 343 К в смешанном растворителе БУХ, состоящем из 90 об. % *трет*-бутанола и 10 об. % хлорбензола. Измерения поглощения кислорода проводили на манометрической установке по методике [9]. Кинетику расходования ЭС и гидрохинона (ГХ) и накопления при этом бензальдегида (БА) и фенилуксусного альдегида (ФУА) в стеклянной барботажной ячейке с обратным холодильником изучали по данным количественного жидкостного хроматографического анализа проб, отобранных в ходе опыта [9]. При анализе ГХ на жидкостном

Рис. 1. Кинетические кривые поглощения кислорода: двойной системой ЭС–ТСК (*1*); оксидатом (оп. 1) после ввода в него ГХ (*2*); тройной системой ГХ–ЭС–ТСК (*3*); парами реагентов ГХ–ТСК (кресты) и ГХ–ЭС (точки) (*4*, *5*). [ЭС]₀ = 0.52, [ТСК] = 0.0113, [ГХ]₀ = 0.134 моль/л.

хроматографе применяли стандартную стеклянную колонку (150 × 3) типа 901-30102 (Separon C18, 5 μ m, Чехия), детектор типа LCD с фильтром UV-313 nm, элюент MeOH : H₂O (7 : 3).

Впервые использованный в нашей работе ГХ для очистки перекристаллизовывали по обычной методике из водного раствора, промывали на фильтре небольшим количеством охлажденного ацетона и тщательно высушивали в эксикаторе с прокаленным CaCl₂. Очистку ЭС и растворителей ректификацией производили по апробированным стандартным методикам [8, 10].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Подборка кинетических кривых поглощения кислорода (рис. 1) объясняет выбор исходной точки и направления исследования.

Скорость окисления двойной системы ДС_{ЭС-ТСК} (кривая 1 рис. 1) возрастает после введения в оксидат опыта 1 гидрохинона (кривая 2 рис. 1). Опыт сравнения, выполненный непосредственно с тройной системой ТрС_{ГХ-ЭС-ТСК}, когда три компонента присутствуют в рабочем растворе с начала опыта (кривая 3 рис. 1), подтверждает вывод об ускорении окисления в присутствии ГХ. Причем, одинаковый наклон кривых 2 и 3, т.е. равенство скоростей в опытах 2 и 3, есть свидетельство чистоты тройной системы в смысле отсутствия влияния продуктов окисления ДС на скорость окисления ТрС. Это обстоятельство существенно с точки зрения корректности измерений. При окислении ТрС_{ГХ-ЭС-ТСК} возможно поглощение кислорода вследствие реакций пар компонентов

НЕФТЕХИМИЯ том 57 № 4 2017

Рис. 2. Кинетические кривые расходования ЭС (кружки) и ГХ (квадраты); накопления БА (треугольники) и ФУА (ромбы) в опыте без ГХ (ДС, темные точки) и в присутствие 0.18 моль/л ГХ (ТрС, светлые точки). Кислород, [ЭС]₀ = 0.52, [ТСК] = 0.014 моль/л.

ГХ–ТСК и ГХ–ЭС. Соответствующая проверка (кривые 4 и 5 рис. 1) показала, что вклад в окисление упомянутых пар пренебрежимо мал. Скорости, т.е. величины тангенсов углов наклонов кривых 1-5 рис. 1, соответственно равны: $V_{2,3}$ (V_{TpC}) = = 18.5 × 10⁻⁶, V_1 ($V_{\rm LC}$) = 9.2 × 10⁻⁶ и $V_4 = V_5 \approx 1.3 \times 10^{-6}$ моль/л.с. Скорость окисления интересующей нас TpC_(ГХ-ЭС-ТСК) V_{TpC} в 1.5 раза превышает сумму скоростей $V_{\rm LC} + V_4 + V_5$. Налицо таким образом синергистический эффект взаимодействия компонентов TpC.

Примеры кинетических кривых расходования ЭС и накопления БА и ФУА в барботажном реакторе приведены на рис. 2. Введение ГХ в ДС ускоряет расходование ЭС с ускорением накопления альдегидов, ГХ в ходе опыта с ТрС заметно расходуется (рис. 2).

Зависимости скоростей поглощения кислорода, расходования ЭС и накопления БА, как функции [ГХ]₀, представлены на рис 3.

