УДК 547-326

ГИДРОКОНВЕРСИЯ РАПСОВОГО МАСЛА В УГЛЕВОДОРОДЫ НА МИКРО-МЕЗОПОРИСТЫХ МАТЕРИАЛАХ MFI/MCM-41, СИНТЕЗИРОВАННЫХ ГИДРОТЕРМАЛЬНО-МИКРОВОЛНОВЫМ МЕТОДОМ

© 2017 г. А. Г. Дедов¹, А. С. Локтев^{1,} *, Е. А. Исаева¹, А. А. Караваев¹, Ю. Н. Киташов¹, С. В. Маркин¹, А. Е. Баранчиков², В. К. Иванов², И. И. Моисеев¹

¹ Российский государственный университет нефти и газа (национальный исследовательский университет) им. И.М. Губкина, Москва, Россия

² Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия *E-mail: al57@rambler.ru, genchem@gubkin.ru Поступила в редакцию 09.01.2017 г.

Впервые исследованные в реакции гидроконверсии рапсового масла катализаторы, содержащие цеолит структуры MFI и композит MFI/MCM-41, синтезированные гидротермально-микроволновым методом, позволяют получать ценные продукты нефтехимии – высокооктановые компоненты моторных топлив и олефины C_2-C_4 . Синтезированный цеолит MFI преимущественно катализирует получение ароматических углеводородов (УВ), а его инкорпорирование в матрицу мезопористого силиката MCM-41 уменьшает содержание АрУ в жидком углеводородном продукте за счет возрастания выхода жидких алифатических УВ. При промотировании ионами цинка синтезированного гидротермально-микроволновым методом цеолита MFI формируется катализатор, позволяющий получать жидкие продукты, состоящие из ароматических УВ.

Ключевые слова: гидроконверсия рапсового масла, микро-мезопористые материалы MFI, MFI/MCM-41, гидротермально-микроволновой синтез.

DOI: 10.7868/S0028242117040037

Замещение ископаемых УВ возобновляемым сырьем растительного происхождения — фундаментальная научная проблема, привлекающая возрастающее внимание исследователей. В частности, перспективным представляется получение продуктов нефтехимии и компонентов моторных топлив из масел растительного происхождения, источником которых служат разнообразные сельскохозяйственные, грибные и водорослевые культуры [1, 2].

Химическая переработка масел растительного происхождения сводится, в основном, к их гидрированию, гидролизу и переэтерификации [2]. Процесс гидрирования непредельных жирнокислотных фрагментов представляет интерес для пищевой промышленности (получение твердых жиров и маргарина). Гидролиз (омыление) позволяет получать моющие средства и смазочные материалы. Процесс переэтерификации с последующим разделением сложных эфиров и глицерина ведет к получению продуктов топливного назначения (биодизель), использование которого имеет ряд ограничений (нестабильность при хранении, низкая теплотворная способность и др.). Поэтому существенный интерес представляет прямая каталитическая конверсия масел растительного происхождения (триглицеридов жирных кислот) в УВ, которые после фракционирования могут быть непосредственно использованы в качестве ценных компонентов различных видов топлив. Гидроконверсия растительных масел в топливные продукты при повышенном давлении эффективно протекает на известных катализаторах гидрообессеривания, гидрооблагораживания и др. [1–3].

Эффективными катализаторами переработки триглицеридов жирных кислот в продукты нефтехимии могут выступать высококремнеземные цеолиты структуры MFI, также известные под фирменным названием ZSM-5, комбинированные катализаторы, содержащие цеолиты этого типа и некоторые материалы упорядоченной мезопористой структуры [4– 12]. Наряду с жидкими алифатическими УВ, эти катализаторы позволяют получать и такие ценные продукты нефтехимии, как ароматические УВ (АрУ), олефины C_2-C_4 и полиароматические УВ (ПАУ) (см. схему):

Схема. Превращения триглицеридов жирных кислот на цеолитах MFI [4].

