УДК 66.097.3

РОЛЬ СЕРЫ В МОДИФИЦИРОВАНИИ АКТИВНЫХ ЦЕНТРОВ КАТАЛИЗАТОРОВ РИФОРМИНГА

© 2017 г. В. Ю. Трегубенко^{1, 2, *}, А. Г. Проскура¹, А. С. Белый^{1, 2}

¹Институт проблем переработки углеводородов СО РАН, Омск ²Омский государственный технический университет *E-mail: kalinina_ihcp1@mail.ru Поступила в редакцию 15.04.2016 г.

Изучены закономерности взаимодействия сероводорода с поверхностью носителей (оксид алюминия и оксид кремния) и катализаторов (Pt/SiO₂, Pt/Al₂O₃, Re/Al₂O₃, Pt-Re/Al₂O₃). Адсорбция серы на носителях является полностью обратимой. Определены количество необратимо адсорбированной серы (S_{Heo6p}) и соотношения S_{Heo6p} /металл в катализаторах после обработки в среде водорода при 500°С. Осернение приводит к снижению дисперсности платины на 5% и увеличению количества ионной платины на поверхности катализатора. С точки зрения протекания реакции дегидроциклизации *н*-гептана оптимальным количеством серы для осернения катализатора состава 0.25% Pt 0.3% Re/ γ -Al₂O₃ (0.3% Zr) является 0.072 мас. %.

Ключевые слова: катализаторы риформинга, активные центры, осернение, сера, адсорбция серы, дегидроциклизация *н*-гептана.

DOI: 10.7868/S0028242116060204

В начальный период эксплуатации при контакте углеводородного сырья со "свежей" поверхностью предварительно восстановленного катализатора риформинга платина обладает высокой активностью в реакциях гидрогенолиза, что приводит к интенсивному газообразованию, снижению концентрации водорода и, как следствие, к сильному отложению кокса [1]. Это существенно снижает селективность процесса и сокращает длительность рабочего цикла катализатора. Предварительное осернение (сульфидирование) катализаторов риформинга – один из способов повышения их селективности и стабильности, а также способ снижения чувствительности катализаторов к отравляющему действию ядов [2, 3]. Сера, входящая в состав осерняющих агентов, взаимодействует преимущественно с металлическими центрами катализаторов, что приводит к изменению относительных скоростей протекающих на металле реакций [2, 4]. Так, скорости реакций гидрокрекинга снижаются в 100-400 раз, а скорости целевых реакций только в 1.5–2.5 раза [5]. Это свидетельствует о том, что адсорбция серы происходит преимущественно на центрах, отвечающих за гидрогенолиз. Адсорбция серы на платине – структурно-чувствительная реакция [3]. Следовательно, изменять устойчивость металлических катализаторов к соединениям серы возможно, влияя на размер металлических частиц [6], кис-

109

лотность носителя [6, 7] или через образование дополнительных связей с металлом.

Осернение может быть проведено обработкой катализатора различными соединениями серы (сероводород, меркаптаны, сульфиды и полисульфиды), но во всех случаях катализаторы обдувают водородом при повышенных температурах. В этих условиях часть адсорбированной серы удаляется ($S_{oбp}$), но некоторое количество серы остается необратимо адсорбированным на катализаторе ($S_{необp}$) [2, 3, 6], при этом необратимая сера – та, что взаимодействует полностью с металлом. Согласно литературным данным [2, 3], стехиометрия адсорбции серы на платине равна 0.5, для рения близка к 1. Количество $S_{необp}$ в катализаторе определяется температурой обработки и парциальным давлением осерняющего агента в водороде [8].

Известно, что даже небольшое изменение способа приготовления и химического состава катализатора может приводить к существенной разнице в дисперсном и электронном состоянии платины, что, в свою очередь, может быть причиной различий в ее реакционной способности по отношению к соединениям серы. Установлено [9], что при изменении условий приготовления катализаторов риформинга возможно одновременное образование дисперсной металлической платины (Pt^{0}) и ионных форм платины (Pt^{σ}) при широкой вариации их соотношений в

катализаторах. Ионные формы платины (Pt^σ) представляют собой комплексы платины, встроенные в приповерхностные слои алюмооксидного носителя в результате реализации эффектов сильного взаимодействия металл-носитель [10].

