УДК 665.632:544.47:544.344:547.52

ОСОБЕННОСТИ ДЕЗАКТИВАЦИИ Ga-СОДЕРЖАЩИХ ЦЕОЛИТОВ В ПРОЦЕССЕ АРОМАТИЗАЦИИ ПРОПАНА

© 2017 г. Л. Н. Восмерикова^{1, *}, В. И. Зайковский^{2, 3}, А. Н. Волынкина¹, А. В. Восмериков¹

¹Институт химии нефти СО РАН, Томск ²Институт катализа им. Г.К. Борескова СО РАН, Новосибирск ³Новосибирский государственный университет *E-mail: pika@ipc.tsc.ru Поступила в редакцию 31.03.2016 г.

Исследована конверсия пропана в ароматические углеводороды на Ga-содержащих цеолитных катализаторах, полученных различными способами, и проведен сравнительный анализ их устойчивости к дезактивации. Показано, что Ga-содержащие цеолиты характеризуются высокой активностью и стабильностью в процессе превращения пропана в ароматические углеводороды. Методами термопрограммированной десорбции аммиака, низкотемпературной адсорбции азота, дифференциального термического анализа, просвечивающей электронной микроскопии высокого разрешения и спектроскопии характеристического рентгеновского излучения установлены особенности формирования углеродных отложений на поверхности Ga-содержащих цеолитов в ходе ароматизации пропана. Установлено, что образующийся на катализаторах кокс обладает практически однородной структурой и характеризуется относительно невысокой степенью поликонденсации.

Ключевые слова: пропан, ароматические углеводороды, цеолит, конверсия, активность, селективность, кокс, углеродные отложения.

DOI: 10.7868/S002824211606023X

В настоящее время многие нефтехимические и нефтеперерабатывающие предприятия испытывают острый дефицит нефтяного сырья, устранить который можно путем вовлечения в переработку газообразных углеводородов. Наиболее перспективными каталитическими системами для их превращения в жидкие продукты являются высококремнеземные цеолиты семейства пентасил [1-3]. Модифицирование цеолитов металлами, проявляющими высокую активность в реакциях дегидрирования, значительно повышает селективность образования на них ароматических углеводородов [4-7]. Наряду с активностью и селективностью важным показателем эффективности действия катализаторов является стабильность их работы в процессе ароматизации низших алканов, а также склонность к восстановлению первоначальной активности путем окислительной регенерации. Поэтому изучение процесса дезактивации катализаторов, протекающего в ходе реакции конверсии пропана, природы и количества образующегося на их поверхности кокса, представляет не только научный, но и практический интерес с точки зрения создания высокостабильных каталитических систем для переработки попутного нефтяного и отходящих нефтезаводских газов, содержащих достаточно большое количество пропана, в ценные жидкие продукты.

В данной работе проведен сравнительный анализ устойчивости к дезактивации Ga-содержащих цеолитных катализаторов, полученных различными способами, в процессе ароматизации пропана.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для проведения исследований различными методами были приготовлены Ga-содержащие цеолитные катализаторы:

1) пропитка цеолита водным раствором азотнокислого галлия [Ga(NO₃)₃ \cdot 8H₂O] (обозначение Ga-AC-П);

2) ионный обмен с использованием водного раствора азотнокислого галлия [Ga(NO₃)₃ · 8H₂O] (обозначение Ga-AC-И);

3) механическое смешение порошка цеолита с солью азотнокислого галлия $[Ga(NO_3)_3 \cdot 8H_2O]$ (обозначение Ga-AC-C);

4) гидротермальная кристаллизация реакционной смеси, содержащей Ga, Al и Si (обозначение Ga-AC-Г).