Следует отметить, что число публикаций, содержаших данные об образовании ароматических УВ при конверсии рапсового масла на катализаторах, содержащих цеолиты типа MFI, относительно невелико. Так, в [5] на катализаторе, содержащем смесь 80 мас. % промышленного катализатора крекинга и 20 мас. % цеолита ZSM-5 при конверсии рапсового масла были получены широкие фракции углеводородов (Т_{кип} до 3255°С), причем, в бензиновой фракции присутствовало 30-40 мас. % АрУ. Превращение рапсового масла в присутствии цеолита ЦВМ. модифицированного 0.6 мас. % Pd и 1 мас. % Zn при 360-420°С, давлении 50 атм, объемной скорости подачи рапсового масла 0.6-2.4 ч⁻¹ позволило получить алкан-ароматическую фракцию с выходом до 80 мас. % [6]. В [7] показано, что в ряду цеолитов типа MFI, BEA, и FAU именно цеолит MFI более эффективен в превращении рапсового масла в жидкие УВ. В [8] для этих целей предложено использовать смесь цеолита HZSM-5 и мезопористого алюмосиликата – структурного аналога мезопористого оксида кремния МСМ-41. Различные мезопористые силикаты и алюмосиликаты аморфной структуры при конверсии пальмового масла позволяют получать жидкие УВ (бензиновая, керосиновая и дизельная фракции) с выходом 54-65 мас. % [9]. Смесь мезопористого алюмосиликата MCM-41 и цеолита H-Beta [10] катализировала крекинг пальмового масла с выходом жидких продуктов до 50 мас.%. Гидроконверсия рапсового масла на цеолите НЦВМ структуры MFI с SiO₂/Al₂O₃ = 40 при 1 атм H₂, 470–492°C приводила к образованию жидкой углеводородной фракции с выходом до 80 мас. %, в том числе, выход АрУ 44 мас. % [11, 12].

Таким образом, использование катализаторов на основе цеолитов MFI и мезопористых материалов позволяет в одну стадию перерабатывать триглицериды жирных кислот в жидкие УВ, в том числе, обогащенные АрУ. Но синтез цеолитов MFI — длительная и энергозатратная процедура. Данные об использовании в конверсии триглицеридов жирных кислот цеолитов и мезопористых материалов, полученных ускоренным гидротермально-микроволновым методом, в литературе отсутствуют.

В настоящей работе исследована гидроконверсия рапсового масла с применением катализаторов на основе цеолита структуры MFI и микро-мезопористого композита MFI/MCM-41, синтезированных гидротермально-микроволновым методом. Использование гилротермально-микроволнового синтеза позволяет в десятки раз сократить время синтеза цеолитных и цеолитсодержащих материалов структуры MFI и MFI/MCM-41, а также влияет на их морфологические характеристики. Катализаторы на основе цеолитов, синтезированные с использованием микроволнового воздействия, представляются нам перспективными, поскольку более селективны в получении ароматических УВ из алканов С₃-С₄ [13], а композит MFI/MCM-41. синтезированный новым гидротермально-микроволновым битемплатным методом [14], катализирует превращения изобутанола в компоненты моторных топлив [15].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Цеолит MFI с кремнеземным модулем 40 синтезировали гидротермально-микроволновым методом, описанным в [13]. Кроме того, в матрице синтезированного цеолита MFI путем щелочной обработки (десиликатизации) [16] формировали дополнительную мезопористую структуру. Также в работе был использован микро-мезопористый композит MFI/MCM-41, синтезированный новым гидротермально-микроволновым битемплатным методом, описанным в [14]. Промотирование цеолита MFI ионами цинка проводилось методом полного влагопоглощения раствора нитрата цинка с последующими высушиванием и прокаливанием.

Полученные материалы были охарактеризованы методами рентгенофазового анализа (РФА), дифрактометр Rigaku MiniFlex 600 (Япония), растровой электронной микроскопии (РЭМ), на электронных микроскопах Carl Zeiss NVision 40 (Германия) и JEOL JSM-6390LA (Япония), и термопрограммированной десобции (ТПД) аммиака на приборе УСГА-101 (ООО "УНИСИТ", Россия). Адсорбционные свойства цеолитов MFI опрелеляли на сорбтометре ASAP 2000N Micromeritics. Расчет удельной поверхности по методу БЭТ, объема и среднего диаметра пор образцов проводили по изотермам адсорбции азота при 77К с использованием пакета программ фирмы Micromeritics, входящего в комплектацию прибора. Для определения объема микропор использовали *t*-метод де Бура и Липпенса. Величину удельной площади поверхности микро-мезопористого композита MFI/MCM-41 определяли методом низкотемпературной адсорбции азота с помощью анализатора АТХ-06 (ЗАО "КАТА-КОН", Россия) с использованием модели Брунауэра-Эммета-Теллера (БЭТ) по 5 точкам в диапазоне парциальных давлений азота 0.05-0.25.