На рис. 4 даны зависимости скорости окисления ТрС_{ГХ-ЭС-ТСК} от [ЭС] и [ТСК] (кривые 2, 1), при большой концентрации ГХ скорость поглощения кислорода в этих условиях втрое выше исходной величины при [ГХ]₀ = 0 (см. кривую 1 рис. 3), а также зависимость скорости расходования ГХ от его исходной концентрации (кривая 3 рис. 4). Первый порядок скорости окисления V_{O_2} по кислоте и нулевой по эпоксиду, точно такие характеристики, как у ДС_{ЭС-ТСК} [11]. Зависимости скоростей от [ГХ] на рис. 3 и рис. 4 можно выразить как $V_i = (V_i)_0 + k_i$ [ГХ] (1), сделав два пояснения: 1) за-

Рис. 3. Скорости поглощения кислорода тройной системой ГХ–ЭС–ТСК (1), расходования ЭС (2), накопления БА (3) при окислении $\text{TpC}_{\Gamma X- \text{ЭС}-\text{TCK}}$ в зависимости от $[\Gamma X]_0$. [ЭС]₀ = 0.52, [TCK] = = 0.014 моль/л.

висимость $V_{\Gamma X}$ идет из нуля координат, т.к. при [ГХ]₀ = 0 и $V_{\Gamma X}$ = 0; 2) опытные значения $k_{\Theta C}$ и $k_{\Gamma X}$ есть величины постоянные, т.к. зависимости $V_{\Theta C}$ и $V_{\Gamma X}$ от [ГХ] выражаются прямыми линиями (рис. 3, рис. 4). Эффективные же значения k_{O_2} и $k_{\rm FA}$ уменьшаются с возрастанием [ГХ], зависимости V_{O_2} и $V_{\rm FA}$ представляются изогнутыми линиями. Данные рис. 3, 4 позволяют сопоставить поглощение O₂ в двойной и тройной системах с расходованием ЭС, ГХ и накоплением БА. Исходные цифры для ДС таковы: при [ГХ]₀ =0 соотношения $(V_{O_2}/V_{\Theta C}) \times 100\% \approx 7\%$, $(V_{\rm FA}/V_{\Theta C}) \times 100\% \approx 5\%$ и $(V_{\rm FA}/V_{O_2}) \times 100\% \approx 80\%$, цифры близки к известным ранее [11].

Динамику изменения этих характеристик в тройной системе с увеличением [ГХ] демонстрирует табл. 1, при расчете ее данных полагали величины $(V_j)_0$, т.е. вклады двойной системы в $V_{\text{ТрС}}(V_j)$ неизменными и равными величинам соответ-

Рис. 4. Зависимости: скорости окисления тройной системы ГХ–ЭХ–ТСК от [TCK] (*1*) при [ЭС]₀ = 0.52, [ГХ] = 0.178 моль/л и от [ЭС] (*2*) при [TCK] = 1.06 × × 10⁻², [ГХ] = 0.178 моль/л; скорости расходования ГХ от [ГХ]₀ (*3*) при [ЭС]₀ = 0.52, [TCK] = 1.4 × × 10⁻² моль/л.

ствующих отсечений на оси ординат при $[\Gamma X]_0 = 0$, рис. 3. Данные таблицы показывают, что выход БА в расчете на поглощенный O₂ снижается при $[\Gamma X] \le 0.1$ моль/л (с 80% до ~66%), дальнейшее увеличение [ГХ] выхода БА практически не изменяет.

Величина квазирадикальной составляющей брутто-превращения ЭС в ТрС гораздо больше, чем в ДС(см. графы 5, 6 табл. 1), эффект особенно отчетлив при небольших [ГХ]. При 0.05 моль/л ГХ выход бензальдегида более чем в 3 раза превышает показатель ДС, 17 и 5% соответственно, по кислороду превышение в 3.5 раза, 24 и 7%.

