УДК 542.941.8:547.59

ОКИСЛИТЕЛЬНОЕ ДЕГИДРИРОВАНИЕ ЦИКЛОГЕКСАНА НА МОДИФИЦИРОВАННЫХ ЦЕОЛИТНЫХ КАТАЛИЗАТОРАХ

© 2016 г. А. М. Алиев, З. А. Шабанова, У. М. Наджаф-Кулиев, С. М. Меджидова

Институт катализа и неорганической химии им. М.Ф. Нагиева НАН Азербайджана, Баку E-mail: itpcht@itphct.ab.az

Поступила в редакцию 09.09.2015 г.

Исследованы каталитические активности модифицированных цеолитов в реакции селективного окислительного дегидрирования циклогексана. Установлено, что полиметаллцеолитный катализатор CuZnCoCr-клиноптилолит (0.5% Cu²⁺, 0.2% Zn²⁺; 0.1% Co²⁺; 0.1% Cr³⁺) проявляет наиболее высокую активность в рассматриваемой реакции. Предложена кинетическая схема механизма протекания реакций и на основе стадийных схем механизма разработана кинетическая модель процесса. Рассчитаны численные значения кинетических параметров.

Ключевые слова: циклогексен, окислительное дегидрирование, гетерогенный катализ, полиметаллцеолитные катализаторы.

DOI: 10.7868/S002824211604002X

Алициклические диеновые углеводороды являются исходным сырьем для синтеза различных классов полифункциональных веществ. Функциональные производные этих соединений в связи с высокой активностью кратной связи используются в синтезе полимерных и композиционных материалов специального назначения, физиологически активных соединений, а также хиральных синтонов для направленного получения аналогов природных соединений и лекарственных препаратов. Одно из перспективных направлений производства циклических непредельных углеводородов – одностадийное каталитическое превращение нафтеновых углеводородов, ресурсы которых в нефтях и продуктах их переработки весьма значительны. Наиболее широко исследована реакция каталитического дегидрирования нафтеновых углеводородов в бескислородном режиме [1–3]. Известно, что это реакция, ограниченная термодинамически, осуществляется в жестких условиях, приводящих к ароматизации и осмолению значительной части углеводородной фракции, а также быстрому закоксовыванию и дезактивации применяемых катализаторов.

Окислительное дегидрирование нафтенов с получением алициклических диеновых углеводородов относится к малоизученным гетерогенно-каталитическим реакциям, протекающим с участием кислорода. Использование в качестве акцепторов водорода молекулярного кислорода позволяет провести процесс в более мягких условиях и предотвратить вышеуказанные осложнения. Каталитические свойства цеолитных катализаторов в реакции окисления циклогексана исследовались в работе [4]. Авторами было установлено, что на фожазитах в основном протекают реакции глубокого и окислительного дегидрирования с образованием диоксида углерода и бензола. Узкопористые цеолиты (содалит, шабазит, эрионит, морденит, клиноптилолит и натролит) проявляют селективность в образовании циклогексена по следующей схеме:

Циклогексадиен-1,3 в продуктах окисления циклогексана на всех исследованных в качестве катализатора цеолитах не был обнаружен; данные по получению циклогексадиена-1,3 окислительным дегидрированием циклогексана на цеолитных катализаторах в литературе отсутствуют.

Описано широкое применение циклогексадиена-1,3 для производства ряда физиологически активных соединений, получения пищевых добавок (шафран), цветочно-фруктовых духов (Poison Dior), различных полимеров и т.д. [5]. С этой точки зрения синтез высокоактивного и селективного катализатора на основе цеолитов для реакции селективного окислительного дегидрирования циклогексана в циклогексадиен-1,3 имеет большое теоретическое и практическое значение.