Исследовали гидроконверсию непищевого нерафинированного рапсового масла марки "Т" компании ОАО "Орелрастмасло", анализ жирнокислотного состава которого (ГОСТ 30418) показал присутствие в его составе триглицеридов кислот (в мас. %): олеиновой – 3, эруковой – 35, гондоиновой – 9, стеариновой – 3.

Каталитическую гидроконверсию рапсового масла проводили при атмосферном давлении в обогреваемом кварцевом реакторе проточного типа с аксиально расположенным карманом для термопары. В средней части реактора помещали стационарный слой катализатора между слоями кварцевой крошки. Катализатор нагревали до рабочей температуры в токе водорода, после чего. не прекращая подачу водорода, подавали рапсовое масло. Продолжительность опытов, в зависимости от скорости подачи сырья и скорости накопления жидких продуктов, составляла от 1 до 2.5 ч. После этого подачу сырья прекращали, а реактор в течение еще 1–1.5 ч продували водородом с целью более полного вытеснения адсорбированных жидких продуктов. Жидкие продукты реакции конденсировали в приемнике, охлаждаемом погружным охладителем до -80°С. Собранные жидкие продукты взвешивали на аналитических весах с точностью до 0.001 г, а затем подвергали хроматографическому анализу.

Хроматографический анализ жидких органических продуктов и газообразных продуктов реакции выполнен на хроматографах Varian 3600

НЕФТЕХИМИЯ том 57 № 4 2017

(Varian, США) и ГАЛС 311 (Россия), по методикам, описанным в [13, 15].

Продукты реакции идентифицировали методом хромато-масс-спектрометрии на приборе Agilent 5973 с газо-жидкостным хроматографом Agilent 6890 (AgilentTechnologies, США) по методике, описанной в [13, 15]. Экспериментально полученные масс-спектры сопоставляли со стандартными спектрами индивидуальных веществ (библиотека масс-спектров NIST-05), а времена удерживания – с взятыми из программы Scanview 8, Varian, США. Содержание идентифицированных компонентов определяли методом внутренней нормализации.

Полноту превращения рапсового масла по его содержанию в катализате также контролировали методом ИК-Фурье-спектроскопии на приборе "Nicolet 6700" с НПВО-приставкой. Для обработки данных использовали пакет программ OMNIC Specta Material Characterization. 100%-ная степень превращения рапсового масла доказана отсутствием в спектрах жидких продуктов характерных для чистого рапсового масла – пиков карбонильной группы при 1742–1744 см⁻¹ и валентных колебаний связи С–О эфиров высших карбоновых кислот при 1159–1162 см⁻¹.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Впервые использованный в гидрооконверсии рапсового масла синтезированный гидротермально-микроволновым методом цеолит MFI с кремнеземным модулем 40 в зависимости от условий реакции оказался способен образовывать как жидкие УВ, обогащенные ApУ, так и олефины C_2-C_4 (табл. 1).

При 605°С увеличение скорости подачи сырья (W) с 1 до 3.5 г/г кат ч⁻¹ повышает выход жидких УВ с 19 до 29-31%, в том числе АрУ до 27-30%. Одновременно выход олефинов С2-С4, возрастает с 35 до 45 мас. %. При 620°С увеличение W с 1.1 до 3.4 г/г кат ч⁻¹ наоборот, вызывает уменьшение выхода жидких УВ с 37 до 25–28%, в том числе АрУ с 36 до 25–27%. Однако выход олефинов C_2-C_4 снова возрастает - с 29 до 39-43 мас. %. Сочетание относительно невысокой температуры 500°С при высокой W 3.6 г/г кат в ч увеличило выход жидких УВ до 48%, в том числе АрУ до 43%. Выход олефинов $C_2 - C_4$, уменьшился до 27 мас. %, а газообразных продуктов в целом до 42 мас. %. Испытанный нами ранее аналогичный по составу цеолит НЦВМ структуры MFI, полученный традиционным гидротермальным методом, показал выход жидких УВ 80 мас. %, выход АрУ 44 мас. % [11, 12]. Меньшая селективность по АрУ цеолита НЦВМ по сравнению с микроволновым аналогом может быть связана с наличием большого количества кислотных центров - 1287 ммоль/г