Для приготовления катализаторов по методу 1-3 использовали водородную форму высококремнеземного цеолита типа ZSM-5 с мольным отношением $SiO_2/Al_2O_3 = 40$, полученного в гидротермальных условиях из щелочных алюмокремнегелей с использованием в качестве структурообразующей добавки гексаметилендиамина (ГМДА). Кристаллизацию реакционной смеси проводили в стальных автоклавах емкостью 0.5 л в стационарном режиме в течение 5 сут при температуре 175°С. После окончания кристаллизации твердую фазу отделяли от жидкой фильтрованием, промывали дистиллированной водой до рН промывных вод ≤ 9 , сушили в атмосфере воздуха при 110°С в течение 24 ч и прокаливали для удаления органических включений (темплата) при 550°С в течение 8 ч.

Для перевода в H-форму полученный образец обрабатывали 25%-ным водным раствором хлористого аммония при 90°С в течение 2 ч. После удаления катионов натрия цеолиты в NH_4 -форме сушили при 110°С и прокаливали в атмосфере воздуха при 540°С в течение 6 ч для получения H-формы цеолита.

По методу 4 образец получен изоморфным замещением Si(IV) на Ga(III) в кристаллической решетке цеолита путем частичной замены ионов алюминия на ионы галлия в исходном алюмокремнегеле (SiO₂/Al₂O₃ + Ga₂O₃ = 40).

В качестве источника кремния использовали жидкое стекло состава: 9% Na₂O, 29% SiO₂, 62% H₂O, источниками оксидов алюминия и галлия служили растворы их азотнокислых солей. Расчетная концентрация оксида галлия во всех образцах составляла [Ga₂O₃] = 1.85 мас. %.

Каталитические испытания образцов в процессе превращения пропана (степень чистоты 99.95 об. %) проводили на установке проточного типа при атмосферном давлении, температуре реакции 550-600°С и объемной скорости подачи сырья 500 ч⁻¹. Объем загружаемого в реактор катализатора составлял 3 см³, а размер его частиц 0.5-1.0 мм. Продукты реакции анализировали методом ГЖХ с использованием хроматографа "Хроматэк-Кристалл 5000.2". При определении времени стабильной работы катализатора процесс вели непрерывно в течение нескольких часов, ГЖХ-анализ продуктов реакции осуществляли через равные для всех образцов промежутки времени. Стабильность работы катализатора оценивали по изменению, как степени превращения пропана, так и суммарного выхода и селективности образования ароматических углеводородов.

Микроструктуру катализаторов и продукты уплотнения в отработавших образцах исследовали методом просвечивающей электронной микроскопии высокого разрешения (ПЭМВР) на

НЕФТЕХИМИЯ том 57 № 1 2017

приборе JEM-2010 (JEOL Ltd., Япония) с ускоряющим напряжением 200 кВ и разрешением по решетке 0.14 нм. Образцы для анализа диспергировали ультразвуком в среде этанола и наносили на перфорированные углеродные подложки, закрепленные на медных сетках. Для элементного анализа Ga-содержащих цеолитов применяли спектрометр PHOENIX-EDAX (EDAX Co.), оснащенный Si(Li)-детектором с разрешением по энергии не хуже 130 эВ. По оси абсцисс приведенных спектров EDX отложена энергия рентгеновского излучения *E*, кэB, с дискретностью $\Delta E = 10$ эB, а по оси ординат - соответствующее число импульсов. Для элементного анализа использовали линии, отвечающие краям поглощения Ga L (E = = 1.100 кэВ) и Si K (E = 1.739 кэВ), кроме этого на спектрах отмечены линии: С К (E = 0.266 кэВ), О К (E = 0.515 кэВ), Al K (E = 1.485 кэВ), Fe K (E == 7.107 кэВ), а также Cu L (*E* = 0.932 кэВ) от материала мелной сетки.

Удельная поверхность катализаторов и характер распределения пор по размерам измерены методом низкотемпературной адсорбции азота на приборе Micromeritics ASAP 2020 (США). Расчет удельной поверхности исследуемого образца проводили с использованием многоточечного метода БЭТ. Объем и размер пор определяли с использованием модели ВЈН (Barett–Joyner–Halenda) из данных изотерм адсорбции и десорбции при относительном давлении P/Po = 0.99. Ошибка определения удельной поверхности составляла 5 отн. %.