Цель работы — изучение закономерностей взаимодействия сероводорода с активными центрами модельных катализаторов риформинга, содержащих Pt^0 - или Pt^{σ} -центры, а также Re, и сопоставить с особенностями взаимодействия H_2S с поверхностью полиметаллических Pt-Re-катализаторов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление катализаторов. В данной работе в качестве носителя использовали оксид кремния марки КСС с содержанием примесей не более 1 ppm, с удельной поверхностью 536 м²/г и эффективным радиусом пор 3.35 нм. Чистый γ -Al₂O₃ и оксид алюминия, содержащий 0.3 мас. % Zr, получали прокаливанием при 630°С гидроксида алюминия — псевдобемита производства ЗАО "Промышленные катализаторы" с содержанием примесей натрия менее 200 ppm и удельной поверхностью 280 м²/г. Введение циркония в носитель осуществляли по методике, описанной в [11], из оксинитрата циркония ZrO(NO₃)₂ · 2H₂O, растворенного в уксусной кислоте.

Нанесенные монометаллические модельные катализаторы Pt/SiO_2 и Pt/Al_2O_3 готовили путем обработки соответствующих носителей водными растворами $Pt(NH_3)_4(OH)_2$ и H_2PtCl_6 соответственно [12]. Ренийсодержащие образцы получены пропиткой Al_2O_3 раствором $HReO_4$. После пропитки катализаторы сушили при $120^{\circ}C$ и прокаливали в токе осушенного воздуха при $500^{\circ}C$ с выдержкой 1 ч.

Биметаллические $Pt-Re/Al_2O_3$ -катализаторы были получены сопропиткой оксида алюминия, используя различные смеси H_2PtCl_6 и $HReO_4$, для того, чтобы получить катализаторы с различными композициями активной фазы. После сушки при $120^{\circ}C$ катализаторы были прокалены при $500^{\circ}C$ в течении 1 ч.

Адсорбция и десорбция серы. Операции восстановления-осернения носителей и катализаторов проводили на технологическом стенде при атмосферном давлении с использованием стеклянного реактора проточного типа. Свежепрокаленные образцы носителей и катализаторов фракции 0.7-1.5 мм загружали в реактор и в токе водорода осуществляли подъем температуры до 500°С за 5 ч с выдержкой 1 ч. При рабочей температуре вводили известное количество H₂S, рассчитанное, исходя из мольных соотношений S/Pt = 0.5 и S/Re = 1. Расход водорода составлял 19 мл/мин. Удаление избыточной слабосвязанной серы качественно и количественно регистрировали с помощью индикаторной трубки, подсоединенной к выходу реактора.

Линейно-колористическая индикаторная трубка предназначена для определения концентрации сероводорода в отходящем ВСГ. В результате реакции индикаторного порошка с веществом (газом или паром) в анализируемом газе, проходящем через трубку, происходит заметное изменение окраски индикаторного порошка. Измерение концентрации вещества производится по высоте изменившего первоначальную окраску слоя индикаторного порошка [13]. В качестве индикаторного порошка использовали силикагель (фракция 0.7-1.0 мм, насыпной вес 0.405 г/см³), пропитанный ацетатом свинца, взятым в двукратном избытке против стехиометрии. Необходимая концентрация пропиточного раствора была определена, исходя из уравнения реакции H₂S с Pb(CH₃COO)₂ и влагоемкости силикагеля. Изначально индикаторная трубка была заполнена порошком белого цвета, а образующийся в ходе реакции сульфид свинца PbS имеет светло-коричневую окраску.

Для обработки результатов измерений индикаторная трубка была откалибрована по сероводороду на пустом реакторе. Калибровочная зависимость описывалась уравнением прямой y == 55.563x, где y – высота окрашенного слоя, мм; x – объем вводимого сероводорода, мл. Коэффициент корреляции (R^2) равен 0.997. Таким образом, следует сделать вывод, что рассматриваемая корреляционная зависимость между величинами x и y по характеру является прямой, по силе – сильной. Точность определения количества выделяющегося сероводорода данным методом составляет 0,018 мл.

Количество поданной (адсорбированной) серы ($S_{полн}$) известно, количество десорбированной серы ($S_{oбp}$) при 500°С в токе водорода определяли экспериментально. Разница между выше упомянутыми величинами позволяет вычислить количество серы, необратимо адсорбированной поверхностью катализатора в представленных условиях (S_{heo6p}).