№ опыта	1	2	3	4	5	6	7		
<i>T</i> , °C	605 620			500					
<i>W</i> , г/г кат-ра в ч	1.0	1.8	3.5	1.1	2.4	3.4	3.6		
Конверсия, %	100	100	100	100	100	100	100		
Выход продуктов реакции, мас. %.									
Жидкие алифатические УВ	0	1	2	1	0	1	5		
Бензол	4	8	6	10	6	6	5		
Толуол	7	13	11	15	9	10	12		
Ксилолы	3	7	8	7	4	6	15		
АрУ С ₉₊	5	2	2	4	6	5	11		
$CO + CO_2$	12	11	11	12	12	12	6		
Метан	8	5	3	7	8	6	0		
Этан	9	5	3	6	7	6	1		
Этилен	17	18	18	16	19	17	7		
Пропан	3	4	4	4	2	1	4		
Пропилен	14	14	18	11	15	18	13		
Бутан	1	1	1	1	1	0	4		
Бутены	4	4	7	2	5	8	7		
Вода	12	6	5	3	5	3	9		
Кокс, смолы	1	1	1	1	1	1	1		
Суммарный выход, мас. %									
Жидкие УВ	19	31	29	37	25	28	48		
АрУ	19	30	27	36	25	27	43		
Олефины С2-С4	35	36	45	29	39	43	27		
Газы	68	62	65	59	69	68	42		

Таблица 1. Результаты гидроконверсии рапсового масла на цеолите MFI, синтезированном гидротермальномикроволновым методом

(в микроволновом цеолите – 685 ммоль/г) и диффузионными ограничениями, вызванными необычно крупными размерами частиц микроволнового цеолита MFI (рисунок а, б).

Впервые испытанный в гидроконверсии рапсового масла микро-мезопористый композит MFI/MCM-41, синтезированный нами гидротермально-микроволновым методом, показал результаты, приведенные в табл. 2.

Повышение температуры от 495 до 585°С при W = 1.8 г/г кат в ч не повлияло на сравнительно высокий выход олефинов C₂–C₄ – 42–43 мас. %. При 495°С суммарный выход жидких УВ составил 37 мас. %, при этом преобладали жидкие алифатические УВ – выход 18 мас. %. В то же время, выход АрУ не превышал 27 мас. % при 537°С. Увеличение Wдо 2.5–2.8 г/г кат в ч уменьшило выход олефинов C₂–C₄, который в интервале температур 495–530°С составлял 27–38 мас. %. Выход АрУ существенно не изменился и составил 23–26 мас. %. В то же время, наблюдался более высокий суммарный выход жидких УВ, который при

506°С достиг 48 мас. %, причем выход жидких алифатических углеводородов увеличился до 23 мас. %, а образование газообразных продуктов не превышало 42 мас. %.

Использование другого подхода к формированию микромезопористой структуры – щелочной обработки синтезированного нами цеолита MFI, привело к получению катализатора, мало отличавшегося от исходного цеолита MFI, несмотря на отмеченные далее отличия физико-химических характеристик этих катализаторов. Катализатор после щелочной обработки при 610° С и W == 0.7-1.5 г/г кат в ч показал выход жидких УВ 26 мас. %, в том числе АрУ 25 мас. %, и олефинов С2-С4 31-36 мас. %. Образовывалось большое количество газообразных продуктов – до 70 мас. %, с высоким содержанием алканов C₁-C₄. То есть процедура формирования дополнительной мезопористой структуры в цеолите MFI путем щелочной обработки (десиликатизации) не оказала существенного влияния на результаты гидроконверсии рапсового масла.

РЭМ-микрофотографии цеолита MFI (а, б), цеолита MFI, промотированного 2 мас. % Zn (в) и композита MFI/MCM-41 (г), синтезированных гидротермально-микроволновым методом.

Совместная кристаллизация на стадии гидротермально-микроволнового синтеза цеолита MFI и мезопористого силиката MCM-41 ведет к уменьшению ароматизирующей активности цеолита и образованию жидких углеводородов с высоким выходом — до 48 мас. %, содержащих сопоставимые количества алифатических и ароматических углеводородов (табл. 2). При варьировании условий эксперимента этот катализатор позволяет с высоким выходом (43 мас. %) получать олефины C_2-C_4 , также являющиеся ценными продуктами нефтехимии.

