УДК 543.51

АНАЛИЗ ПРОДУКТОВ ОЗОНИРОВАНИЯ СЕРНИСТЫХ СОЕДИНЕНИЙ НЕФТИ МЕТОДОМ МАСС-СПЕКТРОМЕТРИИ УЛЬТРАВЫСОКОГО РАЗРЕШЕНИЯ

© 2016 г. А. В. Ставицкая¹, М. Л. Константинова², Р. З. Сафиева^{1, 3}

¹Российский государственный университет нефти и газа им. И.М. Губкина, Москва ²Институт биохимической физики им. Н.М. Эмануэля, Москва ³Национальный минерально-сырьевой университет "Горный", Санкт-Петербург E-mail: stavitsko@mail.ru, safieva@mail.ru Поступила в редакцию 24.06.2015 г.

Описана возможность использования масс-спектрометрии ультравысокого разрешения для анализа серосодержащих компонентов нефти до и после озонирования. Анализ химического состава нефти до и после озонирования проводили при помощи масс-спектрометра ионно-циклотронного резонанса с преобразованием Фурье в комбинации с мягкими методами ионизации образца: фотоионизации при атмосферном давлении, электрораспыления с регистрацией положительных и отрицательных ионов. В статье приводятся основные закономерности изменения состава сернистых компонентов нефти в процессе озонирования на основании масс-спектров ультравысокого разрешения.

Ключевые слова: окисление нефти, озон, озонирование нефти, гетероатомные соединения нефти, сероорганические соединения нефти, масс-спектрометрия ионно-циклотронного резонанса. **DOI:** 10.7868/S0028242116020143

Озонирование — процесс, сильно влияющий на химический состав нефти. Продукты озонирования нефти насчитывают тысячи соединений, анализ которых на молекулярном уровне стал возможен с появлением масс-спектрометрии ультравысокого разрешения, в том числе, ионноциклотронного магнитного резонанса с преобразованиями Фурье (МС-ИЦР ПФ).

В последние десятилетия активно развивается область анализа нефтяных систем различного состава с использованием МС-ИЦР ПФ в комбинации с методами ионизации при атмосферном давлении [1-5]. Данный метод анализа позволяет одновременно идентифицировать тысячи индивидуальных соединений, входящих в состав нефтяной системы. Основное внимание уделяется изучению гетероатомных соелинений нефти, так как именно они оказывают негативное влияние на качество нефтепродуктов, служат источниками вредных выбросов (оксиды серы и азота), образующихся в процессе сгорания, являются ядами для катализаторов, применяемых в нефтепереработке, а также вызывают коррозию аппаратуры (карбоновые кислоты, соединения серы). В тоже время гетероатомные соединения нефти – потенциальный источник полезных продуктов, которые могут найти самостоятельное применение в промышленности. Сульфоксиды и сульфоны, образующиеся при окислении нефтяных сульфидов, являются хорошими ПАВ для металлургической промышленности, а сульфокислоты, продукты глубокого окисления сернистых соединений нефти, обладают хорошими пенообразующими свойствами.

Окислительное обессеривание нефтяного сырья, в том числе, озоном, может стать хорошим дополнением к процессам гидрообессеривания [6], а также позволит использовать получившиеся в процессе окисления ценные химические соединения [7].

Известно, что процесс озонирования нефти включает в себя ряд последовательных и параллельных реакций электрофильного присоединения озона к соединениям нефти [8]. Константы скорости озонирования некоторых органических соединений, входящих в состав нефти, представлены для индивидуальных веществ в работе [9]: наиболее реакционноспособными являются диалкилсульфиды (K = $1.5 \times 10^3 - 1.9 \times 10^3$ л моль⁻¹ c⁻¹), полиароматические соединения (K = 4×10^2 л моль⁻¹ c⁻¹) и фенолы ($n \times 10^2 - n \times 10^3$ л моль⁻¹ c⁻¹).

