УДК 665.61+543.54/42

ВЛИЯНИЕ УЛЬТРАЗВУКОВОЙ ОБРАБОТКИ НА СОСТАВ И СВОЙСТВА ПАРАФИНИСТОЙ ВЫСОКОСМОЛИСТОЙ НЕФТИ

© 2016 г. Г. И. Волкова^{1, 2}, Р. В. Ануфриев¹, Н. В. Юдина¹

¹Институт химии нефти СО РАН, Томск ²НИ Томский государственный университет *E-mail: galivvol@yandex.ru* Поступила в редакцию 15.10.2015 г.

Методами хроматомасс-спектрометрии, ИК- и ПМР-спектроскопии, ротационной вискозиметрии исследован состав и вязкостно-температурные свойства парафинистой высокосмолистой нефти, обработанной в ультразвуковом поле. Показано, что ультразвуковая обработка приводит к увеличению в масляной фракции обработанной нефти доли низкомолекулярных *н*-алканов, снижению вязкости и температуры застывания нефти.

Ключевые слова: нефть, компонентный состав, ультразвуковая обработка, вязкость, температура застывания.

DOI: 10.7868/S0028242116050208

В связи с выработкой активных запасов легкой нефти все более востребованными становятся месторождения тяжелых нефтей [1]. Такие проблемные нефти характеризуются высоким содержанием высокомолекулярных *н*-алканов, смолисто-асфальтеновых компонентов, высокими значениями вязкости, температуры застывания и плотности.

В последние годы значительно возрос интерес к возможности применения ультразвуковых технологий для интенсификации процессов переработки, добычи и транспорта нефти путем внедрения комплексов на базе ультразвуковых систем. До середины 20 в. считалось, что в ультразвуковом поле реакции (сонохимические реакции) могут осуществляться только в водных растворах. Первые успешные работы по сонохимии неводных систем показали, что для них также характерно значительное увеличение скорости и повышение селективности сонохимических реакций [2].

Общепринятым в настоящее время считается радикально-цепной механизм разрушения молекул органических соединений под действием ультразвука. Авторы [3] показывают, что ультразвуковое воздействие на молекулы декана приводит к разрыву внутримолекулярных связей с последующей рекомбинацией разнообразных радикалов и образованию новых веществ (H_2 , CH_4 , C_2H_4 , C_3H_6 , C_2H_2 и др.). На примере *н*-декана и *н*-октана показана принципиальная возможность эффективного протекания процессов химической деструкции углеводородов (УВ) по типу химического крекинга [4]. Исследования, направленные на изучение влияния ультразвуковой обработки (УЗО) на структурно-реологические характеристики нефти и нефтепродуктов, многочисленны и часто противоречивы.

Ультразвуковая обработка ароматической нефти, по мнению авторов [5], приводит к разрыву алкилароматических УВ и образованию как свободных радикалов линейного строения, так и радикалов, содержащих ароматическое кольцо (или кольца).

Авторами [6–9] показано, что эффективность УЗО зависит от компонентного состава нефти. После УЗО смолистой парафинистой нефти Альметьевского месторождения наблюдалось снижение температуры застывания на 16°С и вязкости при 10°С – в 6 раз. Время релаксации структурномеханических параметров обработанной нефти достаточно велико: в течение нескольких суток значения вязкости и температуры застывания не достигали первоначальных значений [6]. Ультразвуковое воздействие на высокопарафинистые малосмолистые нефти приводит к повышению вязкости, температуры застывания и количества парафиновых отложений [7].

Уменьшение структурной вязкости высокосмолистой нефти после УЗО связывают также с изменением содержания в ней смол и асфальтенов и влиянием их на дисперсную структуру, а повышение вязкости парафинистой нефти объясняют увеличением степени диспергирования кристаллической фазы парафиновых углеводородов и взаимодействием их с асфальтенами [10]. Однако в работе [11] на примере парафинистых нефтей месторождений Казахстана показано, что с увеличением времени обработки и мощности ультразвукового излучения их плотность и кинематическая вязкость заметно уменьшаются, температура застывания при времени обработки 5 мин снизилась с $+8^{\circ}$ C до -6° C.