Введение в синтезированный гидротермально-микроволновым методом цеолит MFI ионов цинка, промотора процесса ароматизации УВ [13], наоборот, повышает выход АрУ (табл. 3). При 610°С с выходом 47 мас. % образуются жидкие УВ, на 100% состоящие из АрУ. Особенности поведения в катализе гидроконверсии рапсового масла синтезированных и исследованных нами катализаторов могут быть связаны с особенностями их морфологии, пористой структуры и кислотных свойств. Принадлежность цеолита, синтезированного гидротермально-микроволновым методом, к типу MFI доказана методом РФА (характеристические рефлексы при 20 8–9° и 23–25°). Щелочная обработка не повлияла на структуру MFI, но привела к уменьшению интенсивности указанных рефлексов.

На рентгенограмме синтезированного MFI/ MCM-41 [14] наряду с рефлексами цеолита MFI дополнительно присутствуют рефлексы при 20 2.3–4.4°, характерные для MCM-41.

На РЭМ-микрофотографиях синтезированного ускоренным гидротермально-микроволновым методом цеолита MFI наблюдаются овальные частицы необычно большого размера 4—5 мкм (ри-

НЕФТЕХИМИЯ том 57 № 4 2017

№ опыта	1	2	3	4	5	6		
<i>T</i> , °C	495	537	585	495	506	530		
<i>W</i> , г/г кат-ра в ч	1.8	1.8	1.8	2.5	2.5	2.8		
Конверсия %	100	100	100	100	100	100		
Выход продуктов реакции, мас. %								
Жидкие алифатические УВ	18	7	4	16	23	14		
Бензол	2	1	3	1	2	3		
Толуол	4	2	3	2	3	3		
Ксилолы	4	2	3	2	3	3		
АрУ С ₉₊	6	19	12	17	8	13		
$CO + CO_2$	6	8	10	10	8	9		
Метан	1	3	7	2	2	2		
Этан	2	3	7	3	2	2		
Этилен	5	9	14	6	6	6		
Пропан	2	2	2	2	1	1		
Пропилен	19	20	16	15	8	16		
Бутан	2	1	1	1	2	1		
Бутены	18	14	11	10	7	10		
С5 газы	0	0	2	3	6	6		
Вода	6	4	2	5	6	6		
Кокс	2	2	2	4	4	1		
Суммарный выход, мас. %								
Жидкие УВ	37	34	26	39	48	40		
АрУ	19	27	22	23	25	26		
Олефины С2-С4	42	43	43	34	27	38		
Газы	55	60	70	52	42	53		

Таблица 2. Результаты гидроконверсии рапсового масла на композите MFI/MCM-41, синтезированном гидротермально-микроволновым битемплатным методом

сунок а), сформированные ассоциатами призматических кристаллитов (рисунок б). На микрофотографии MFI/MCM-41 видны аналогичные по форме частицы цеолита MFI меньшего размера – 1 мкм, окруженные аморфной матрицей мезопористого оксида кремния MCM-41 (рисунок г). Промотирование цеолита MFI цинком привело к формированию на поверхности частиц цеолита аморфной фазы, предположительно, оксида цинка (рисунок в).

Исследование адсорбционных характеристик катализаторов (табл. 4) показало, что цеолит MFI, полученный с использованием микроволнового воздействия, характеризуется наличием микро-мезопористой структуры: доля микропор и мезопор в суммарном объеме пор составила 54 и 46% соответственно. Проведение щелочной обработки привело не только к увеличению доли мезопор с 46 до 64%, но и к небольшому увеличению удельной поверхности с 264 до 291 м²/г. Промотирование цинком вызвало незначительное уменьшение удельной поверхности и уменьшение доли мезопор.

Удельная поверхность впервые синтезированного гидротермально-микроволновым методом композита MFI/MCM-41 была значительно больше, чем у цеолитов, и составила 680 м²/г. Основной вклад в величину удельной поверхности и объем пор данного материала вносят мезопоры, что указывает на низкое содержание цеолита MFI в композите. Методом BJH установлено бимодальное распределение мезопор в MFI/MCM-41: основная часть мезопор имеет размер порядка 3.8 нм, в то же время присутствует небольшое количество мезопор размером около 20 нм.