В настоящей работе показана возможность использования МС-ИЦР ПФ в качестве метода изучения химического состава сероорганических соединений нефти (меркаптанов, сульфидов, тиофенов) до и после озонирования. Метод может стать эффективным способом изучения взаимодействия соединений нефти с озоном и регулирования процесса. Недостатком метода является невозможность установления точной структуры соединений без использования дополнительных опций, а также лишь полуколичественное определение концентраций исследуемых соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Озонирование. Растворенную в гексане нефть с известными характеристиками (таблица) подвергали озонированию при 20°С в течение 3, 7 и 18 мин по методике [9].

Для контролирования полноты связывания озона, озон-кислородную смесь, отходящую от реактора, и часть озон-кислородной смеси, выходящей из генератора озона, направляли в колориметр с УФ-детектором, действие которого основано на поглощении озоном излучения с длиной волны 300–340 нм. Начальную концентрацию озона сравнивали с концентрацией озона, выходящего из реактора, по данной разности определяли количество прореагировавшего озона.

Масс-спектрометрия. Масс-спектрометрия ультравысокого разрешения была использована для анализа химического состава сероорганических соелинений нефти до и после озонирования. Все измерения проволили на масс-спектрометре ФП ИЦР (LTQ-FT Ultra, Thermo Scientific). Фотоионизация при атмосферном давлении (ФИАД), ионизация электрораспылением с регистрацией отрицательных (ИЭР (-)) и положительных ионов (ИЭР(+)) выбраны в качестве методов мягкой ионизации [10]. Измерения проводили в интервале m/z 200-1200 Да. Масс-спектры соединений нефти, зарегистрированные с использованием мягких методов ионизации, практически не содержат фрагментных ионов. В комбинации с высокой разрешаюшей способностью (>750000 на m/z 400) прибора одновременно можно получить сведения о более чем 10000 соединений, находящихся в нефти [11].

Для проведения измерений с использованием ФИАД были использованы толуольные растворы образцов нефтей с концентрацией 250 ppm как до, так и после озонирования. Для проведения измерений при помощи ИЭР все образцы растворяли в смеси толуол : метанол (30 : 70) до концентраций:

– ИЭР(–): 500 ppm – нефть до озонирования,
250 ppm – нефть после озонирования;

 – ИЭР(+): 250 ppm нефть до и после озонирования.

Масс-спектры были откалиброваны смесью с соединениями, имеющими массы 322.04812, 622.02896 и 922.00980 Да. Итоговая ошибка измерения точной массы ионов составила ±1.5 ppm.

Анализ данных. Программное обеспечение Xcalibur (Thermo Scientific) использовали для первоначальной обработки полученных спектров. Последующая обработка проводилась при помощи пакета Composer (Sierra Analytics, Modesto, CA). Химические формулы соответствовали критериям:

НЕФТЕХИМИЯ том 56 № 4 2016

Физико-химические характеристики исследуемой нефти

778.2 2.32
2.32
0.76
3
0.01
1.2

число атомов водорода (H) неограниченно, 0 < C < < 100, 0 < O < 3 для исходной нефти, 0 < O < 9 для озонированной нефти, 0 < N < 3, 0 < S < 3, 0 < DBE < < 40. Полученные соединения были отсортированы по классам на основании дефекта массы Кендрика (ДМК), вычисляемом по формуле [12]:

$$\Delta MK = (HMK - macca IUPAC \times$$

× (14.00000/14.01565)) × 1000,

где НМК — масса Кендрика, округленная до ближайшего значения.

Каждый класс соединений был поделен на типы, основываясь на степени протонодефицита, косвенно характеризующей ароматичность. Степень протонодефицита выражалась через эквивалент двойных связей (DBE) [11]:

$$DBE = c - h/2 + n/2 + 1$$
,

где c число атомов углерода; h — число атомов водорода; n — число атомов азота.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По данным анализа химического состава озонируемой нефти (рис. 1) можно судить о процессах, происходящих на различных стадиях реакции.

Фотоионизация при атмосферном давлении (ФИАД). ФИАД использовали для идентификации малополярных серосодержащих соединений

Рис. 1. Кривая поглощения озона исследуемой нефтью. Круги соответствуют точкам отбора проб.