Дисперсность и состояние платины. Дисперсность металла определяли по методу кислородноводородного титрования [9, 14]. Предварительно восстановленные образцы катализаторов были еще раз восстановлены в течение 2-х ч при 500°С, затем проводили откачку при этой же температуре и охлаждение до 25°С. Количество кислорода (ОТ), пошедшего на титрование предадсорбированного при 150°С водорода, измеряли при комнатной температуре. Дисперсность платины для катализаторов рассчитывали, предполагая, что (ОТ)/Pt_s = 1.5 в соответствии с уравнением PtH + 1.5O = PtO + 0.5H₂O.

Количественную идентификацию атомов платины в различной степени окисления проводили по методике [9]. Метод основан на способности ионной платины образовывать прочные о-донорные связи с водой. Число атомов платины в различных степенях окисления определяли из данных измерения адсорбции кислорода в двух экспериментах. В первом эксперименте определяли общее количество поверхностных атомов Pts. Для этого сначала адсорбировали водород на образце при 150°C, с последующими нагревом до 500°C и вакуумной откачкой до давления 10⁻² мм рт. ст. После охлаждения образца до комнатной температуры проводили адсорбцию кислорода. Определяли количество кислорода (ОС), адсорбированного поверхностными атомами платины. Во втором эксперименте определяли количество кислорода, адсорбированного атомами Pt⁰, когда ионные платиновые центры блокированы предадсорбированной водой. Для этого после стадий восстановления и охлаждения проводили адсорбцию воды (при $P/P_s = 0.05$) в течение 1.5 ч, а затем химическую адсорбцию О2, определяя количество кислорода, адсорбированного поверхностными атомами платины (OC_{H₂O}).

С учетом стехиометрии адсорбции кислорода на атомах платины в различной степени окисления определяли число поверхностных атомов в ионном состоянии в составе активных центров катализатора.

Дегидроциклизация *н*-гептана. Катализаторы тестировали в модельной реакции дегидроциклизации *н*-гептана в проточной установке в изотермическом реакторе идеального вытеснения при температурах 460–520°С и давлении 0.1 МПа, объемной скорости подачи сырья от 8 до 14 ч⁻¹ и соотношении водород/углеводород 5 : 1 (моль). Углеводородные составы продуктов смесей, образующиеся в процессе риформинга, анализировали в режиме "on line" с использованием газового хроматографа, снабженного капиллярной колонкой и пламенно-ионизационным детектором.

По полученным данным вычисляли один из критериев активности — удельную производительность по ароматическим углеводородам (УП, r_{ap}/(r_{кат} ч)), определяемую как количество образовавшихся ароматических углеводородов в граммах на грамме катализатора за 1 ч:

$$\Psi\Pi = \frac{VX_{\rm A}\rho}{100m},$$

где X_A — содержание ароматических углеводородов в парогазе, мас. %; ρ — плотность гептана, г/см³; V — расход гептана, см³/ч; m — масса катализатора, г.

За среднее значение УП принимали показатели при температуре 490°С.

НЕФТЕХИМИЯ том 57 № 1 2017

Таблица 1. Адсорбция (при 25°С) и десорбция (при 500°С) серы на чистых носителях

Носитель	Адсорбция серы, ат S/г × 10 ¹⁹	Десорбция серы, ат S/г×10 ¹⁹
γ -Al ₂ O ₃	0.40	0.40
SiO ₂	0.43	0.42

По результатам тестирования рассчитывали значения констант скоростей основных направлений превращения *н*-гептана (ароматизация – k_a , крекинг – k_c). Величину селективности ароматизации (*S*) определяли как соотношение k_a/k_t , где k_t – общая константа скорости превращения *н*-гептана. Дополнительным критерием селективности катализатора является величина выхода стабильного катализата при определенном содержании ароматических углеводородов в нем. Критерий стабильности – константа дезактивации $K_{да}$, определяемая как отношение УП после переработки 80 см³ гептана к УП после переработки 20 см³ гептана ($K_{да} = УП_{80}/УП_{20}$).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Адсорбция сероводорода на носителях. Из данных табл. 1 и рис. 1 следует, что на немодифицированном оксиде кремния уже при 30°С сероводород десорбируется полностью. Это объясняется слабой физической адсорбцией H₂S на SiO₂ [15].

Согласно литературным данным [16], адсорбция сероводорода протекает на льюисовских кислотных центрах поверхности Al₂O₃ и является физической.

При комнатной температуре чистый или хлорированный оксид алюминия способен адсорби-

Рис. 1. Зависимость доли оставшейся серы на поверхности прокаленных образцов от температуры: $1 - \text{SiO}_2$; 2 - 0.25% Pt/SiO₂.