В настоящей работе приведены результаты исследований окислительного дегидрирования цик-

Цеолит	Х, %	<i>S</i> , %	Выход продуктов реакции, %						
			C ₆ H ₁₀	C ₆ H ₈	C_6H_6	C ₆ H ₁₁ OH	C ₆ H ₁₀ O	CO ₂	
NaY	20.4	_	_	_	3.1	0.3	_	16.6	
NaX	19.2	_	0.9	_	2.7	1.2	0.5	13.9	
NaA	22.3	5.4	16.3	1.2	0.9	2.1	0.7	1.1	
Морденит	16.6	7.8	12.5	1.3	1.1	0.7	0.3	0.7	
Клиноптилолит	23.5	19.5	15.8	4.6	1.7	0.3	0.8	0.3	

Таблица 1. Окислительное дегидрирование циклогексана на различных исходных цеолитах ($T = 380^{\circ}$ C, $V = 2000 \text{ y}^{-1}$, циклогексан : $O_2 = 1 : 1$)

Примечание: Х – конверсия спирта; S – селективность процесса по циклогексадиену-1,3.

логексана молекулярным кислородом с целью выявления условий избирательного образования циклогексадиена-1,3 в присутствии модифицированных цеолитных катализаторов и изучения кинетики и механизма реакции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реакцию осуществляли на лабораторной проточной установке с кварцевым реактором над стационарном слоем катализатора при атмосферном давлении, в температурном интервале $280-390^{\circ}$ С, объемной скорости газовой смеси $1000-3000 \text{ y}^{-1}$ и мольном соотношении циклогексан : O_2 : $N_2 =$ = 1 : (0.24–1) : 5.3. Использованы синтетические цеолиты NaY (SiO₂/Al₂O₃ = λ = 4.2), NaX (λ = 2.9), NaA (λ = 2.0) и природные цеолиты клиноптилотит (λ = 8.68) и морденит (λ = 9.6) азербайджанского месторождения, модифицированные различными катионами переходных и непереходных элементов (Zn, Cu, Co, Cr, Mn, Fe, Mg, Mo и т.д.).

Катализаторы были синтезированы ионообменным методом. Перед ионным обменом природные цеолиты обрабатывали 0.5 N HCl. Количество введенных в состав цеолита элементов было определено ионоспекральным анализом на приборе ICP-MS Agilent 7700 и составляло 0.1–2% от массы цеолита. Использовали катализаторы с размером частиц 0.25–0.63 мм и циклогексан чистотой 99.5%.

Анализ сырья и продуктов реакции осуществляли на газовом хроматографе, непосредственно соединенном с реакционным узлом, в колонке длиной 3 м, заполненной паропаком-Т, в условиях линейно-программированного подъема температуры термостата хроматографа от 50 до 200°С. Анализ продуктов реакции проводили также на газовом хроматографе "Agilent 7890" с массовым детектором "Agilent-5975" с колонкой HP-5 MS длиной 30 м. Полученный циклогексадиен-1,3 был идентифицирован методами хромато-масс-спектрометрии, ИК- и УФ-спектроскопии.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Проведенные исследования позволили выявить как специфические, так и общеизвестные для гетерогенно-окислительных каталитических процессов закономерности окислительного дегидрирования насыщенных алициклических углеводородов и осуществить подбор эффективного катализатора для изучаемой реакции.

Было установлено, что преобразование циклогексана на исследуемых катализаторах происходит по следующим направлениям: окислительное дегидрирование; парциальное и глубокое окисление. Сначала была исследована каталитическая активность исходных цеолитов в реакции окислительного дегидрирования циклогексана. В табл. 1 приведены результаты исследований на цеолитах, не содержаших катионы металлов. Результаты исследования подтвердили, что Na-формы фожазитов, внутренние полости которых доступны молекулам циклогексана, активны только при глубоком окислении и эти цеолиты практически не активируют окислительное дегидрирование циклогексана в циклогексен и циклогексадиен-1,3 [6, 7]. Вероятно, это объясняется прочной адсорбцией циклогексана на фожазитах. В отличие от широкопористых цеолитов (NaX, NaY) узкопористые цеолиты, характеризующиеся малой поверхностью (8.0-20.0 м²/г) и небольшими размерами пор (4.2-4.9 Å) способствуют селективному превращению циклогексана в циклогексен. Из данных табл. 1 следует, что среди катионных форм узкопористых цеолитов наибольший выход циклогексадиена-1,3 наблюдается на природном клиноптилолите.