Рис. 2. Распределение соединений S-класса по интенсивности в зависимости от DBE нефти до озонирования. Спектр получен при помощи ФИАД.

(тиофены, бензотиофены (БТ), дибензотиофены (ДБТ), дибензонафтатиофены (ДБНТ) и др.).

На рис. 2 отображен S-класс соединений, обнаруженный в нефти до озонирования в количестве 155 индивидуальных брутто-формул с молекулярной массой от 202 до 566 Да, DBE от 6 до 17 и числом атомов углерода в молекуле от 13 до 40. Найдено, что в зависимости от DBE интенсивность сигналов в масс-спектре дискретно изменяется: наиболее выраженные DBE = 6, 9, 12, следующие по интенсивности DBE = 7, 10. DBE = 6 соответствует гомологам БТ, DBE = 9 соответствует гомологам ДБТ, а DBE = 12 соответствует гомологам ДБНТ, соединения с DBE = 7 – гомологам БТ с дополнительным нафтеновым циклом, соединения DBE = 10 - 10гомологам ДБТ с дополнительным нафтеновым циклом. Поскольку мы предполагаем, что эффективность ионизации указанных соединений близка, соотношение интенсивностей соответствуюших пиков ионов позволяет отметить. что концентрация гомологов ДБТ в образце нефти выше, чем остальных соединений данного класса.

На рис. 3 представлены сравнительные диаграммы соединений S-класса для образцов нефти до и после озонирования. Видно, что после 3 мин озонирования количество брутто-формул в Sклассе снижается. Из спектра исчезают соединения с DBE = 6-8. Это свидетельствует о том, что в первую очередь с озоном реагируют гомологи бензотиофена и его производные с 12 нафтеновыми циклами. Также в спектре не идентифицированы соединения с DBE = 16, 17, то есть полиароматические соединения, которые также активно взаимодействуют с озоном. После 7 мин озонирования популяция класса сокращается до 74 брутто-формул с DBE 914. Максимальное количество в образце после 7 мин озонирования наблюдается для соединений с DBE = 9, т.е. дибензотиофены, которые, видимо, являются наиболее устойчивыми к озонирования среди тиофеновых соединений. Следует отметить, что в образце нефти после 18 мин озонирования S-класс соединений отсутствует, что свидетельствует о его полном разложении озоном.

Ионизация электрораспылением с регистрацией положительных ионов (ИЭР(+)) используется для анализа соединений основного характера, например пиридиновых оснований [13, 14] и сульфоксидов [15].

На рис. 4 показаны $S_x O_y$ -классы соединений, обнаруженные в нефти до и после 3 мин озонирования. Большое количество брутто-формул в нефти до озонирования относится к SO-классу: более 600 с молекулярной массой от 201 до 973 Да с DBE = 118. Интенсивность сигналов в пределах класса падает от DEB = 118, также как и популяция брутто-формул в пределах одного DBE. Второй по популяции O2S-класс насчитывает порядка 400 индивидуальных брутто-формул с молекулярной массой от 266 до 1190 Да, DBE = 116 и может включать в себя гибридные соединения, в которых второй атом кислорода относится к любой из возможных групп (OH, =O, -O-). В O2S2-классе

Рис. 3. Сравнительные диаграммы S-класса для нефти после озонирования. Время озонирования: (а) 0 мин, (б) 3 мин, (в) 7 мин. Спектры получены при помощи ФИАД.

Рис. 4. Зависимость популяции $S_x O_y$ -классов от степени озонирования. Данные получены при помощи ИЭР(+).