Отношение величин $k_{\rm ЭС}$ и $k_{\rm ГX}$ не фигурирует в табл. 1 ввиду его независимости от [ГХ] (см. кривые 2 рис. 3 и 3 рис. 4), ($k_{\rm ЭС}/k_{\rm ГX}$) \approx 4.6. Углы накло-

		5			-		
№	[ГХ], моль/л	0	0.05	0.1	0.15	0.2	0.25
1	$\Delta V_{\rm O_2} \times 10^{-5}$, моль/л с	* 1.27	0.9	1.7	2.1	2.4	2.5
2	$\Delta V_{\rm BA} \times 10^{-5}$, моль/л с	* 0.97	0.67	1.1	1.4	1.6	1.7
3	$\Delta V_{ m ЭC} \times 10^{-4}$, моль/л с	* 1.83	0.4	0.85	1.25	1.7	2.13
4	$(\Delta V_{\rm bA}/\Delta V_{\rm O_2}) \times 10^2, \%$	* 76.4	74	65	66	66	68
5	$(\Delta V_{\rm BA}/\Delta V_{ m \Theta C}) \times 10^2, \%$	* 5.30	16.8	12.9	11.2	9.4	8.0
6	$(\Delta V_{\rm O_2}/\Delta V_{ m \exists C}) \times 10^2, \%$	* 6.93	24	20	17	14	12

Таблица 1. Соотношения прироста величин V_i в зависимости от [ГХ] в ТрС_{ГХ-ЭС-ТСК}, расчет из данных рис. 3

* Соответствующие величины $(V_j)_0$.

Таблица 2. Скорости накопления фенилуксусного альдегида в $TpC_{\Gamma X-\Im C-TCK}$ в зависимости от [ГХ], [ЭС] = 0.52, [TCK] = 0.014 моль/л

[ГХ], моль/л	0	0	0.06	0.06	0.12	0.12	0.18	0.18*	0.18	0.24*	0.26
<i>V</i> × 10 ⁵ , моль/л с	1.7	2.2	2.36	2.7	3.5	2.61	3.75	3.5	3.7	4.7	3.6

* Измерения в атмосфере аргона.

на пунктирной касательной кривой 1 рис. 3 и кривой 3 рис. 4 равны, $k_{O_2} = k_{\Gamma X} = 1.9 \times 10^{-5} \text{ c}^{-1}$. Такое совпадение можно было бы истолковать как рост V_{O_2} , напрямую связанный с реакцией между ГХ и ЭС при малых [ГХ]. Но на вопрос, как убыль одной молекулы ГХ вызывает расходование четырех – пяти молекул ЭС, ответа нет. Безответный вопрос содержит и табл. 2 данных по накоплению ФУА в ТрС: с увеличением V_{O_2} возрастает $V_{\Phi YA}$. Поясним: качество нашей аналитики накопления ФУА не настолько высоко, чтобы привести эти данные в виде зависимости на графике, разброс точек велик. Тем не менее, табл. 2 представляет тенденцию роста $V_{\Phi YA}$ с возрастанием [ГХ] в ТрС.

Хорошо известно, что скорость кислотно-каталитического превращения ЭС и образования в качестве одного из продуктов сложной химической реакции фенилуксусного альдегида тем больше, чем выше концентрация катализатора – кислоты. Гидрохинон как кислота много слабее, чем *п*-толуолсульфокислота, доказательство на рис. 4: скорость окисления $TpC_{\Gamma X - \partial C - TCK}$ прямо пропорциональна [ТСК], кривая 1 проходит через начало координат, т.е. окисление без ТСК в присутствии только ГХ не идет, это же следует и из данных рис. 1. Практическая независимость $(V_{O_2})_{TpC}$ от [ЭС]₀ (кривая 2 рис. 4) свидетельствует о нулевом порядке реакции по эпоксиду. Так называемый временной нулевой порядок ЭС наблюдается и в опытах по расходованию ЭС, убыль [ЭС] идет с постоянной скоростью и в двойной, и в тройной системе, рис. 2. В связи с этим возможны в самом общем виде две версии влияния ГХ на превращение ЭС. Первая состоит в предположении образования комплекса в ТрС_{ГХ-ЭС-ТСК}. Обратимся к кривым 1, 3 рис. 3. В научной практике форма таких кривых часто объясняется предшествующим реакции комплексообразованием реагентов. Однако версия комплексообразования в применении к ТрС_{ГХ-ЭС-ТСК} не убедительна, аргументов в ее пользу, кроме изгиба кривых рис. 3, нет. Поэтому наши осторожные предположения о механизме действия ГХ в изучаемой реакции состоят в следующем.