Термогравиметрическое исследование зауглероженных Ga-содержащих цеолитов проводили на приборе синхронного термического анализа NETZSCH STA 449C в режиме ДСК-ТГ в атмосфере воздуха со скоростью нагрева 10°C/мин с навеской анализируемого образца от 20 до 23 мг.

Тестирование кислотных свойств исходных и проработавших в процессе превращения пропана Ga-содержащих цеолитов проводили методом термопрограммированной десорбции (ТПД) аммиака. Методика проведения ТПД экспериментов описана в работе [8]. Концентрацию кислотных центров в исследуемых образцах определяли по количеству аммиака, десорбирующегося в момент фиксации десорбционных пиков, и выражали в микромолях на 1 г катализатора.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Предварительно проведенные эксперименты по влиянию температуры процесса показали, что на Ga-содержащих цеолитах пропан превращается практически полностью при температуре 550°С, поэтому продолжительность их межрегенерационного пробега определяли при этой температуре. Из приведенных в табл. 1 данных, вид-

но, что способ введения галлия в цеолит не оказывает существенного влияния как на общую и ароматизирующую активности катализаторов, так и на стабильность работы исследуемых каталитических систем. Все образцы показали стабильную работу в течение 8 ч, после чего наблюдается снижение на них конверсии пропана и выхода ароматических углеводородов. Одновременно происходит увеличение селективности образования низших олефинов, а селективность образования алканов изменяется незначительно. Селективность образования ароматических углеводородов составляет 51-57% в течение всего периода испытания катализаторов при температуре реакции 550°С. Повышение температуры реакции до 600°С приводит к достижению близкой к первоначальной активности и селективности Ga-содержащих цеолитов, показанными катализаторами при температуре 550°С. Селективность образования ароматических углеводородов при температуре 550°C сохраняется относительно высокой и после 14-часового испытания катализаторов, что позволяет при необходимости продолжать процесс при этой температуре. Наибольшей активностью и селективностью в отношении образования ароматических углеводородов из пропана в исследуемом временном интервале обладают катализаторы, полученные методами пропитки цеолита и изоморфного замещения. Для установления оптимальной продолжительности реакционного цикла катализатора, после проведения которого не возникало бы затруднений с восстановлением его каталитической активности путем окислительной регенерации, очень важным является изучение процесса коксообразования и природы коксовых отложений.

Образцы, подвергшиеся обработке пропаном, исследовались термогравиметрическим методом. На кривой ДСК для всех рассматриваемых катализаторов присутствуют два пика (рис. 1). Первый пик в области температур 83-93°С соответствует эндотермическому эффекту и обусловлен удалением адсорбированных паров воды и газообразных примесей, что приводит к уменьшению массы образцов. Наименьшая потеря массы в этой области наблюдается на образце Ga-AC-Г, а наибольшая зафиксирована на Ga-содержащем цеолите, полученном методом пропитки, и составляет 2.70%. Интенсивные экзотермические эффекты и пики на кривых ДСК при температуре выше 450°С соответствуют выгоранию кокса. Сравнительный анализ свидетельствует, что наибольшее количество кокса образуется на катализаторе, полученном изоморфным замещением, и составляет 11.35%, что объясняется несколько большим сроком его непрерывной работы и большей потерей каталитической активности. На образцах Ga-AC-П и Ga-AC-С содержится существенно меньше кокса, а образующиеся продукты уплотнения менее конденсированы, что подтверждается более низкой температурой максимумов пиков. Отсутствие четко выраженных низко- и высокотемпературных плеч на кривых ДСК исследуемых образцов указывает на то, что образующийся на них кокс обладает относительно однородной структурой. Для всех катализаторов наблюдаются сравнительно невысокие температуры конца горения кокса (<750°С), свидетельствующие об образовании кокса с невысокой степенью конденсации, что позволяет относительно легко провести их окислительную регенерацию.