Рис. 2. Зависимость доли оставшейся серы на поверхности прокаленных образцов от температуры: $1 - Al_2O_3$; 2 - 0.3 мас. % Pt/Al₂O₃.

ровать сероводород [6]. В данной работе была определена емкость Al_2O_3 по сероводороду. В реактор, содержащий 5 г гранул свежепрокаленного γ - Al_2O_3 , при комнатной температуре подавали сероводород со скоростью 0.04 мл/мин. По индикаторной трубке фиксировали проскок сероводорода. В эксперименте было установлено, что адсорбционная емкость Al_2O_3 по сероводороду в данных условиях составляет 10.4 мл/г.

Изучение адсорбции-десорбции сероводорода на прокаленном оксиде алюминия проводили при подаче H_2S при комнатной температуре с последующим нагревом до 500°С и выдержке 1 ч. Из данных табл. 1 и рис. 2 следует, что с поверхности немодифицированного оксида алюминия уже при 140°С сероводород десорбируется полностью. Следовательно, адсорбция серы на прокаленном γ -Al₂O₃ в данных условиях является обратимой.

Известно [6], что при комнатной температуре чистый, предобработанный водородом оксид алюминия, адсорбирует сероводород, который затем полностью десорбируется с носителя в токе H_2 при температуре ниже 500°С. По литературным данным введение хлора в носитель и его количество не влияют на обратимость адсорбции серы. И только присутствие металла в носителе приводит к значительному повышению температуры десорбции серы [6].

Адсорбированный на хлорированном оксиде алюминия при 500°С сероводород также легко удаляется с поверхности носителя в токе водорода при этой же температуре [6].

Обратимый характер адсорбции серы на немодифицированных носителях (SiO₂ и Al_2O_3), позволяет нам оценивать стехиометрию адсорбции серы на нанесенном металле. Адсорбция сероводорода на нанесенных металлических катализаторах. Так как сера в виде H_2S десорбируется с поверхности оксида кремния и оксида алюминия в процессе обработки водородом до 500°C, то возможно изучить адсорбцию сероводорода на металлическом компоненте нанесенных металлических катализаторов.

Рt-содержащие катализаторы. Модельные монометаллические платиновые катализаторы осерняли в соответствии со стехиометрией адсорбции серы на платине, приведенной в литературе S/Pt = 0.5 [2]. Эксперименты проводили с образцами: 0.3 мас. %. платины на Al₂O₃ и 0.25 мас. % платины на SiO₂. Остаточное содержание серы в катализаторе определяли после выдержки в течение 1 ч при 500°С. Катализаторы осерняли во время восстановления активного компонента (платины) до начала развития реакции гидрогенолиза, то есть при температуре не выше 230°С. Описанные условия были выбраны, опираясь на данные о том, что промышленный водородсодержащий газ с концентрацией водорода в диапазоне 80-90 об. % содержит кроме метана и этана также углеводороды С₃ и С₄, которые без предварительного осернения подвергаются гидрогенолизу до метана, в результате чего концентрация водорода значительно снижается, что может привести к разогреву и/или закоксовыванию катализатора.

Осернение катализатора Pt/SiO_2 осуществляли при температуре 150°С. Последующая обработка катализатора в токе водорода в условиях подъема температуры до 500°С приводит к тому, что на металле остается 17.5% от поданного количества серы или $S_{\text{необр}}/Pt = 0.10$ (табл. 2). Зависимости доли оставшейся серы от температуры для Pt-содержащих катализаторов представлены на рис. 1 и 2.

Подачу сероводорода на катализатор Pt/Al_2O_3 осуществляли при рабочей температуре 230°С. В Pt/Al_2O_3 -Сl адсорбция серы происходит на металле и на сильных кислотных центрах Льюиса носителя.

Из данных, приведенных в табл. 2, видно, что Pt/Al_2O_3 катализатор характеризуется значительно более высоким остаточным содержанием серы $S_{\text{необр}}/Pt = 0.27$ по сравнению с Pt/SiO_2 . Десорбция серы в виде H_2S с поверхности катализатора Pt/Al_2O_3 начинается при температуре $370^{\circ}C$ (рис. 2). Вид кривой зависимости доли оставшейся серы от температуры для данного катализатора говорит о большей прочности связи платины на Al_2O_3 с серой, чем Pt/SiO_2 с серой.

По литературным данным [7] количество серы, оставшееся в платиновом катализаторе после восстановления, снижается при уменьшении кислотности поверхности используемого носителя.