Из приведенного обзора работ следует, что УЗО не однозначно влияет на структурно-реологические свойства нефтей различного типа. Более того, до сих пор остается открытым вопрос об изменении структурно-группового состава нефти и ее компонентов после ультразвукового воздействия.

Цель данной работы — исследование влияние ультразвуковой обработки на структурно-реологические свойства и состав парафинистой высокосмолистой нефти.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объекта исследования взята парафинистая высокосмолистая нефть (нефть) с температурой застывания минус 19°С, содержащая 76.8 мас. % масел (в том числе 4.0 мас. % *н*-алканов), 16.1 мас. % силикагелевых смол и 7.1 мас. % асфальтенов. Компонентный состав исходной и обработанной в ультразвуковом поле нефти определяли по стандартным методикам [12].

Акустическую обработку нефти проводили на ультразвуковом дезинтеграторе типа UD-20, на рабочей частоте 22 ± 1.65 кГц, при амплитуде колебания на конце концентратора 16 мкм, интенсивности 6.0 Вт/см². Отбирали 70–80 г образца и обрабатывали в течение заданного времени.

Измерение реологических параметров образцов нефти проводили на вискозиметре Brookfield DV-III ULTRA в широком интервале скоростей сдвига. Температуру застывания образцов определяли на приборе "ИНПН" (Кристалл).

ИК-спектры нефти и ее компонентов регистрировали на FTIR-спектрометре NICOLET 5700 в области 400–4000 см⁻¹. Образцы фракций масел и смол из раствора в CHCl₃ наносили в виде пленки на пластины из KBr. Спектры асфальтенов снимали в таблетках KBr. Обработку ИК-спектров и определения оптической плотности проводили с помощью программного обеспечения "OMNIC 7.2 Thermo Nicolet Corporation". Значения оптической плотности пормировали по оптической плотности полос в области 1465 и 1610 см⁻¹.

Масляную фракцию нефти анализировали методом хроматомасс-спектрометрии на хроматомасс-спектрометрической квадрупольной системе GSMS-DFS "Termo Scientific" по методу MIM (multiple ion monitoring), сканируя масс-хромато-

НЕФТЕХИМИЯ том 56 № 5 2016

граммы по характеристичным ионам в режиме программирования температуры: начальная температура 80°С, конечная 300°С, скорость 4 град/мин. Использовали капиллярную кварцевую колонку длиной 30 м и внутренним диаметром 0.25 мм с неподвижной фазой DB-5MS (толщина пленки 0.35 мкм). В качестве стандарта был использован дейтероаценафтен. Обработку полученных результатов проводили с помощью программы Xcalibur.

Анализ распределения протонов в асфальтенах, выделенных из нефти до и после УЗО, проводили согласно спектрам, полученным на ЯМР-Фурьеспектрометре AVANCE AV 300 фирмы Bruker (Германия). Спектры записаны в растворах CDCl₃, химические сдвиги приведены относительно тетраметилсилана при комнатной температуре. Площади областей H_{ar} , H_{α} , H_{β} , H_{γ} , пропорциональные количеству протонов, дающих эти сигналы, определялись по значениям интегральной кривой полученного спектра [13].

Элементный анализ асфальтенов проводили на CHNS – анализаторе Vario el cube (Германия) [12].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследования, проведенные ранее, показали, что изменение структурно-механических свойств нефтяных систем, обработанных в ультразвуковом поле, зависит от их компонентного состава. Максимальная депрессия температуры застывания и вязкости получена на парафинистых смолистых нефтях при соотношении смолисто-асфальтеновые компоненты: *н*-алканы = 2-8 [6-9]. В парафинистой высокосмолистой нефти, исследуемой в данной работе, это соотношение составляет 5.8. Даже кратковременная обработка этой нефти (1 мин) приводит к снижению динамической вязкости более чем в 2.5 раза (рис. 1а). С увеличением времени воздействия депрессорный эффект усиливается, например, после 15 мин УЗО вязкость в области малых скоростей сдвига палает с 1060 до 60 мПа с.