количество идентифицированных брутто-формул более 200. молекулярная масса соелинений изменяется в пределах от 333 до 1158 Да, DBE = 110, интенсивность соединений класса снижается от DBE = = 110 в такой же закономерности, что и для классов SO и O2S. Через 3 мин озонирования сульфоксидные соединения практически полностью реагируют с озоном с образованием сульфонов и исчезают из спектра ИЭР(+). Не успевает полностью прореагировать O2S2-класс, который при присоединении атома кислорода к одному из атомов серы образует соединения O3S2-класса. Впоследствии, и эти соединения, содержащие сульфоксидную серу, реагируют с озоном, так как в образце нефти после 7 мин озонирования подобных классов соединений не обнаружено. Данные, полученные из масс-спектра с использованием ФИАД, подтверждают отсутствие в продуктах озонирования нефти сульфоксидов уже после первых минут озонирования.

Ионизация электрораспылением с регистрацией отрицательных тонов ИЭР(—) является хорошим методом идентификации соединений кислого характера (карбоновые кислоты, фенолы, меркаптаны, сульфокислоты), а также нейтральных соединений (производные пиррола), т.е. соединений склонных к отщеплению протона [16—18].

В спектре исходной нефти, полученном при помощи ИЭР(–), присутствуют соединения Sкласса, т.е. класса меркаптановой серы, популяция которого составляет 560 идентифицированных пиков. Класс представлен соединениями с молекулярной массой от 211 до 997 Да, DBE от 4 до 24, числом атомов углерода в молекуле от 14 до 71. После озонирования S-класс исчезает из масс-спектра, полученного при помощи ИЭР(–), что свидетельствует об активном взаимодействии с озоном меркаптановой серы.

ИЭР(–) также показывает, что уже после первых минут озонирования в нефтяной смеси резко возросло количество окисленных сернистых со-

Рис. 5. Зависимость популяции $S_x O_y$ -классов от степени озонирования. Данные получены при помощи ИЭР(–).

единений кислого характера (рис. 5). В системе появились новые классы соединений: SO3. SO4. SO5, SO6 и SO7-классы (рис. 6). SO3-класс включает в себя более 300 индивидуальных бруттоформул, с молекулярной массой от 203 до 711 Да, DBE от 0 до 10. Наиболее интенсивные пики в данном классе принадлежат соединениям с DBE = 1 и массами от 429 до 513 Да, т.е. предположительно сульфокислотам с одним нафтеновым циклом. Также интенсивными являются пики с DBE = 4 и массами от 311 до 493 Да, т.е. сульфокислоты с одним ароматическим кольцом. SO4-класс насчитывает порядка 600 брутто-формул с молекулярной массой от 201 до 939 Да, DBE от 0 до 13 и числом атомов углерода в молекуле от 8 до 61, DBE = 5 наиболее интенсивное в классе. Для соединений SO4-класса с DBE = 5 можно предположить, что они являются соединениями с бензольным кольцом, карбоксильной и сульфогруппой.

Определение структуры соединения классов SOx (x = 48) затруднительно, поэтому далее не приводим предположения относительно строения соединения классов SO5 – SO7.

В составе нефти после 3 мин озонирования обнаружены соединения SO5-класса, в состав которого входит более 500 брутто-формул с молекулярной массой от 200 до 919 Да, DBE = 0–14, числом атомов углерода в молекуле от 7 до 58. SO6-класс содержит 496 брутто-формул с молекулярной массой от 228 до 961 Да, DBE = 114 и количеством атомов углерода в молекуле от 8 до 60. SO7-класс содержит более 400 брутто-формул с молекулярной массой от 313 до 929 Да, DBE = 313 с числом атомов углерода в молекуле от 13 до 57. Все эти соединения являются кислотами, т.е. содержат в составе либо COOH, либо SO₃H, также в составе могут присутствовать OH-группы, способные к депротонированию.

Таким образом, соединения – продукты озонирования сернистых компонентов нефти, т.е. сульфоны, сульфоксиды, сульфокислоты и их производные, продукты глубокого окисления

Рис. 6. Состав SOx -классов (x = 37) соединений в нефти после 3 мин озонирования. Спектры получены при помощи ИЭР(-).