Катацизатор	S _{полн}	S _{обр}	S _{Heo6p}	S _{Heoop} /Pt _s
Katahnsatop		(Re, Pt-Re)		
0.3% Pt/Al ₂ O ₃	5.06	2.73	2.33	0.27
0.25%Pt/SiO ₂	4.05	3.34	0.71	0.10
0.3% Re/Al ₂ O ₃ O ₂	9.87	3.00	6.87	0.75
0.3% Re/Al ₂ O ₃ H ₂	9.87	4.81	5.06	0.55
0.25% Pt 0.4% Re/Al ₂ O ₃	17.35	8.78	8.57	0.44
0.25% Pt 0.3% Re/Al ₂ O ₃	13.91	8.74	5.17	0.32
0.25% Pt 0.3% Re/Al ₂ O ₃ (0.3% Zr)	13.66	2.69	10.97	0.67

Таблица 2. Содержание серы в катализаторах

Так, для образца Pt/Al_2O_3 доля платиновых центров $Pt^{\delta+}$ (Pt–S), связанных с серой, после восстановления при 500°С по данным РФЭС составляет 0.55, для $Pt/SiO_2 - 0.2$ [7].

В работе [17] авторы определяли содержание серы в катализаторе Pt/Al_2O_3 методом ИК-спектроскопии. Катализатор сначала прокаливали в токе воздуха при 300°С для того, чтобы сера, адсорбированная на платине, превратилась в сульфатные группы, связанные с носителем, затем подвергали восстановлению в токе H_2 при 400°С с выделением сероводорода. По интенсивности полосы 1370 см⁻¹ оценивали количество необратимо связанной серы $S_{\text{необр}}/Pt$, равное приблизительно 0.44.

Авторы [8] со ссылкой на более ранние источники указывают, что для монометаллических Pt/Al_2O_3 катализаторов соотношение $S_{\text{необр}}/Pt$ составляет 0.4—0.5 при 482°C.

Re-содержащие катализаторы. На рис. 3 представлены зависимости доли оставшейся серы на поверхности прокаленного (1) и восстановленного (2) 0.3 мас. % Re/Al₂O₃ катализаторов. Видно, что для обоих образцов катализаторов температура начала десорбции серы в виде H_2S совпадает и составляет 240°C. В тоже время предварительно восстановленный Re-катализатор после обработки H_2 при 500°C удерживает серы меньше, чем прокаленный (табл. 2). Но даже для прокаленного Re/Al₂O₃ мольное соотношение $S_{\text{необр}}$ /Re в данных условиях меньше, чем приводится в [2]. В работе [18] для прокаленного катализатора после его обработки в среде водорода при 550°C атомное соотношение S/Re = 0.7.

В процессе прокаливания из $HReO_4/Al_2O_3$ образуется Re_2O_7/Al_2O_3 . Сульфидирование такого образца протекает через реакции обмена O–S с образованием сульфида рения ReS_2/Al_2O_3 [8, 19].

Pt-*Re*/*Al*₂*O*₃ *катализаторы*. Изучение адсорбции серы на полиметаллическом катализаторе проводили для образцов, содержащих 0.25% Pt 0.3% Re/Al₂O₃ (с 0.3% Zr и без) и 0.25% Pt 0.4% Re/Al₂O₃, и по своим составам близким к составу промышленных катализаторов риформинга. Подачу сероводорода на катализатор осуществляли в количестве, соответствующем стехиометрии адсорбции серы на платине S/Pt = 0.5 и рении S/Re = 1 [2].

С увеличением количества металлов в образце большая доля серы остается на поверхности катализатора после обработки в токе водорода при 500°С (рис. 4). Стехиометрия необратимой адсорбции серы для катализатора 0.25% Pt 0.3% Re/Al₂O₃ составляет 0.32, а для образца с большим содержанием рения – 0.44 (табл. 2). Кроме того, присутствие циркония в носителе приводит к увеличению S_{необр} в катализаторе и S/(Pt–Re) (табл. 2). Последнее, вероятно, связано с увеличением кислотности цирконийсодержащего оксида алюминия [11], как следствие – изменение адсорбционных свойств металлических центров.

Рис. 3. Зависимость доли оставшейся серы на поверхности 0.3% Re/Al₂O₃ катализатора: *1* – прокаленного; *2* – предварительно восстановленного в среде водорода.