Синхронно с изменением вязкости снижается температура застывания нефти: после 1 мин акустического воздействия депрессия температуры застывания составляет 10°С, а через 15 мин – 20°С (рис. 1б).

Переход возбужденной нефтяной системы в равновесное состояние после снятия ультразвуковой нагрузки осуществляется в течение довольно длительного периода. Вязкость и температура застывания нефти, обработанной 15 мин, остаются неизменными 5 сут. Через 7 сут вязкостно-температурные характеристики релаксирующей нефти возрастают, однако не достигают первоначальных значений.

Рис. 1. Влияние времени УЗО на динамическую вязкость при 20°С (а) и температуру застывания нефти (б).

Для объяснения полученных эффектов исследован состав нефти и ее компонентов с использованием различных инструментальных методов.

Методом хроматомасс-спектрометрии в масляной фракции нефти обнаружено присутствие *н*-алканов $C_{14}-C_{33}$; максимум распределения в гомологическом ряду приходится на парафин состава $C_{18}H_{38}$ (рис. 3). После ультразвуковой обработки исследуемой нефти положение максимума распределения *н*-алканов не изменяется, но снижается доля твердых углеводородов $C_{17}-C_{33}$ (табл. 1). Увеличение доли низкомолекулярных гомологов в маслах обработанной нефти отражает коэффициент $K = \mu - (C_{14}-C_{20})/\mu - (C_{21}-C_{33})$, характеризующий соотношение легких и тяжелых парафиновых углеводородов нормального строения (табл. 1).

В масляной фракции образцов нефти идентифицированы следующие ароматические компоненты: нормальные алкилбензолы (*н*-АБ), метилалкилбензолы (МАБ), этилалкилбензолы (ЭАБ), триметилалкилбензолы (ТМАБ). Согласно расчетным данным в маслах обработанной нефти снижается содержание ЭАБ и растет – ТМАБ (табл. 1).

Общее количество всех идентифицированных компонентов, включая *н*-алканы, в маслах составило около 56%, поэтому в масляной фракции могут присутствовать другие углеводороды (изоалканы, нафтеновые и ароматические УВ), мигрировавшие из состава сложных структурных единиц в дисперсионную среду, что в комплексе с низкомолекулярными *н*-алканами обеспечивает снижение вязкости и температуры застывания нефти.

Результаты исследования образцов методом ИК-спектроскопии представлены в виде нормированных оптических плотностей полос поглощения (п. п.) на частотах в области 1850–650 см⁻¹. Для определения относительного содержания структурных фрагментов в исследуемых образцах рассчитывали спектральные коэффициенты с использованием в качестве реперов п. п. 1465 и 1600 см⁻¹ [14]. Ароматичность масел, смол и асфальтенов определяли по отношению интенсивностей п. п. всех ароматических С=С-связей (1600 см⁻¹) и алифатических С–Н-связей (1465 см⁻¹). Структуру углеводородной части компонентов нефти оценивали по показателям алифатичность, характеризующую долю парафиновых фрагментов по отношению к ароматическим, и разветвленность – строение парафиновых структур. Алифатичность рассчиты-

Рис. 2. Релаксация вязкости (скорость сдвига 0.56 c^{-1}) при 20° С и температуры застывания нефти после 15 мин УЗО.

НЕФТЕХИМИЯ том 56 № 5 2016

ВЛИЯНИЕ УЛЬТРАЗВУКОВОЙ ОБРАБОТКИ

Рис. 3. Масс-фрагментограммы масел нефти после УЗО по иону с *m/z* 57 (алканы).