Введение в состав клиноптилолита катионов металлов, входящих в состав известных катализаторов дегидрирования (Ni, Co, Cr, Zn, Cu, Mn, Mo), приводит к изменению активности этих катализаторов. Было установлено, что влияние катионов этих металлов неодинаково и в отдельности они проявляют относительно низкую каталитическую активность по выходу циклогексадиена-1,3. Так, в изученных условиях проведения реакции (табл. 2), на образцах, модифицированных катионами Zn²⁺ и

Номер	Содержание	Y %	5%	Выход продуктов реакции. %					
опыта цеолита. мас. %		Λ /0	5 /0	C ₆ H ₁₀	C_6H_8	C_6H_6	C ₆ H ₁₀ OH	$C_6H_{10}O$	CO ₂
1	Zn (0.2)	14.3	2.8	0.7	0.4	0.3	12.1*	_	0.8
2	Cr (0.1%)	49.3	9.5	8.8	4.7	15.5	7.9	10.5	1.9
3	Cu (0.5%)	49.7	5.8	3.6	2.9	12.5	10.5	17.7	2.5
4	Co (0.1)	41.6	9.4	6.9	3.9	9.8	6.5	10.6	3.9
5	ZnNi (0.2:01)	18.2	2.7	0.8	0.5	0.9	14.8*	_	1.2
6	CuCr (0.5 : 0.1)	39.3	13.9	0.9	5.5	9.8	7.9	8.6	6.6
7	CuSn (05 : 0.1)	34.1	9.6	2.2	3.3	1.3	6.1	15.3	5.9
8	CuMn (05 : 0.1)	33.9	12.1	3.8	4.1	7.5	_	13.8	4.7
9	CuFe (0.5 : 0.25)	14.6	54.1	0.6	7.9	1.7	3.7	_	0.7
10	CoCr (0.1 : 0.1)	44.1	18.6	5.4	8.2	9.9	10.8	5.5	4.1
11	CoMnCu (0.1 : 0.5 : 0.5)	16.3	41.7	3.5	6.8	1.3	_	3.8	0.9
12	CoMnCr (0.1 : 0.5 : 0.5)	43.1	20.6	11.3	8.9	16.7	_	4.9	1.3
13	CuZnCo (0.5 : 0.2 : 0.1)	45.6	25.8	16.7	11.8	2.1	7.2	6.5	1.3
14	CoMoCr (0.1 : 0.5 : 0.1)	41.4	7.97	7.8	3.3	2.9	13.7	9.3	4.4
15	CuZnCoCr (0.5:0.2:0.1:0.1)	35.8	65.1	—	23.3	0.5	7.1	—	4.9
16	CuZnCoCr (2 : 2 : 1.0 : 0.5)	54.4	29.7	2.5	16.2	3.9	16.9	13.5	1.4

Таблица 2. Окислительное дегидрирование циклогексана на модифицированном природном клиноптилолите $(T = 380^{\circ}\text{C}, V = 2000 \text{ y}^{-1}, \text{C}_{6}\text{H}_{12}: \text{O}_{2}: \text{N}_{2} = 1:1:5.3)$

* Выход гексена.