Рис. 4. Зависимость доли оставшейся серы на поверхности прокаленных $Pt-Re/Al_2O_3$ катализаторов от температуры: 1 - 0.25% Pt 0.3% Re/Al_2O_3 (0.3% Zr); 2 - 0.25% Pt 0.4% Re/Al_2O_3 ; 3 - 0.25% Pt 0.3% Re/Al_2O_3 .

Авторами работы [20] также указывается, что хемосорбция серы на металлических катализаторах зависит от электронных свойств металлов, и адсорбция вещества-акцептора, такого как сера, должна быть выше на металлах с низкой электронной плотностью.

В данной работе также была изучена адсорбция-десорбция серы на модифицированном 0.3 мас. % Zr оксиде алюминия. Согласно полученным экспериментальным данным, адсорбция сероводорода при 230°С на цирконийсодержащем Al_2O_3 является полностью обратимой при 500°С, образование связи Zr–S в данных условиях маловероятно.

По термодинамическим данным образование сульфида рения более вероятно, чем сульфидов платины. В то же время сульфид платины частично разлагается при 500°С [21], а ReS₂ начинает восстанавливаться лишь при температуре 660°С [4]. Связь S-Re достаточно прочная. и эти соединения сохраняют устойчивость даже в условиях процесса каталитического риформинга. Изобарно-изотермические потенциалы восстановления низших сульфидов платины и рения водородом при температурах риформинга составляют для PtS $G_{773}^{\circ} = -8 \ \kappa \ Д$ ж/моль, для ReS₂ – +17.2 к Дж/моль. Повышенная чувствительность платинорениевых катализаторов к дезактивации сернистыми соединениями, видимо, обусловлена именно легкостью образования сульфида рения и трудностью его восстановления [4].

Согласно литературным данным [1], осернение катализатора типа 0.3% Pt, 0.3% Re/Al₂O₃ и 0.3% Pt, 0.3% Ir/Al₂O₃ с последующей обработкой водородом при 500°C, обеспечивает остаточное содержание серы около 0.03 мас. % или S/(Pt-Ir) = 0.3 (моль/моль).

В работе [6] показано влияние состава композиции металлической фазы в отношении адсорбции серы на примере системы $Pt-Ir/Al_2O_3$. Так, количество серы, необратимо адсорбированной на одном доступном атоме металла, определенное после обработки при 500°C, увеличивается монотонно от Pt/Al_2O_3 к Ir/Al_2O_3 .

Согласно [8], с уменьшением соотношения Re/Pt возрастает устойчивость катализаторов к сере. На основе данных XPS авторы сделали вывод о том, что в осерненном Pt-Re/Al₂O₃-катализаторе менее, чем 25% поверхностных атомов платины и все поверхностные атомы рения сульфидированы. При анализе состава образца катализатора, взятого с установки каталитического риформинга после удаления обратимо адсорбированной серы, но перед подачей сырья, было определено, что он содержит 0.3% Pt. 0.3% Re. 0.85% Cl и 0.03% S. C учетом полной дисперсности металлов, авторы получили атомное соотношение S/(Pt-Re) = 0.3, что является достаточным количеством серы для покрытия всего Re и около 10% Pt.

Автором [4] при исследовании влияния массового отношения Pt/Re на содержание серы в катализаторе риформинга показано, что с возрастанием Pt/Re соотношения уменьшается содержание серы, что обуславливает различие условий осернения сбалансированных и несбалансированных Pt–Re-катализаторов. Сбалансированный катализатор более устойчив к сере, чем несбалансированный. Так, например, сбалансированные Pt–Re-катализаторы содержали 0.3% Pt, 0.3% Re, 0.85% Cl и 0.03% $S_{\text{необр}}$. Несбалансированные Pt–Re-катализаторы содержали 0.2% Pt, 0.4% Re, 0.88% Cl и 0.04% $S_{\text{необр}}$, количество серы, достаточное для покрытия всего Re и около 10% Pt [8].

Дисперсность и зарядовое состояние платины. Оценку дисперсности и количества платиновых центров в различных состояниях проводили с помощью метода O_2 — H_2 -титрования и хемосорбции O_2 для модельных неосерненного 0.3% Pt и осерненного 0.3% Pt—S-катализаторов. Из данных табл. 3 следует, что осернение приводит к снижению дисперсности платины на 5%, при этом наблюдается увеличение доли ионных форм платины в катализаторе по сравнению с неосерненным. Примерно такое же снижение дисперсности осерненного промышленного Pt—Re/Al₂O₃-катализатора после восстановления при 500°С наблюдали авторы работы [22].