НЕФТЕХИМИЯ том 56 № 5 2016

Время УЗО,	Содержание, %			K	Содержание, %			
МИН	C ₁₇ -C ₃₃	C ₁₄ -C ₂₀	C ₂₁ -C ₃₃	Λ	н-АБ	МАБ	ЭАБ	ТМАБ
0	88.7	59.5	40.5	1.47	4.7	9.0	14.7	71.6
5	72.8	62.6	37.4	2.06	4.2	9.2	13.0	75.2
15	75.0	63.6	37.6	1.69	2.8	9.5	9.5	78.3
30	79.9	67.3	32.7	1.75	2.9	9.5	9.3	78.9

Таблица 1. Влияние УЗО на некоторые параметры состава н-алканов и распределение алкилбензолов нефти

Таблица 2. Нормированные оптические плотности полос в ИК-спектрах нефти, фракции масел, смол и асфальтенах

	Положение полосы поглощения, см $^{-1}$										
Образец/время УЗО, мин	1700	1650	1600	1380	1030	850	805	760	725		
		Нормированные оптические плотности, о.е.*									
Нефть/0	_	0.06	0.10	0.53	0.1	0.08	0.11	0.09	0.14		
Нефть/5	_	0.05	0.10	0.53	0.09	0.08	0.10	0.09	0.13		
Нефть/15	_	0.06	0.10	0.53	0.09	0.08	0.11	0.09	0.14		
Масла/0	_	_	0.06	0.51	0.08	0.07	_	0.11	0.16		
Масла/5	_	_	0.06	0.51	0.08	0.07	_	0.11	0.16		
Масла/15	_	_	0.06	0.51	0.07	0.07	_	0.11	0.15		
Смолы/0	0.17	0.14	0.19	0.58	0.26	0.10	0.15	0.13	0.13		
Смолы/5	0.16	0.13	0.18	0.56	0.24	0.10	0.14	0.12	0.13		
Смолы/15	0.14	0.11	0.16	0.54	0.21	0.08	0.12	0.11	0.12		
Асфальтены/0	_	_	0.44	0.76	0.24	0.22	0.25	0.21	0.19		
Асфальтены/2	_	_	0.46	0.75	0.21	0.20	0.22	0.19	0.16		
Асфальтены/5	_	_	0.46	0.75	0.24	0.21	0.22	0.19	0.17		
Асфальтены/10	_	_	0.46	0.78	0.27	0.21	0.22	0.21	0.19		
Асфальтены/15	_	_	0.47	0.78	0.28	0.21	0.22	0.20	0.19		
Асфальтены/20	_	_	0.49	0.77	0.23	0.19	0.22	0.20	0.19		
Асфальтены/25	—	—	0.48	0.76	0.23	0.20	0.22	0.19	0.17		
Асфальтены/30	—	—	0.47	0.80	0.28	0.22	0.26	0.23	0.22		

* Относительно полосы в области 1465 см $^{-1}$.

вали по соотношению суммарной интенсивности п. п. метиленовых групп в парафиновых цепях с числом атомов углерода >4 (720 см⁻¹) и метильных групп (1370 см⁻¹) относительно ароматических C=C_{аром}-связей (1600 см⁻¹) (Σ CH₂ + + CH₃/C=C_{аром}); разветвленность – из отношения интенсивностей п. п. CH₃/CH₂ [14]. Содержание гетероатомных заместителей рассчитывали по п. п. гетероатомных групп, включающих атом кислорода. По п. п. 1030 см⁻¹ оценено содержание сульфоксидных заместителей (SO), 1640 см⁻¹ – карбонильных групп (CO) в амидах, 1700 см⁻¹ – CO в кислотах.

УЗО не приводит к заметным изменениям в ИК-спектрах как нефти, так и фракции масел

(табл. 2). Величины нормированной к 1460 см⁻¹ оптической плотности п. п. сульфоксидов (1030 см⁻¹), CH₂-групп алкильных заместителей длиной более 4 атомов углерода, ароматических структур (860, 820), ароматичность (1600 см⁻¹), разветвленность (1380 см⁻¹) образцов нефти и масляных фракций не изменяются после УЗО. По сравнению с нефтью в масляной фракции отсутствуют п. п. 1650 и 805 см⁻¹, соответствующие амидным фрагментам и полизамещенным аренам.