Известно, что каталитические свойства Ga-содержащих цеолитов определяются, в первую очередь, природой и составом их активных центров [5, 7, 9]. Кислотные характеристики исходных и закоксованных образцов катализаторов, полученных различными способами, представлены в табл. 2. Видно, что все образцы имеют два типа кислотных центров – слабые и сильные. Катализаторы, полученные пропиткой и механическим смешением, характеризуются наличием кислотных центров одинаковой силы, при этом для пропиточного образца наблюдается более высокое содержание слабых кислотных центров. Цеолит, в который галлий введен методом ионного обмена, содержит более высокую концентрацию слабых кислотных центров, имеющих существенно меньшую силу по сравнению с образцами, полученными другими способами. Введение галлия в цеолит методом гидротермального синтеза приводит к получению цеолита, содержащего наибольшее количество высокотемпературных кислотных центров, обладающих максимальной силой.

После обработки катализаторов пропаном происходит снижение концентрации их кислотных центров. На ТД-кривых образцов, полученных методами ионного обмена и изоморфного замещения, наблюдается сглаживание максимумов высокотемпературных пиков, что не позволяет с высокой точностью определить их положение. Кроме того, для этих образцов после проведения реакции ароматизации пропана характерно наиболее существенное уменьшение концентрации слабых и сильных кислотных центров, что обусловлено интенсивным образованием на их поверхности более конденсированных продуктов уплотнения, что подтверждается данными термогравиметрических исследований. Наименьшие изменения кислотных характеристик наблюдаются для образца, в который галлий введен методом механического смешения. Суммарная концентрация кислотных центров у него снижается в 1.8 раза.

Результаты исследований структурных характеристик Ga-содержащих цеолитов до и после проведения реакции ароматизации пропана представлены в табл. 3. Цеолит, в который галлий введен методом ионного обмена, имеет наибольший объем пор,

Катализатор	<i>t</i> , ч	$T_{\text{реакции}},^{\circ}C$	X, %	A, %	S _{ap} , %	S _{кр} , %	$S_{ger}, \%$
Ga-AC-Г	1	550	95	52.5	55.3	37.7	2.7
	2	550	95	52.1	54.8	37.6	2.8
	4	550	93	51.9	55.8	36.7	2.9
	8	550	90	49.6	55.1	36.0	4.2
	14	550	75	39.8	53.0	33.3	7.9
	15	600	93	47.8	51.4	36.0	7.7
	16	600	86	46.2	53.7	30.1	11.2
	20	600	46	21.2	46.1	17.0	31.3
Gа-АС-И	1	550	95	52.5	55.3	37.3	3.0
	2	550	95	51.3	54.0	38.8	3.0
	4	550	92	50.1	54.5	36.9	4.2
	8	550	82	43.1	52.6	35.7	6.7
	14	550	73	37.5	51.4	33.8	9.3
	15	600	92	46.2	50.2	35.8	9.1
	16	600	86	41.6	48.4	33.9	12.9
	18	600	70	33.5	47.8	28.1	19.1
Ga-AC-П	1	550	96	55.1	57.4	36.2	2.1
	2	550	96	54.4	56.7	37.1	2.2
	4	550	93	52.5	56.5	36.1	3.0
	8	550	87	47.8	54.9	35.6	4.8
	14	550	74	40.8	55.2	31.6	8.2
	15	600	94	55.4	58.9	30.4	6.5
	16	600	88	47.8	54.3	31.0	10.2
	18	600	72	36.2	50.3	27.3	17.7
Ga-AC-C	1	550	95	50.6	53.3	39.9	2.6
	2	550	93	50.4	54.2	39.7	3.3
	4	550	89	48.7	54.7	37.1	3.9
	8	550	83	43.5	52.4	37.0	5.7
	14	550	72	38.6	53.6	33.4	8.2
	15	600	93	52.0	55.9	32.6	7.0
	16	600	88	46.9	53.2	32.5	9.8
	18	600	75	38.3	51.0	28.5	15.9