Ni²⁺, реакция окислительного дегидрирования циклогексана сопровождается деструктивным дегидрированием с образованием гексена (оп. № 1 и 5); модифицированных Cu²⁺, Mn²⁺, Sn²⁺ – парциальным и глубоким окислительным дегидрированием с образованием циклогексанона и диоксида углерода (оп. № 3, 7 и 8), модифицированных Co²⁺, Cr³⁺, Мо²⁺ – легилрированием, паршиальным и глубоким окислением с образованием бензола, шиклогексанона и диоксида углерода (оп. № 2, 4, 10 и 14). В результате проведенных исследований было установлено, что наиболее высокий выход циклогексадиена-1,3 наблюдается на катализаторе CuZnCoCrклиноптилолит, содержащем 0.5% Cu²⁺, 0.2% Zn²⁺, 0.1% Со²⁺; 0.1% Сг³⁺ (оп. № 15). Увеличение концентрации этих катионов в составе катализатора приводит к снижению выхода циклогексадиена-1.3 и повышению выхода продукта парциального окисления (оп. № 16, см. табл. 2).

Таким образом, проведенные исследования показали возможность превращения циклогексана в циклогексадиен-1,3 варьированием структуры и состава цеолитов. Определены оптимальный состав введенных в клиноптилолит катионов (Cu²⁺ – 0.5%; Zn²⁺ – 0.2%; Co²⁺ – 0.1%; Cr³⁺ – 0.1%) и оптимальные условия проведения реакции ($T = 380^{\circ}$ C, $V_{o} = 2000 \text{ y}^{-1}$, C₆H₁₂: O₂: N₂ = 1 : 1 : 5.3), при которых достигается выход циклогексадиена-1,3 23.3% при конверсии циклогексана 35.8%. Кинетические опыты проводили на проточной установке при атмосферном давлении в интервале температур 320–380°С, объемной скорости 500–3000 ч⁻¹, парциального давления реагентов: $P_{C_{cH_{12}}} = 0.05-0.14$ атм.; $P_{O_2} = 0.07-0.25$ атм.

Для определения области протекания реакции была проведена серия опытов при различных размерах зерен катализатора (от 0.25 до 2 мм) и различных линейных скоростях исходного сырья. Результаты исследования влияния размеров частиц катализатора на ход реакции представлены в табл. 3.

Линейную скорость варьировали путем изменения объема катализатора (1.0, 1.5, 2.0, 2.5 см³) с

Таблица 3. Влияние размеров частиц катализатора на ход реакции при мольном соотношении $C_6H_{12}: O_2: N_2 = 1:1:5.3, V_0 = 2000 \text{ y}^{-1}, T = 380^{\circ}\text{C}$

Размер частиц катализатора, мм.	Выход циклогексадие- на-1.3, %	Селективность по циклогексади- ену-1.3, %
0.25-0.40	23.1	65.1
0.40-0.63	23.2	65.2
0.63-1.25	23.3	65.1
1.25-1.60	23.4	65.2
1.60 - 2.00	23.3	65.1

Рис. 1. Зависимость конверсии циклогексана *X* (кривая *I*) и выходов *A* продуктов реакции: циклогексанола (*2*), диоксида-углерода (3), циклогексадиена (*4*), бензола (5) и циклогексена (*6*) от парциальных давлений кислорода при $T = 340^{\circ}$ C, $V = 2000 \text{ y}^{-1}$, $P_{C_6H_{12}} = 0.12$.

сохранением постоянной объемной скорости $(2000 \,\mathrm{v}^{-1})$ при мольном соотношении $\mathrm{C_6H_{12}:O_2:N_2} =$ = 1 : 1 : 5 . 3 и $T = 380^\circ\mathrm{C}$. Эксперименты показали, что изменение линейной скорости исходной смеси не оказывает существенного влияния на основные показатели процесса (выход циклогексадиена-1.3 составляет 23.1–23.4%, селективность по циклогексадиену-1.3 65–65.2%).

На основе проведенных исследований можно заключить, что внешне- и внутреннедиффузионные факторы на скорость процесса не влияют и

Рис. 2. Зависимость конверсии циклогексана *X* (кривая *I*) и выходов *A* продуктов реакции: циклогексадиена (*2*), циклогексанола (*3*), диоксида-утлерода (*4*), бензола (*5*) и циклогексена (*6*) от парциальных давлений циклогексана при T = 360 °C, V = 2000 ч⁻¹, $P_{O_2} = 0.14$.