Главная сложность изучения окисления систем ЭС-ТСК с самого начала связана с неизвестностью природы и механизма появления частиц, ведущих окисление. В традиционном радикально-цепном окислении это радикалы RO₂ и

НЕФТЕХИМИЯ том 57 № 4 2017

 R^{*} . Но эпоксид стирола трудно окисляется по радикально-цепному механизму даже при 413 К в присутствии инициатора. Предполагать реализацию этого механизма при температуре на семьдесят градусов ниже не приходится. Эволюция представлений о механизме окисления $\[mathbb{AC}_{\Im C-TCK}$ [11, 12] привела к гипотезе об образовании фенилметилена (Φ M), карбена, способного реагировать с кислородом. Образование Φ M недавно подтверждено экспериментально наблюдением спектра илида, продукта присоединения карбена к молекуле пиридина [13]. Расчет теплоты реакции

$$\begin{array}{c} PhCH-CH_2 \longrightarrow PhC: + HCOH + H^+ \\ O \\ H \end{array}$$

дает величину эндотермичности около 60-70 ккал/моль. Величина эта втрое превышает величины энергий активации кислотно-каталитического окисления ДС_{ЭС-ТСК} и брутто-расходования ЭС, т.е. механизм появления ФМ неизвестен. Общая концепция влияния ГХ на ДС_{ЭС-ТСК} состоит в следующем. Можно предположить, что введение ГХ не меняет сущности механизма превращения ДС_{ЭС-ТСК}, но неизвестным образом модифицирует ее, ускоряя превращение ЭС по разным каналам, в том числе с поглощением кислорода и образованием ФУА. Примеров такого рода изменчивости (модифицируемости) ДС_{ЭС-} тск немало. Так, в смесях CH₃CN с *t*-BuOH при увеличении [t-BuOH] растет V_{O_2} ДС_{ЭС-ТСК}, хотя спирт снижает кислотность среды (показано индикаторным методом) и в аналогичных условиях подавляет катализированное ТСК разложение гидропероксида кумила; эта классическая кислотнокаталитическая реакция послужила просто эталоном сравнения [14]. Вода ускоряет окисление ДС_{ЭС-ТСК}, но подавляет окисление ДС_{ЭС-НСЮ4}, рис. 5. Показательно: один эпоксид в обоих случаях, две сильные кислоты, т.е. по сути один и тот же ка-

тализатор ROH_2^+ в растворе, а эффект не просто разный по величине, но противоположный по знаку. Из данных рис. 5 следует также, что при [H₂O] = 0 по инициирующей окисление способности HClO₄ превосходит TCK в ~320 раз. В самом деле, псевдомономолекулярные константы скорости окисления равны соответственно k_{TCK} =

Рис. 5. Зависимость скорости поглощения кислорода от концентрации воды: двойной системой ЭС–ТСК (1), $[ЭС]_0 = 0.52$, [TCK] = 0.011 моль/л. Двойной системой ЭС–НСЮ₄ (2), $[ЭС]_0 = 0.87$, $[HCIO_4] = 4.2 \times 10^{-5}$ моль/л. Исходный растворитель БУХ, 343 К.

= $(V/[TCK]) = 1.27 \times 10^{-3} \text{ c}^{-1}, k_{\text{HClO}_4} = (V/[\text{HClO}_4]) = 0.42 \text{ c}^{-1}.$

Вот новый факт: ускорение окисления при введении ГХ в $\Box C_{\Im C-TCK}$ и отсутствие этого эффекта при введении ГХ в $\Box C_{\Im C-HCIO_4}$. Три опыта при неизменных концентрациях хлорной кислоты (3 × 10⁻⁴ моль/л) и эпоксида стирола (0.52 моль/л) при [ГХ] = 0, 0.036 и 0.060 моль/л дали одну величину $V_{O_2} = 3 \times 10^{-5}$ моль/л с (343 K). Введение 0.060 моль/л ГХ в $\Box C_{\Im C-TCK}$ удвоило скорость окисления (см. кривую *1* рис. 3).