Таблица 1. Изменение каталитических свойств Ga-содержащих цеолитных катализаторов в процессе ароматизации пропана со временем их работы (*t*)

 18
 600
 75
 38.3
 51.0
 28.5
 15.9

 Примечание. Х – конверсия; S_{ap}, S_{kp}, S_{ger} – селективности образования ароматических углеводородов, алканов и алкенов соответственно; А – выход ароматических углеводородов.
 алкенов соответственно; А – выход ароматических углеводородов.

	C		
EXAMPLE I K UCHOTHER CROUCTR	(та-солержаних неолитных	катализаторов до и посл	$\sim 000000000000000000000000000000000000$
Laojinga 2. Referroning enoties	Ой содержащих цеолитных	катализаторов до и посл	c oopaoorkn nponanom

Катализатор	Т _{мак}	c, °C	Концентрация, мкмоль/г			
	T _I	T_{II}	CI	C _{II}	C_{Σ}	
Ga-AC-И	170	420	727	253	980	
Ga-AC-И*	170	Сглажен	244	83	327	
Ga-AC-П	190	415	613	220	833	
Ga-AC-П*	175	405	265	115	380	
Ga-AC-C	190	415	595	220	815	
Ga-AC-C*	175	400	344	109	453	
Ga-AC-Г	200	425	531	330	861	
Ga-AC-Г*	160	Сглажен	202	76	278	

Примечание. $T_{\rm I}$, $T_{\rm II}$ – температуры максимумов низко- и высокотемпературных пиков на термодесорбционных кривых; $C_{\rm I}$, $C_{\rm II}$ и C_{Σ} – концентрации слабых и сильных кислотных центров и их сумма, соответственно. * – образцы после обработки пропаном.

НЕФТЕХИМИЯ том 57 № 1 2017

при этом объем микропор составляет 52%. Катализатор Ga-AC-П обладает наименьшей удельной поверхностью и суммарным объемом пор.

Полученные результаты хорошо согласуются с данными электронной микроскопии, незафиксировавшей наличие галлия в структуре цеолита, полученного методом ионного обмена, и показавшей присутствие галлия в катализаторе Ga-АС-П. Образец Ga-AC-С содержит поры, характеризующиеся самым большим средним диаметром – 6.6 нм, что может быть обусловлено влиянием механического воздействия на структуру цеолита при приготовлении катализатора, при этом суммарный объем пор невелик – 0.21 см³/г. Наименьшее количество микропор (44%) обнаружено для образца, в который галлий введен методом гидротермального синтеза. После проведения реакции для всех образцов, за исключением катализатора Ga-AC-C. наблюдается значительное снижение величины удельной поверхности и суммарного объема пор, при этом наблюдается существенное снижение объема микропор в результате их блокировки коксовыми отложениями. Это, в свою очередь, приводит к некоторому увеличению среднего диаметра пор. Наиболее заметное уменьшение суммарного объема пор и объема микропор после проведения реакции наблюдается для катализатора Ga-AC-Г, у которого соответствующие величины снижаются в 2.5 и 11 раз.

По данным электронной микроскопии цеолит в исследуемых образцах, имеет, в основном, морфологию блочных кристаллов размерами ~1 мкм, которые из-за своей величины плохо просвечиваются электронным пучком. Вследствие этого снимки получали от краев крупных кристаллов, либо мелких частиц цеолита с размерами в несколько десятков нанометров (рис. 2a). Отметим, что полосы решетки на снимках ПЭМВР соответствуют канальной структуре цеолита типа ZSM-5 (рис. 2a, б, в).