Рис. 3. Зависимости конверсии (*X*) циклогексана (*1*) и выходов (*A*) продуктов реакции: циклогексадиена (*2*), циклогексанола (*3*), диоксида-углерода (*4*), бензола (5) и циклогексена (*6*) от температуры реакции при мольном соотношении $C_6H_{12}: O_2: N_2 = 1: 1: 5.3$ и $V = 2000 \text{ y}^{-1}$.

реакция окислительного дегидрирования циклогексана на исследуемом катализаторе протекает в кинетической области, в которой все диффузионные этапы значительно быстрее всех химических стадий, составляющих механизм этой реакции. Результаты изучения влияния парциальных давлений реагентов на ход реакции представлены на рис. 1, 2.

Рис. 4. Зависимости конверсии (*X*) циклогексана (*I*) и выходов (*A*) продуктов реакции циклогексадиена (*2*), циклогексанола (*3*), диоксида углерода (*4*), циклогексена (*5*) и бензола (*6*) от объемной скорости при мольном соотношении C_6H_{12} : O_2 : $N_2 = 1$: 1: 5.3 и T = 380°C.

Как видно из рис. 1, увеличение P_{O_2} от 0.07 до 0.17 атм. приводит к повышению выхода циклогексадиена-1,3 от 5.9 до 13.1%, что объясняется увеличением концентрации поверхностного кислорода, а при дальнейшем увеличении P_{O_2} до 0.25 атм практически не изменяется (13.3%). Во всем изученном интервале с повышением парциального давления кислорода выход: циклогексена, бензола, диоксида углерода и циклогексанола и конверсия циклогексана увеличиваются.

Как видно из рис. 2 с ростом парциального давления циклогексана $P_{C_6H_{12}}$ от 0.05 до 0.12 атм выход циклогексадиена-1,3 увеличивается до 11.7%. Дальнейшее увеличение $P_{C_6H_{12}}$ от 0.12 до 0.14 атм приводит к незначительному уменьшению выхода циклогексадиена-1,3 при этом растет выход циклогексена, а выход бензола падает. Это свидетельствует о том, здесь реализуется последовательная схема образования бензола из циклогексана.

Из вышеизложенных результатов следует, что оптимальными парциальными давлениями реагентов, при которых достигается наибольший выход циклогексадиена-1,3, являются: $P_{C_6H_{12}} = 0.12$ атм и $P_{O_2} = 0.14$ атм.

Влияние температуры и объемной скорости на ход реакции исследовано при оптимальных $P_{C_6H_{12}}$ и P_{O_2} и результаты этих исследований представлены на рис. 3, 4. Из рис. 3 следует, что, с повыше-

нием температуры от 320 до 380°С выход циклогексадиена-1,3 непрерывно увеличивается и при 380°С достигает 23.3%, а при дальнейшем повышении температуры (380-390°С) практически не изменяется (23.3-23.7%). Во всем изученном температурном интервале увеличение выхода бензола связано с тем что, из-за высокой реакционной способности циклогексен и циклогексадиен-1,3 быстро преврашаются в бензол. Это свидетельствует о том, что здесь реализуется последовательная схема образования бензола от циклогексана. С повышением температуры также увеличиваются выхода циклогексанола и СО₂. Это связано с тем, что при высоких температурах происходит глубокое окисление циклогексана, циклогексена и циклогексадиена-1,3, а также увеличивается скорость гидратации циклогексена.

С увеличением объемной скорости от 500 до $3000 \ \mathrm{v}^{-1}$ выход бензола, диоксида углерода, циклогексанола и конверсия циклогексана падают, что связано с уменьшением времени контакта (рис. 4), а увеличение выхода циклогексена и циклогесадиена-1,3 с тем, что уменьшение времени контакта препятствует доокислительному дегидрированию этих продуктов в бензол, глубокому окислению в CO₂ и гидратации в циклогексанол.