Характеристики кислотных свойств катализаторов по данным ТПД аммиака представлены в табл. 5. Центры адсорбции аммиака, характеризующиеся интервалами температур десорбции аммиака 95–245°С, отнесены к слабым кислотным центрам; к центрам средней силы – с интервалами температур десорбции аммиака 266–520°С; к сильнокислотным центрам — с интервалами температур десорбции аммиака 540—707°С. Видно, что всех катализаторах преобладало содержание кислотных центров средней силы. Данные табл. 5 показывают, что после десиликатизации цеолита MFI существенно возросло суммарное количество кислотных центров и доля сильнокислотных центров. Однако после экспериментов по гидроконверсии рапсового масла и регенерации суммарная кислотность MFI и MFIдс уменьшилась до сопоставимых значений 304 и 270 мкмоль/г.

Промотирование цеолита MFI 2 мас. % ионов Zn существенно уменьшило суммарное количество кислотных центров и содержание сильнокислотных центров и центров средней силы.

Микро-мезопористый композит MFI/MCM-41 характеризовался наименьшим суммарным количеством кислотных центров (что может быть связано с низким содержанием фазы цеолита MFI), но значительной долей в их числе сильнокислотных центров.

Таким образом, можно ожидать, что наблюдавшиеся отличия кислотных свойств свежеприготовленных катализаторов будут нивелироваться при протекании гидроконверсии рапсового масла и окислительной регенерации. Более существенными факторами, определяющими каталитические свойства новых катализаторов, являются особенности морфологии (размеры частиц цеолита), различия в пористой структуре MFI и MFI/MCM-41, а также в природе льюисовских кислотных центров (MFI + Zn).

Таблица 3. Результаты и	гидроконверсии рапсового
масла на синтезированно	ом гидротермально-микро-
волновым методом цеоли	те MFI, промотированном
2 мас. % цинка (<i>T</i> = 610 °C)

<i>W</i> , г/г кат-ра в ч	1	3.2						
Выход продуктов реакции, мас. %								
Жидкие алифатические УВ	0	0						
Бензол	18	13						
Толуол	19	17						
Ксилолы	6	9						
АрУ С ₉₊	4	8						
$CO + CO_2$	14	16						
Метан	8	6						
Этан	13	7						
Этилен	6	9						
Пропан	3	3						
Пропилен	2	6						
Бутан	0	0						
Бутены	0	1						
Вода	6	4						
Кокс. смолы	1	1						
Суммарный выход, мас. %								
Жидкие УВ	47	47						
АрУ	47	47						
Олефины С ₂ –С ₄	8	16						
Газы	46	48						

Таблица 4. Удельная поверхность и пористая структура катализаторов

Катализатор	Удельная поверхность, м ² /г			Объем пор, см ³ /г		Доля в суммарном объеме пор, %	
	БЭТ	микропоры*	мезопоры**	микропоры*	мезопоры**	микро	мезо
MFI	264	153	40	0.07	0.06	54	46
MFIдс	291	197	68	0.09	0.16	36	64
MFI + 2%Zn	242	179	31	0.08	0.05	64	36
MFI/MCM-41	680	143	537	0.02	0.35	5	95

* t-метод; ** метод BJH, по адсорбции.

Таблица 5. Кислотные свойства катализаторов по данным ТПД аммиака

Катализатор	Количество	Содержание кислотных центров различной силы, %				
	кислотных центров, мкмоль/г	слабые	средние	сильные		
MFI	685	8	59	33		
MFIдс*	998	9	50	41		
MFI + 2%Zn	390	22	52	26		
MFI/MCM-41	340	11	54	35		

* Цеолит MFI после щелочной обработки (десиликатизации).

ЗАКЛЮЧЕНИЕ

В результате проделанной работы показано, что впервые исследованные в реакции гидроконверсии рапсового масла катализаторы, содержащие синтезированные гидротермально-микроволновым методом цеолит структуры MFI и композит MFI/MCM-41, позволяют получать ценные пролукты нефтехимии – высокооктановые компоненты моторных топлив и олефины С₂-С₄. В целом, синтезированные катализаторы гидроконверсии рапсового масла, не содержащие благородных металлов, при атмосферном давлении проявили высокую активность в получении жидких углеводородов. Использованные методики существенно сокращают время синтеза цеолита MFI и композита MFI/MCM-41. Синтезированный цеолит MFI преимущественно катализирует получение ароматических УВ, а его инкорпорирование в матрицу мезопористого силиката МСМ-41 уменьшает содержание АрУ в жидком углеводородном продукте за счет возрастания выхода жидких алифатических УВ. В то же время, за счет промотирования синтезированного ускоренным гидротермально-микроволновым методом цеолита MFI ионами цинка формируется высокоселективный катализатор. позволяющий получать фракцию жидких продуктов, на 100% состоящую из ароматических УВ.