В исходном образце Ga-AC-П обнаружены наночастицы галлия в окисленной форме, расположенные на поверхности кристаллов цеолита, размеры частиц GaOx составляют 2-4 нм (показаны стрелками на рис. 2а). По данным EDX содержание Ga здесь составляет 2.8 ат. % (рис. 3а, табл. 4). На снимках ПЭМВР исходного образца Ga-AC-И частиц GaOx гораздо меньше (рис. 2в). Напротив, на поверхности образца Ga-AC-С обнаружены крупные агрегаты GaOx неупорядоченной структуры (рис. 2д), и содержание галлия для отдельных участков этого образца очень высоко (рис. 3б, табл. 4). Снимки ПЭМВР образца Ga-АС-Г показывают однородность внутренней структуры цеолита и полное отсутствие инородных частиц, что соответствует представлению о катионно-дисперсном состоянии галлия

Рис. 1. Термограммы зауглероженных катализаторов: Ga-AC- Γ (а), Ga-AC- Π (б), Ga-AC- Π (в), Ga-AC- Γ (г).

(рис. 2ж). Это согласуется с приведенными в работах [5, 10–12] данными, полученными с привлечением методов XRD, XPS и TEM, которые зафик-

Катализатор	$S_{ m yg},{ m M}^2/{ m r}$	Суммарный объем пор, см ³ /г	Объем микропор, см ³ /г	Средний диаметр пор, нм
Ga-AC-И	397	0.27	0.14	5.9
Ga-AC-И*	106	0.10	0.03	6.5
Ga-AC-П	295	0.19	0.11	6.1
Ga-AC-П*	146	0.11	0.05	6.8
Ga-AC-C	318	0.21	0.12	6.6
Ga-AC-C*	225	0.19	0.09	8.8
Ga-AC-Γ	344	0.25	0.11	6.5
Ga-AC-Γ*	76	0.10	0.01	9.7

Таблица 3. Структурные характеристики Ga-содержащих цеолитных катализаторов до и после обработки пропаном

Примечание. * Образцы после обработки пропаном.

Таблица 4. Атомное отношение Ga L / Si K (%), полуколичественный анализ

Элемент	Ga-AC-П	Ga- AC-П*	Ga-AC-И	Ga- АС-И*	Ga-AC-C	Ga- AC-C*	Ga-AC-Γ	Ga- AC-Г*
Ga L	2.8	2.7	2.4	2.3	42.1	6.2	2.5	2.3
Si K	97.2	97.3	97.6	97.7	57.9	93.8	97.5	97.7

Примечание.* Образцы после обработки пропаном.

сировали присутствие различных катионов галлия, доминирующих в структуре галлоалюмосиликата.

После обработки исследуемых образцов пропаном (Ga-AC-И*, Ga-AC-П*, Ga-AC-И*, Ga-АС-Г*) структура Ga-содержащих цеолитных катализаторов становится практически идентичной. Частиц GaOx в этих образцах не наблюдается (рис. 2 б, з), что указывает о переходе галлия в катионно-дисперсное состояние. В работе [10] показано, что при обработке Ga-содержащих катализаторов водородом или при проведении реакции дегидроциклодимеризации пропана галлий в основном представлен в виде Ga⁰ или Ga¹⁺ соединений. По данным EDX общее содержание галлия в образцах Ga-AC-П*, Ga-AC-И* и Ga-АС-Г* практически такое же, как и до их испытания (табл. 4). В то же время, для образца Ga-AC-С* с крупными частицами нанесенного галлия в исходном состоянии наблюдается неоднородность распределения ионного галлия по цеолиту в отработавшем катализаторе.