По полученным экспериментальным данным предложена следующая кинетическая схема протекания реакции окислительного дегидрирования циклогексана на металлцеолитном катализаторе CuZnCoCr-клиноптилолит:

Предположим: циклогексен образуется при взаимодействии адсорбированных молекул циклогексана с диссоциативно адсорбированными молекулами кислорода. Тогда согласно механизму Ленгмюра-Хиншельвуда кинетическое уравнение для этой реакции имеет вид:

$$r_{1} = \frac{k_{1}K_{1}P_{1}\sqrt{K_{2}P_{2}}}{\left(1 + K_{1}P_{1} + \sqrt{K_{2}P_{2}} + K_{3}P_{3} + K_{4}P_{4} + K_{5}P_{5} + K_{6}P_{2}\right)^{2}}.$$
(2)

Циклогексадиен-1,3 образуется при взаимодействии адсорбированных молекул циклогексена с диссоциативно адсорбированными молекулами кислорода. Кинетическое уравнение, соответствующее этому механизму:

$$r_{2} = \frac{k_{2}K_{3}P_{3}\sqrt{K_{2}P_{2}}}{\left(1 + K_{1}P_{1} + \sqrt{K_{2}P_{2}} + K_{3}P_{3} + K_{4}P_{4} + K_{5}P_{5} + K_{6}P_{2}\right)^{2}}.$$
(3)

Образование CO₂ протекает при взаимодействии адсорбированных молекул циклогексена и

НЕФТЕХИМИЯ том 56 № 4 2016

кислорода. Этому механизму соответствует кинетическое уравнение:

$$=\frac{k_7 K_3 P_3 K_6 P_2}{\left(1+K_1 P_1+\sqrt{K_2 P_2}+K_3 P_3+K_4 P_4+K_5 P_5+K_6 P_2\right)^2}.$$
(4)

Реакция образования циклогексанола идет между адсорбированной молекулой циклогексена и молекулой воды из газовой фазы. Кинетическое уравнение соответствующее этому механизму:

$$r_4 = \frac{k_6 K_3 P_3 P_6}{\left(1 + K_1 P_1 + \sqrt{K_2 P_2} + K_3 P_3 + K_4 P_4 + K_5 P_5 + K_6 P_2\right)}.$$
(5)

Согласно кинетической схеме (1) суммарную скорость образования циклогексена можно представить в следующем виде:

$$r_{\rm C_6H_{10}} = r_1 - r_2 - r_3 - r_4 \;. \tag{6}$$

Глубокое окисление циклогексадиена-1,3 происходит при взаимодействии адсорбированных молекул циклогексадиена-1,3 и кислорода и образовании бензола при взаимодействии адсорбированных молекул циклогексадиена-1,3 с диссоциативно адсорбированными молекулами кислорода. На основе этого механизма можно написать следующие уравнения для скорости образования CO₂ и C₆H₆:

$$r_{5} = \frac{k_{5}K_{4}P_{4}K_{6}P_{2}}{\left(1 + K_{1}P_{1} + \sqrt{K_{2}P_{2}} + K_{3}P_{3} + K_{4}P_{4} + K_{5}P_{5} + K_{6}P_{2}\right)^{2}}, (7)$$

$$r_{6} = \frac{k_{3}K_{4}P_{4}\sqrt{K_{2}P_{2}}}{\left(1 + K_{1}P_{1} + \sqrt{K_{2}P_{2}} + K_{3}P_{3} + K_{4}P_{4} + K_{5}P_{5} + K_{6}P_{2}\right)^{2}}. (8)$$

Согласно кинетической схеме (1) уравнения суммарной скорости образования циклогексадиена-1,3 и бензола имеют вид:

$$r_{\rm C_6H_8} = r_2 - r_5 - r_6, \tag{9}$$

$$r_{\rm C_6H_6} = r_6.$$
 (10)

С учетом образования двуокиси углерода при взаимодействии адсорбированных молекул циклогексана и кислорода по кинетическому уравнению:

 $r_7 =$

$$=\frac{k_4K_1P_1K_6P_2}{\left(1+K_1P_1+\sqrt{K_2P_2}+K_3P_3+K_4P_4+K_5P_5+K_6P_2\right)^2}$$
(11)

и согласно кинетической схеме (1) уравнение суммарной скорости образования двуокиси углерода можно представить :

$$r_{\rm CO_2} = r_7 + r_3 + r_5. \tag{12}$$

Уравнение суммарной скорости образования циклогексанола имеет вид

$$r_{\rm C_6H_1,OH} = r_4, \tag{13}$$

где K_i – константы адсорбционного равновесия $\left(K_i = K_i^0 \cdot e^{\frac{Q_i}{RT}}\right), k_i$ - константа скорости реакций $\left(k_i = k_i^0 \cdot e^{-\frac{E}{RT}}\right)$.

Стехиометрические уравнения брутто-механизма образования продуктов реакции можно представить в следующем виде:

$$\begin{split} C_6H_{12} + 1/2O_2 &= C_6H_{10} + H_2O, \\ C_6H_{10} + 1/2O_2 &= C_6H_8 + H_2O, \\ C_6H_8 + 1/2O_2 &= C_6H_6 + H_2O, \\ C_6H_{12} + 9O_2 &= 6CO_2 + 6H_2O, \\ C_6H_{10} + 8.5O_2 &= 6CO_2 + 5H_2O, \\ C_6H_8 + 8O_2 &= 6CO_2 + 4H_2O, \\ C_6H_{10} + H_2O &= C_6H_{11}OH. \end{split}$$

С использованием этих уравнений, выходов продуктов реакции и исходных мольных количеств реагентов определяем текущие мольные скорости в потоке для циклогексана, циклогексена, циклогексадиена-1,3, бензола, диоксида углерода, циклогексанола, кислорода и воды, соответственно по следующим уравнениям:

$$n_{C_{6}H_{12}} = n_{C_{6}H_{12}}^{0} - \left(A_{1}n_{C_{6}H_{12}}^{0} + A_{2}n_{C_{6}H_{12}}^{0} + A_{3}n_{C_{6}H_{12}}^{0} + A_{4}n_{C_{6}H_{12}}^{0} + A_{5}n_{C_{6}H_{12}}^{0}\right) / 100$$

$$n_{C_{6}H_{10}} = A_{1}n_{C_{6}H_{12}}^{0} / 100$$

$$n_{C_{6}H_{8}} = A_{2}n_{C_{6}H_{12}}^{0} / 100$$

$$n_{C_{6}H_{6}} = A_{3}n_{C_{6}H_{12}}^{0} / 100$$

$$n_{C_{6}H_{1}} = A_{5}n_{C_{6}H_{12}}^{0} / 100$$

$$n_{C_{6}H_{10}H} = A_{5}n_{C_{6}H_{12}}^{0} / 100$$

$$n_{C_{6}H_{10}H} = A_{5}n_{C_{6}H_{12}}^{0} / 100$$

$$n_{C_{2}} = n_{O_{2}}^{0} - - - \left(\frac{1}{2}A_{1}n_{C_{6}H_{12}}^{0} + \frac{1}{2}A_{2}n_{C_{6}H_{12}}^{0} + 8.5A_{4}n_{C_{6}H_{12}}^{0}\right) / 100$$

$$n_{H_{2}O} = - \left(A_{1}n_{C_{6}H_{12}}^{0} + A_{2}n_{C_{6}H_{12}}^{0} + A_{3}n_{C_{6}H_{12}}^{0} + 5A_{4}n_{C_{6}H_{12}}^{0}\right) / 100$$

Парциальное давление реагентов выразим уравнением:

НЕФТЕХИМИЯ том 56 № 4 2016

$\ln k_i^0 \Big($	$\ln K_i^0$	$E_i(Q_i),$ ккал/моль		
$\ln k_1^0$	34.18	E_1	25.25	
$\ln k_2^0$	51.77	E_2	31.94	
$\ln k_3^0$	32.24	E_3	10.01	
$\ln k_4^0$	20.86	E_4	35.15	
$\ln k_5^0$	41.52	E_5	21.55	
$\ln k_6^0$	23.17	E_6	17.82	
$\ln k_7^0$	10.51	E_7	39.79	
$\ln K_1^0$	23.16	Q_1	2.49	
$\ln K_2^0$	1.02	Q_2	11.00	
$\ln K_3^0$	8.75	Q_3	8.57	
$\ln K_4^0$	6.84	Q_4	11.00	
$\ln K_5^0$	25.48	Q_5	3.19	
$\ln K_6^0$	3.027	Q_6	2.49	

Таблица 4. Численные значения констант кинетической модели

 $P_i = \frac{n_i}{\sum n_i} P. P_1, P_2, P_3, P_4, P_5, P_6 - парциальное$

давление циклогексана, кислорода, циклогексена, циклогексадиена-1,3, бензола и воды соответственно. A_1 , A_2 , A_3 , A_4 , A_5 — выход циклогексена, циклогексадиена-1,3, бензола, диоксида углерода и циклогексанола, соответственно.

Уравнения (6), (9), (10), (12), (13), (14) составляют кинетическую модель данного процесса. Разработанная кинетическая модель реакции подвергнута статистическому анализу на основании кинетических данных. Расчет предэкспоненциальных множителей реакционных констант $\ln k_i^0 (\ln K_i^0)$, значения энергий активации (E_i^0) и

8 НЕФТЕХИМИЯ том 56 № 4 2016

теплоты адсорбции (Q_i^0) проведен методами "скользящего допуска" и Пауэля с использованием программной системы "Поиск" [8], где целевая функция имела вид:

$$F = \min \sum_{j=1}^{m} \sum_{i=1}^{n} \left(\frac{A_{ji}^{\mathfrak{skc}} - A_{ji}^{\mathfrak{pacy}}}{A_{ji}^{\mathfrak{skc}}} \right)^{2}.$$

 $A_{ji}^{3\kappa c}$, $A_{ji}^{pac 4}$ — экспериментальные и расчетные значения выходов *i*-го компонента в *j*-ем опыте, *m* — число экспериментов, *n* — число компонентов.

Численные значения констант кинетической модели представлены в табл. 4. Расчеты показали, что относительная погрешность экспериментальных и расчетных данных не превышала 10–15%.

На основании проведенных исследований и их обсуждения можно заключить: предложенная кинетическая модель в изученном диапазоне варьирования параметров достаточно хорошо описывает механизм протекания реакции и может быть использована при разработке математической модели процесса

СПИСОК ЛИТЕРАТУРЫ

- 1. Ягодовский В.Д., Псху З.В., Исаева Н.Ю., Ягодовская Т.В., Кифяк Р.А., Беляева К.С. // Журн. физической химии. 2009. Т. 83. № 5. С. 847.
- 2. Bruce E.K., David A.B., Emily A.C. // J. of Molecular Catalysis A. 1998. № 131. P. 39.
- 3. *Rajesh B.B., Nobuko K., Masaru I.* // Catalysis Letters. 2005. № 105. P. 83.
- Тагиев Д.Б., Миначев Х.М. // Успехи химии. 1981. Т. 50. № 11. С. 1935.
- 5. *Миронов В.А., Федорович А.Д., Ахрем А.А. //* Успехи химии. 1983. Т. 52. Вып. № 1. С. 104.
- Миначев Х.М., Тагиев Д.Б., Зульфугаров З.Г., Харламов В.В. // Кинетика и катализ. 1979. Т. 20. № 2. С. 399.
- Brendan C., Mark A.K. // Catalysis letters. 1990. № 4. P. 223.
- Шахтахтинский Т.Н, Бахманов М.Ф., Келбалиев Г.Н. Методы оптимизации процессов химической технологии с программами ЭВМ. Баку: Элм, 1985. с. 260.