В маслах обработанной нефти наблюдается увеличение алифатичности (табл. 3). Рост соотношения интенсивностей п. п. CH₃-/CH₂-групп (1380/2921 см⁻¹) может свидетельствовать о сниже-

Образец/время УЗО, мин	Алифатичность, $CH_2 + CH_3/C = C_{apom}$	CH ₃ /CH ₂ ,
Масла/0	10.38	0.20
Масла/5	10.42	0.55
Масла/15	10.55	1.17
Смолы/0	3.68	0.20
Смолы/5	3.80	0.18
Смолы/15	4.08	0.16
Асфальтены/0	1.77	0.32
Асфальтены/2	1.66	0.31
Асфальтены/5	1.68	0.31
Асфальтены/10	1.67	0.36
Асфальтены/15	1.70	0.35
Асфальтены/20	1.57	0.33
Асфальтены/25	1.62	0.32
Асфальтены/30	1.72	0.36

Таблица 3. Данные ИК-спектроскопии образцов

нии средней молекулярной массы [15], что согласуется с данными хромато-масс-спектрометрии.

В ИК-спектрах смол, выделенных из обработанной нефти, наблюдается снижение интенсивности следующих п. п.: 1700 см⁻¹ (карбонильные соединения); в областях 1600, 850, 805, 760 см⁻¹, что свидетельствует о снижении содержания ароматических структур (табл. 2). Также для смол обработанных образцов снижается интенсивность полос 1380 см⁻¹, отвечающих за разветвленность алкильных цепей. Уменьшение содержания сульфоксидов в смолах обработанных образцов отражается на снижении нормированной оптической плотности полос в области 1030 см⁻¹. Следует отметить, что тенденция к уменьшению нормированной оптической плотности рассмотренных полос достаточно слабо выражена. Алифатичность смол увеличивается с ростом продолжительности обработки,

соотношение п. п. CH_3/CH_2 изменяется антибатно (табл. 3).

Более полно методом ИК-спектроскопии исследованы асфальтены нефти, обработанной в течение 2–30 мин (табл. 2). Можно отметить слабую тенденцию к росту условного содержания ароматических структур (1600 см⁻¹). Нормированные плотности полос в "ароматическом триплете" (850, 805, 760 см⁻¹), содержание алкильных звеньев с длиной цепи более четырех атом углерода (725 см⁻¹), разветвленных алкильных цепей (1380 см⁻¹) практически не меняется. Алифатичность асфальтенов, выделенных из обработанной нефти, увеличивается, а соотношение п. п. CH₃/CH₂ падает по сравнению с исходным образцом (табл. 3).

Для характеристики структуры асфальтенов сняты ПМР-спектры и определен их элементный состав. Расчеты ПМР-спектров показывают, что в структуре асфальтенов обработанной нефти не изменяется содержание ароматических протонов, но наблюдается некоторое снижение отношения H_{β}/H_{γ} (табл. 4).

Согласно данным элементного анализа в асфальтенах, выделенных из обработанной нефти, концентрация водорода выше, чем в асфальтенах исходной нефти, что свидетельствует о снижении ароматичности (табл. 5).

Таким образом, проведенные исследования показывают, что ультразвуковая обработка весьма эффективна для улучшения вязкостно-температурных параметров парафинистой нефти с высоким содержанием смолисто-асфальтеновых компонентов. Положительный эффект возрастает с увеличением времени обработки. Достигнутая депрессия вязкости и температуры застывания сохраняется более 7 суг, что достаточно для транспорта нефти на значительное расстояние.

Результаты инструментальных методов свидетельствуют о том, что УЗО в мягких условиях (комнатная температура, время воздействия не более 30 мин) не приводит к заметному изменению соста-

Время УЗО,	I руппы характеристических протонов (отн. ед)								
МИН	H _{ar}	H_{α}	H_{β}	H_{γ}	H_{β}/H_{γ}				
0	0.931	2.179	4.705	1.225	3.841				
2	0.934	2.044	4.317	1.310	3.295				
5	0.935	2.112	4.483	1.166	3.845				
10	0.935	2.306	4.433	1.273	3.482				
15	0.963	2.351	5.055	1.310	3.859				
20	0.929	2.203	4.864	1.549	3.140				
25	0.935	2.154	4.406	1.354	3.254				
30	1.000	2.398	5.328	2.099	2.538				