сернистых соединений, могут быть проанализированы на молекулярном уровне при помощи масс-спектрометрии ультравысокого разрешения. С помошью МС-ИЦР ПФ в комбинации с различными метолами ионизации можно наблюдать основные закономерности процесса. Например, при помощи ФИАД показано, какие из соединений тиофенового ряда первыми вступают в реакцию озонирования, а какие соединения наиболее устойчивы по отношению к озону. При помощи ИЭР(+) показано, что сульфоксиды исходной нефти уже после первых минут озонирования полностью превращаются. ИЭР(-) позволяет наблюдать накопление продуктов озонирования сернистых соединений кислого характера. после 3 мин озонирования в спектре обнаружено более 2000 новых брутто-формул.

Применение метода МС-ИЦР ПФ может значительно упростить анализ сложных нефтяных смесей до и после окисления (озонирования) и стать эффективным методом контроля и регулирования технологических процессов окислительного обессеривания нефти и нефтепродуктов, а также использования при производстве полезных веществ, в том числе, ПАВ, из гетероатомных соединений нефти.

Авторы выражают благодарность профессору В. Шрадеру за помощь в работе над статьей.

Исследование выполнено при поддержке Российского научного фонда (проект №15-17-00017).

СПИСОК ЛИТЕРАТУРЫ

- 1. Gaspar A., Zellermann E., Lababidi S., Reece J., Schrader W. // Energy Fuels. 2012. № 26. C. 3481.
- 2. Panda S.K., Andersson J.T., Schrader W. // Angew. Chem. Int. Ed. 2009. T. 48. № 10. C. 1788.

- 3. Fernandez-Lima F.A., Becker C., McKenna A.M., Rodgers R.P., Marshall A.G., Russell D.H. // Anal. Chem. 2009. T. 81. № 24. C. 9941.
- 4. Qian K., Rodgers R.P., Hendrickson C.L., Emmett M.R., Marshall A.G. // Energy Fuels. 2001. T. 15. № 2. C. 492.
- 5. *Klein G.C., Rodgers R.P., Marshall A.G.* // Fuel. 2006. T. 85. № 14–15. C. 2071.
- 6. Пат. 3341448 США. 1967.
- Campos-Martin J., Capel-Sanchez M., Perez-Presas P., Fierro J. // J. Chem. Technol. Biotechnol. 2010. T. 85. № 7. C. 879.
- 8. *Камьянов В.Д., Лебедев А.К., Сивирилов П.П.* Озонолиз нефтяного сырья. Т.: МГН "Раско". 1997. с. 257.
- 9. *Разумовский С.Д., Заиков Г.Е.* Озон и его реакции с органическими соединениями. М: Наука. 1974. с. 322.
- 10. *Hoffmann E., Stroobant V.* Mass Spectrometry: Principles and Applications. John Wiley & Sons. 2007. c. 502.
- 11. *Marshall A.G., Rodgers R.P.* // Proc. Natl. Acad. Sci. U.S.A. 2008. T. 105. № 47. C. 18090.
- Hughey C.A., Hendrickson C.L., Rodgers R.P., Marshall A.G., Qian K. // Anal. Chem. 2001. T. 73. № 19. C. 4676.
- Li X., Zhu J., Wu B. // Bull. Korean Chem. Soc. 2014. T. 35. № 1. C. 165.
- 14. Yingrong L., Wei W., Yuxia H.Q.Z., Jinghui D., Songbai T. // Scientific Research. 2012. T. 14. № 2. C. 18.
- 15. Liu P., Xu C., Shi Q., Pan N., Zhang Y., Zhao S., Chung K.H. // Anal. Chem. 2010. T. 82. № 15. C. 6601.
- Hughey C.A., Rodgers R.P., Marshall A.G., Walters C.C., Qian K., Mankiewicz P. // Org. Geochem. 2004. T. 35. № 7. C. 863.
- 17. Wang L., He C., Zhang Y., Zhao S., Chung K.H., Xu C., Hsu C.S., Shi Q. // Energy Fuels. 2013. T. 27. № 8. C. 4555.
- Liao Y., Shi Q., Hsu C.S., Pan Y., Zhang Y. // Org. Geochem. 2012. T. 47. C. 51.

НЕФТЕХИМИЯ том 56 № 4 2016