Осернение производит эффект изоляции атомов платины, что делает ее неактивной в реакци-

ях гидрогенолиза, которые являются структурночувствительными реакциями и требуют присутствия на поверхности активных центров с определенным количеством атомов металла. Ансамблевый же эффект, связанный с осернением, заключается в том, что сера в качестве промотора обеспечивает разбавление активной платины в матрице. В результате изоляции атомов платины активность по отношению к реакциям гидрогенолиза уменьшается [3]. Связь, образовавшаяся в результате хемосорбции серы на металле, может изменять электронные свойства атома металла. Кроме того, сера может взаимодействовать с металлом, образуя новые каталитические центры, что увеличивает селективность катализатора. Помимо изложенного следует иметь в виду, что поверхность катализатора состоит из активных центров с различными значениями координационных чисел у поверхностных атомов, которые поразному ускоряют структурно-чувствительные и структурно-нечувствительные реакции. Селективная адсорбция серы может изменять распределение продуктов реакции.

Каталитические измерения. Результаты проведенных каталитических испытаний 0.25% Pt 0.3% Re/γ -Al₂O₃ (0.3% Zr) катализаторов приведены на рис. 5. Содержание 0.072 мас.% S является стехиометрическим количеством согласно соотношениям S/Pt = 0.5 и S/Re = 1, приведенным в литературе [2]. Из рисунка следует, что осернение приводит к снижению УП и возрастанию селективности катализаторов.

Из табл. 4 следует также, что стабильность осерненных Pt-Re-катализаторов выше, чем не-

Таблица 3. Значения дисперсности нанесенной платины 0.3 мас. % Pt/Al₂O₃. Количество платиновых центров в различных состояниях

Образец	Дисперсность Pt, %	Количество поверхностной Pt _S , мкмоль/г _{кат}	
		Pt ^σ	Pt ⁰
0.3% Pt	93	7.01	7.30
0.3% Pt-S	88	11.98	1.48

Таблица 4. Каталитические свойства катализаторов 0.25% Pt 0.3% Re/γ -Al₂O₃ (0.3% Zr)

Количество поданной на осернение серы, мас. %	УП ₄₉₀ , г _{ар} /(г _{кат} ч)	S	Стабиль- ность
0	3.40	0.39	0.95
0.072	2.90	0.42	0.96
0.14	2.52	0.43	0.96

осерненных. Это связано с тем, что сера на Re ограничивает формирование кокса [3, 23], улучшая, таким образом, стабильность катализатора. При этом оптимальным количеством серы для катализатора состава 0.25% Pt 0.3% Re/γ -Al₂O₃ (0.3% Zr) является 0.072 мас. %.

Таким образом, осернение Pt–Re-катализаторов приводит к изменению протекания реакций дегидрогенизации, гидрогенизации и гидрогено-

Рис. 5. Сравнение образцов 0.25% Pt 0.3% Re/ γ -Al₂O₃ (0.3% Zr) в дегидроциклизации *н*-гептана в зависимости от количества поданной на осернение серы: а) зависимость УП от температуры реакции; б) зависимость селективности ароматизации от температуры реакции.

НЕФТЕХИМИЯ том 57 № 1 2017

лиза углеводородов, которые играют важную роль в риформинге. Реакции дегидрогенизации и гидрогенизации, включающие разрыв связей С–Н, протекают при более низких температурах. Гидрогенолиз включает разрыв связей С–С и является затрудненной реакцией, протекающей только при относительно высоких температурах. Соответственно первые реакции имеют место в лигандной сфере моноядерных комплексов металла, а затрудненные реакции второго типа на таких центрах не протекают. Различия между реакциями, включающими разрыв связи С–Н и С–С, объясняются структурной чувствительностью затрудненных реакций на поверхности полиметаллических катализаторов.

ЗАКЛЮЧЕНИЕ

В условиях осернения платина и рений, нанесенные на оксид алюминия, взаимодействуют с серой в диапазоне температур 230–500°С с образованием термостабильных сульфидов. Количество прочносвязанной серы в катализаторах составляет $S_{\text{необр}}/\text{Pt} = 0.27$, $S_{\text{необр}}/\text{Re} = 0.55-0.75$ (моль). Осерненный катализатор $\text{Pt}/\text{Al}_2\text{O}_3$ удерживает серы больше ($S_{\text{необр}}/\text{Pt} = 0.27$), чем Pt/SiO_2 ($S_{\text{необр}}/\text{P} = 0.10$) после обработки H_2 при 500°С.