Таблица 4. Влияние УЗО на содержание протонов в асфальтенах нефти

Время УЗО, мин	Содержание, мас. %							
	С	Н	Ν	S	О (рассч.)	соотношение С/Н		
0	78.5	6.1	1.4	7.7	6.3	12.8		
5	74.3	6.5	1.3	7.1	3.4	11.4		
15	80.2	7.0	1.4	7.9	5.4	11.4		
20	71.7	6.2	1.3	6.5	10.8	11.6		
30	78.5	6.9	1.4	7.8	14.3	11.4		

Таблица 5. Элементный состав асфальтенов нефти

ва компонентов нефти. Улучшение вязкостно-температурных характеристик нефти после УЗО обусловлено, по-видимому, разрушением межмолекулярных связей и перераспределением компонентов нефти между дисперсной фазой и дисперсионной средой нефтяной дисперсной системы.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 15-13-00032).

СПИСОК ЛИТЕРАТУРЫ

- 1. Рощин П.В., Петухов А.В., Васкес Карденас Л.К., Назаров А.Д., Хромых Л.Н. // Нефтегазовая геология. Теория и практика. 2013. Т. 8. № 1.
- 2. *Маргулис М.А.* Звукохимические реакции и сонолюминесценция. М.: Химия, 1986. 288 с.
- Suslick K.S., Gawlenowski J.J., Schubert P.F., Wang H.H. // J. Phys. Chem. 1983. V. 87. P. 2299.
- 4. Бесов А.С., Колтунов К.Ю., Брулев С.О., Кириленко В.Н. // Письма в ЖТФ. 2003. Т. 29. В. 5. С. 71.
- 5. *Клокова Т.П., Володин Ю.А., Глаголева О.Ф.* // Химия и технология топлив и масел. 2006. № 1. С. 32.
- Волкова Г.И., Прозорова И.В., Ануфриев Р.В., Юдина Н.В., Муллакаев М.С., Абрамов В.О. // Нефтепереработка и нефтехимия. 2012. № 2. С. 3.
- Волкова Г. И., Ануфриев Р. В., Прозорова И. В., Литвинец И.В., Юдина Н.В. Химия нефти и газа // Материалы VIII Международной конференции Томск, 24–28 сентября 2012. С. 303.

- 8. Муллакаев М.С., Абрамов В.О., Салтыков Ю.А., Ануфриев Р.В., Волкова Г.И. // Оборудование и технологии для нефтегазового комплекса. 2012. № 6. С. 18.
- 9. Муллакаев М.С., Асылбаев Д.Ф., Прачкин В.Г., Волкова Г.И. // Химическое и нефтегазовое машиностроение. 2013. № 9. С. 11.
- Тухватуллина А.З. Автореферат диссертации на соискание ученой степени кандидата химических наук. Казань, 2013.
- Омароалиев Т.О., Алимбаев К.Р., Сарсенбаева А.У., Нуридинова У. Химия нефти и газа // Материалы IV Международной конференции, Томск 2–6 окт., 2000. Т. 1. Томск: SST – 2000. С. 433.
- Современные методы исследования нефтей (Справочно-методическое пособие) / Под ред. Богомолова А.И., Темянко М.Б., Хотынцевой Л.И. Л.: Недра, 1984. С. 431.
- Огородников В.Д. ЯМР-спектроскопия как метод исследования химического состава нефтей // В сб. "Инструментальные методы исследования нефти". Под ред. Иванова Г.В. Новосибирск: Наука, 1987. С. 49.
- 14. Петрова Л.М., Аббакумова Н.А., Фосс Т.Р., Романов Г.В. // Нефтехимия. 2011. Т. 51. № 4. С. 262 [Petrol. Chemistry. 2011. V. 51. № 4. Р. 325].
- Самедова Ф.И., Гасанова Р.З., Кулиев А.Д., Самедов Э.А. Исследование асфальтенов из ненасыщенных земель Азербайджана // Нефтепереработка и нефтехимия. 2013. С. 25.