Во всех образцах после 18 ч их работы обнаружены отложения углерода двух видов. Первое – небольшое количество графитированного углерода в виде слоя с толщиной до 5 нм, дезактивирующего поверхность цеолита (рис. 26). Как следует из данных табл. 3, это приводит к уменьшению удельной поверхности. Второе – это волокнистый углерод с толщиной волокон 20–30 нм и частицами Fe размерами ~20 нм, расположенными на концах волокон. Отметим, что накопление большого количества волокнистого углерода приводит к фрагментированию и распаду агрегатов ча-

НЕФТЕХИМИЯ том 57 № 1 2017

стиц цеолита, однако поверхность цеолита остается доступной для реагирующих молекул. В образце Ga-AC-И* накоплено достаточно много волокнистого углерода, однако это не приводит к сильному снижению его активности. Механизм роста этого углерода предполагает накопление большого числа волокон в виде рыхлых клубков (рис. 2г), которые "разрыхляют" порошок цеолита, в том числе выносятся отдельные небольшие частицы цеолита. На микроснимке образца Ga-AC-И* представлены такие фрагменты цеолита (1) (рис. 2г), вынесенные углеродом, а также частицы железа (2). Волокна имеют графитоподобную структуру (рис. 2е).

Таким образом, на основании проведенных исследований установлены особенности формирования углеродных отложений на поверхности Ga-содержащих цеолитов в процессе ароматизации пропана. Показано, что после обработки пропаном структура Ga-содержащих цеолитных катализаторов становится практически идентичной, при этом весь галлий переходит в катионнодисперсное состояние. По данным ПЭМВР для всех Ga-содержащих цеолитов обнаружены небольшие отложения графитированного углерода в виде слоя с толщиной до 5 нм, который приводит к дезактивации поверхности цеолитов, а также характерно присутствие нитевидных отложений волокнистого углерода графитоподобной структуры с толщиной волокон 20-30 нм с расположенными на конце частицами Fe. Образование большого количества волокнистого углерода приводит к распаду агрегатов частиц цеолита, од-

Рис. 2. Микроснимки Ga-содержащих цеолитов (* – образцы после обработки пропаном).

нако при этом поверхность катализаторов остается доступной для реагирующих молекул. Образующиеся на Ga-содержащих цеолитных катализаторах

коксовые отложения обладают практически однородной структурой и характеризуются невысокой степенью конденсации, что позволит относи-

Рис. 3. Спектры EDX, полученные от участков, отмеченных в кругах на рис. 2.

тельно легко проводить их окислительную регенерацию.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Дергачев А.А., Лапидус А.Л.* // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2008. Т. LII. № 4. С. 15.
- 2. *Миначев Х.М., Дергачев А.А. //* Итоги науки и техники. Кинетика. Катализ. 1990. Т. 23. С. 3.
- 3. Расулов С.Р., Мустафаева Г.Р., Махмудова Л.А. // Нефтепереработка и нефтехимия. 2012. № 1. С. 36.
- Восмерикова Л.Н., Барбашин Я.Е., Восмериков А.В. // Нефтехимия. 2014. Т. 54. № 6. С. 430 [Petrol. Chemistry. 2014. V. 54. № 6. Р. 420].
- Diaz Y., Melo L., Mediavilla M., Albornoz A., Brito J.L. // J. of Molecular Catalysis A: Chemical. 2005. V. 227. P. 7.

- 6. Зайковский В.И., Восмерикова Л.Н., Восмериков А.В. // Кинетика и катализ. 2012. Т. 53. № 6. С. 778.
- Melo L., Diaz Y., Mediavilla M., Llanos A., Albornoz A., Brito J.L. // Catalysis Today. 2008. V. 133–135. P. 99.
- 8. Восмериков А.В., Ерофеев В.И. // Журн. физ. химии. 1995. Т. 69. № 5. С. 787.
- Mikhailov M.N., Mishin I.V., Kustov L.M., Lapidus A.L. // Microporous and Mesoporous Materials. 2007. V. 104. P. 145.
- Biscardi J., Iglesia E. // Catalysis Today. 1996. V. 31. P. 207.
- 11. *Pereira M.S., Nascimento M.A.C.* // Chem. Phys. Lett. 2005. V. 406. P. 446.
- Joshi Y.V., Thomson K.T. // Catalysis Today. 2005. V. 105. P. 106.