Осерняемый в ходе восстановления образец Re/Al_2O_3 более прочно связывает серу ($S_{\text{необр}}/Re = 0.75$), чем предварительно восстановленный металлический рений ($S_{\text{необр}}/Re = 0.55$).

Присутствие серы в составе активных центров катализаторов риформинга обуславливает существенные изменения адсорбционных свойств. Процесс осернения приводит к снижению дисперсности платины на 5% и увеличению количества ионной платины на поверхности катализатора.

Проведенные каталитические испытания показали, что осернение способствует снижению активности, повышению селективности и стабильности катализаторов в реакции дегидроциклизации *н*-гептана. Оптимальное количество серы для катализатора состава 0.25% Pt 0.3% Re/ γ -Al₂O₃ (0.3% Zr) – 0.072 мас. %.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Колесников И.М.* Катализ и производство катализаторов. М.: Техника, 2004. 400 с.
- Маслянский Г.Н., Шапиро Р.Н. Каталитический риформинг бензинов. М.: Химия, 1985. 224 с.

- Antos G.J., Aitani A.M., Parera J.M. Catalytic naphtha reforming/ Science and technology. N.Y., Marsel Dekker. 1995. P. 519.
- 4. *Иванчина Э.Д.* Автореферат дис. ... д-ра тех. наук. Томск: Томский политехнический университет. 2002. 44с.
- 5. Соловых А.И., Сомов В.Е., Краев Ю.Л., де Веки А.В. // Нефтепереработка и нефтехимия. 2005. № 9. С. 17.
- 6. Barbier J., Marecot P., Tifouti L., Guenin M., Frety R. // Applied catalysis. 1985. V. 19. № 2. P. 375.
- Regalbuto J.R., Ansel O., Miller J.T. // Topics in Catalysis. 2006. V. 39. № 3–4. P. 237.
- 8. Michel C.G., Bambrick W.E., Ebel R.H. // Fuel Processing Technology. 1993. V. 35. P. 159.
- Belyi A.S., Kiryanov D.I., Smolikov M.D., Zatolokina E.V., Udras I.E., Duplyakin V.K. // Reac. Kinet. Catal. Lett. 1994. V. 53. P. 183.
- 10. Белый А.С., Смоликов М.Д., Кирьянов Д.И., Удрас И.Е. // РХЖ. 2007. Т. 51. № 4. С. 38.
- Удрас И.Е., Затолокина Е.В., Паукштис Е.А., Белый А.С. // Кинетика и катализ. 2010. Т. 51. № 1. С. 88.
- Смоликов М.Д., Джикия О.В., Затолокина Е.В., Кирьянов Д.И., Белый А.С. // Нефтехимия. 2009. Т. 49. № 6. С. 488.
- ГОСТ 22387.9-97. Газы горючие природные. Методы определения сероводорода и меркаптановой серы.
- Fundamental and Applied Catalysis. Metal-Catalysed Reactions of Hydrocarbons / Geoffrey C. Bond // Springer. 2005. p. 666.
- Jaiboon V., Yoosuk B., Prasassarakich P. // Fuel Processing Technology. 2014. V. 128. P. 276.
- Ionescu A., Allouche A., Aycard J.-P., Rajzmann M., Hutschka F. // J. Phys. Chem. B. 2002. V. 106. P. 9359.
- 17. *Melchor A., Garbowski E., Mathieu M.V., Primet M. //* React. Kinet. Catal. Lett. 1985. V. 29. № 2. P. 371.
- Laurenti D., Ninh Thi K.T., Escalona N., Massin L., Vrinat M., Gil Llambias F.J. // Catalysis Today. 2008. V. 130. P. 50.
- 19. Arnoldy P., van den Heijkant, V.H.P. de Beer, Moulijn J.A. // Appl. Cat. 1986. V. 23. № 1. P. 81.
- Yosimura Y., Toba M., Matsui T., Harada M., Ichihashi Y., Bando K.K., Yasuda H., Ishihara H., Morita Y., Kameoka T. // Appl. Cat. 2007. V. 322. P. 152.
- 21. Chang J.-R., Chang S.-L., Lin T.-B. // J. Cat. 1997. V. 169. P. 338.
- Pieck C.L., Gonzales M.B., Parera J.-M. // Appl. Cat. 2001. V. 205. P. 305.
- 23. Shum V.K., Butt J.B., Sachtler W.M.H. // J. Cat. 1985. V. 96. P. 371.

НЕФТЕХИМИЯ том 57 № 1 2017