Объяснить эти факты в рамках привычных представлений гомогенного кислотного катализа невозможно. Вот примеры реакций с участием ДС_{ЭС-ТСК} в атмосфере инертного газа аргона. Увеличение концентрации спирта ускоряет расходование гидропероксидов в реакции с активными частицами, образующимися в ДС_{ЭС-ТСК} [14], эффект противоположен ожидаемому. Галоген-анионы Cl⁻, Br⁻ I⁻, F⁻ подавляют и разложение в аргоне гидропероксидов, и окисление ДС в атмосфере кислорода, и брутто-расходование ЭС при этом. Надежно показано, что и гетеролиз ЭС, и квазирадикальная составляющая, окисление, блокируются присутствием галоген-ионов с равной эффективностью. Возможно, ЭС с ТСК в полярной среде способен образовывать достаточно устойчивые сетевые или объемные реакционноспособные структуры. При изучении кинетики превращения эти структуры проявляются, в частности, в нулевых порядках по ЭС реакций расходования ЭС, поглощения кислорода ЭС, накопления БА и привычно идентифицируются как комплексы. Не исключено, что эффективное ингибирование упомянутых реакций галоген-анионами связано с нарушением регулярности таких структур и снижением при этом их реакционноспособности. Видимо, для изучения столь сложного механизма потребуется неординарный инструментарий в широком смысле этого выражения, специальный эксперимент с новыми конкретными данными.

Основной же результат вышеизложенной работы состоит в обнаружении отчетливой квазирадикальной составляющей в реакции гидрохинона с эпоксидом стирола в кислом спиртовом растворе. Введение ГХ ускоряет окисление $\mathcal{AC}_{\mathcal{9C}-\mathrm{TCK}}$ и в растворе CH₃CN, однако эффект гораздо слабее, чем в растворе БУХ.

СПИСОК ЛИТЕРАТУРЫ

- Parker R.E., Isaacs N.S. // Chem. Revs. 1959. V. 59. № 4. P. 737.
- Weil T., Kotke M., Kleiner Ch.M., Schreiner P.R. // Org. Lett. 2008. V. 10. № 8. P. 1513.
- Sharght H., Nasseri M.A., Niknam K. // J. Org. Chem. 2001. V. 66. № 22. P. 7287.
- Zhang Y., Wang M., Li P., Wang L. // Org. Lett. 2012.
 V. 14. № 9. P. 2206.
- 5. *Reddy L.R., Reddy M.A., Bhanumathi N., Rao K.R.* // Synthesis. 2001. № 6. P. 831.
- 6. Tan N., Yin Sh., Li Y., Qiu R., Meng Zh., Song X., Luo Sh., Au Ch.-T., Wong W.-Y. // J. Organomet. Chem. 2011. V. 696. № 8. P. 1579.
- Крылов А.В., Мохаммед А.Х., Егорова В.В., Борисова Е.Я., Борисова Н.Ю., Флид В.Р. // Изв. АН. Сер. Хим. 2012. № 6. С. 1119. [Russ. Chem. Bull. Int. Ed. 2012. V. 61. № 6. Р. 1128.]
- Петров Л.В., Соляников В.М. // Доклады АН. 1996.
 Т. 350. № 3. С. 357. [Doklady Physical Chemistry. 1996. V. 350. № 1-3. Р. 252.]
- 9. *Петров Л.В., Соляников В.М. //* Известия АН. Сер. Хим. 2015. № 1. С. 107 [Russ. Chem. Bull. Int. Ed. 2015. V. 64. № 1. Р. 107.]
- Вайсбергер А., Проскауэр Э., Риддик Дж., Тупс Э. Органические растворители. Физические свойства и методы очистки. Изд. ИЛ. М, 1958. С. 321, 352, 387.
- Петров Л.В., Соляников В.М. // Нефтехимия. 1999.
 Т. 39. № 2. С. 107 [Petrol. Chemistry. 1999. V. 39. № 2.
 Р. 89]
- 12. *Петров Л.В., Соляников В.М.* // Нефтехимия. 2005. T. 45. № 3. C. 225 [Petrol. Chemistry. 2005. V. 45. № 3. P. 202]
- 13. Спирин М.Г., Бричкин С.Б., Петров Л.В. // Известия АН. Сер. Хим. 2016. № 10. С. 2452. [Russ. Chem. Bull. Int. Ed. 2016. V. 65. № 10. Р. 2450]
- 14. *Петров Л.В., Психа Б.Л., Соляников В.М.* // Нефтехимия. 2007. Т. 47. № 5. С. 379 [Petrol. Chemistry. 2007. V. 47. № 5. Р. 326.]

НЕФТЕХИМИЯ том 57 № 4 2017