Авторы выражают благодарность чл-корр. РАН Гехману А. Е. (ИОНХ им. Н.С. Курнакова РАН) за помощь в хромато-масс-спектрометрических исследованиях, Черняку С.А., МГУ им. М.В. Ломоносова (исследования методом растровой электронной микроскопии), Беловой М.В., МГУ им. М.В. Ломоносова, (исследование термодесорбции аммиака), а также РФФИ (грант 16-03-00273), Президиуму РАН (программа П № 25 "Фундаментальные аспекты химии углеродной энергетики") и Минобрнауки России (базовая часть государственного задания "Организация проведения научных исследований", анкета № 1422) за финансовую поддержку работы.

СПИСОК ЛИТЕРАТУРЫ

- Беренблюм А.С., Данюшевский В.Я., Кузнецов П.С., Кацман Е.А., Шамсиев Р.С. // Нефтехимия. 2016. Т. 56. № 5. С. 433 [Pertrol. Chemistry/ 2016. V. 56. № 5. Р. 663].
- 2. Яковлев В.А., Хромова С.А., Бухтияров В.И. // Успехи химии. 2011. Т. 80. № 10. С. 955.
- Цодиков М.В., Яндиева Ф.А., Чистяков А.В., Губанов М.А., Гехман А.Е., Моисеев И.И. // ДАН. 2012. Т. 447. № 5. С. 534.
- Botas J.A., Serrano D.P., García A., Ramos R. // Applied Catalysis B: Environmental. 2014. V. 145. P. 205.
- Dupain X., Costa D.J., Schaverien C.J., Makkee M., Moulijn J.A. // Applied Catalysis B: Environmental. 2007. V. 72. № 1–2. P. 44.
- 6. Цодиков М.В., Чистяков А.В., Губанов М.А., Мурзин В.Ю., Букина З.М., Колесниченко Н.В., Хаджиев С.Н. // Нефтехимия. 2013. Т. 53. № 1. С. 50. [Pertrol. Chemistry/ 2013. V. 53. № 1. Р. 46].
- 7. Chen D., Tracy N.I., Crunkleton D.W, Price. G.L. // Applied Catalysis A: General. 2010. V. 384. P. 206.
- 8. Twaiq F.A., Mohamad A.R., Bhatia S. // Fuel Processing Technology. 2004. V. 85. № 11. P. 1283.
- 9. *Twaiq F.A., Mohamad A.R., Bhatia S. //* Microporous and Mesoporous Materials. 2003. V. 64. P. 95.
- Ooi Y.-S., Zakaria R., Mohamed A.R., Bhatia S. // Applied Catalysis A: General. 2004. V. 274. P. 15.
- 11. Дедов А.Г., Локтев А.С., Гехман А.Е., Косакова Т.В., Исаева Е.А., Карташева М.Н., Моисеев И.И. // Химическая технология. 2011. Т. 12. № 11. С. 654.
- Дедов А.Г., Косакова Т.В., Исаева Е.А., Локтев А.С., Моисеев И.И. // Пат. 2470004 РФ. Б.И. 2012. № 35.
- Дедов А.Г., Локтев А.С., Левченко Д.А., Караваев А.А., Спесивцев Н.А., Пархоменко К.В., Голиков С.Д., Иванов В.К., Ишмурзин А.В., Фомкин А.А., Моисеев И.И. // Химическая технология. 2014. № 5. С. 268.
- 14. Дедов А.Г., Локтев А.С., Караваев А.А., Баранчиков А.Е., Иванов В.К., Тюменова С.И., Моисеев И.И. // ДАН. 2016. Т. 468. № 5. С. 530.
- Дедов А.Г., Локтев А.С., Караваев А.А., Карташева М.Н., Маркин С.В., Моисеев И.И. // ДАН. 2016. Т. 471. № 3. С. 303.
- Abello S., Bonilla A., Perez-Ramirez J. // Applied Catalysis A: General. 2009. V. 364. № 1–2. P. 191.