УДК 66.011:66.092.094.25.097:665.365:661.715.7

КИНЕТИЧЕСКОЕ ОПИСАНИЕ КОНВЕРСИИ РАПСОВОГО МАСЛА В АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ НА ПРОМОТИРОВАННОМ ЦЕОЛИТЕ MFI

© 2016 г. А. Г. Дедов, А. С. Локтев, Е. А. Кацман¹, М. В. Цодиков², А. В. Чистяков², А. Е. Гехман³, Е. А. Исаева, И. И. Моисеев

Российский государственный университет нефти и газа им. И.М. Губкина, Москва ¹Московский государственный университет тонких химических технологий им. М.В. Ломоносова ² Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва ³ Институт общей и неорганической химии РАН им. Н.С. Курнакова, Москва *E-mail: genchem@gubkin.ru, al57@rambler.ru* Поступила в редакцию 15.10.2015 г.

Предложен подход к построению кинетической модели реакции гидроконверсии рапсового масла в ароматические углеводороды, основанный на обработке экспериментальных данных, полученных с использованием цеолита MFI, промотированного ионами цинка и хрома. Разработана эмпирическая математическая модель, описывающая динамическое поведение главных компонентов реакции разложения модельного сырья — рапсового масла. Показано, что в изученном интервале условий проведения реакции увеличение времени контакта и увеличение температуры приводят к повышению выхода ароматических углеводородов. Влияние давления водорода на выход ароматических углеводородов носит экстремальный характер с максимумом, оптимум лежит в середине интервала давлений водорода 10–20 ат.

Ключевые слова: кинетическое описание, ароматические углеводороды, рапсовое масло, цеолит MFI, гидроконверсия.

DOI: 10.7868/S0028242116040055

В последнее время внимание исследователей привлекает подход к производству продуктов нефтехимии путем переработки масел растительного происхождения, продуцируемых не только разнообразными сельскохозяйственными культурами, но и другими возобновляемыми природными источниками, такими, как определенные грибные и водорослевые культуры. [1]. Однако на практике химическая переработка липидов сводится, в основном, к их гидролизу, переэтерификации метанолом и гидродеоксигенации.

В то же время, существенный интерес представляет прямая каталитическая конверсия масел растительного происхождения (триглицеридов жирных кислот) в ценные углеводородные продукты, например ароматические углеводороды. Реализация данного процесса в укрупненном масштабе невозможна без выполнения исследований, направленных на построение его кинетической модели, позволяющей определить подходы к оптимизации условий процесса и в дальнейшем выполнить конструирование реакторного блока.

Для получения углеводородов из растительных масел широко используются катализаторы на основе цеолитов и цеолитоподобных материалов, в том числе модифицированных ионами различных металлов. В [2] конверсия рапсового масла в алкан-ароматическую фракцию велась на опытнопромышленном катализаторе на основе цеолита ЦВМ (Si/Al = 30), модифицированного 0.6 мас. %Pd и 1 мас. % Zn. Увеличение температуры от 360 до 420°С вело к увеличению выхода ароматических соединений, а увеличение объемной скорости подачи субстрата - к трехкратному увеличению выхода алканов С₄-С₆, преимущественно изо-строения. В [3] показано, что цеолиты НЦВМ (Si/Al = 40), промотированные ионами цинка и хрома, катализируют превращения рапсового масла в смесь ароматических, насыщенных и ненасыщенных углеводородов. Ионы цинка и хрома повышают производительность катализатора по ароматическим углеводородам.

Конверсия рапсового масла на HZSM-5 (Si/Al = 48) при 370 ± 5°C протекала с выходом ароматических углеводородов до 44%, жидких

алифатических углеводородов — 10-12%, газообразных продуктов 20-32%, в том числе алканов C₂-C₄ 17-25% [4]. В [5] использовали цеолиты ZSM-5 и ZSM-12 для конверсии различных растительных масел. Максимальный выход ароматических продуктов (более 70%) получен из касторового масла на HZSM-5 при 400°C.

В работе [6] крекингу в импульсном микрореакторе подвергались моно-, ди- и триолеинаты при температуре 400°С в присутствии HZSM-5, фожазита и аморфного алюмосиликата. Катализаторы с большим диаметром пор способствовали образованию более крупных молекул. При использовании фожазита получены алифатические углеводороды C_6 и C_7 , фенилбутен, пропенилбензол и алкилзамещенные нафталины, а при использовании HZSM-5 преимущественно пропилен, бензол и толуол. Аморфный Al_2O_3 -SiO₂ образует преимущественно диены.

Согласно [6] образование ароматических соединений при крекинге триглицеридов ненасыщенных жирных кислот может протекать по различным маршрутам. По первому происходит образование соответствующих карбоновых кислот и углеводородов (пропена и пропана) с последующими процессами декарбоксилирования, декарбонилирования и крекинга, ведущими к образованию оксидов углерода и C₁₇H₃₄. Далее происходит его крекинг, олигомеризация и дегидроциклизация с образованием ароматических продуктов.

По второму пути вследствие крекинга триглицерида по связи C=C образуется карбокатион с последующими олигомеризацией и ароматизацией.

В [7] каталитический крекинг рапсового масла при 485–585°С на смеси 80 мас. % промышленного катализатора крекинга и 20 мас. % ZSM-5 приводил к образованию бензиновой фракции (C₅-215°С), масляных фракций циклических углеводородов $t_{\text{кип}} = 215-325$ °С и >325°С. В бензиновой фракции были идентифицированы *н*-парафины, изопарафины, нафтены, *н*-олефины, изоолефины, и ароматические соединения с $T_{\text{кип}}$ до 200°С (C₁₁).

Гидрокрекинг растительных масел с использованием комбинации микропористого HZSM-5 и мезопористых MCM-41/SBA-15 [8] протекал с образованием смеси свободных жирных кислот, бензола (5%), толуола (20%) и ксилолов (23%).

В [9] превращения различных жирных кислот вели в сверхкритической воде, при 400°С, 240 ат, на цеолитах Y, Beta, ZSM-5. На цеолите ZSM-5 с Si/Al = 23 суммарный выход жидких и газообразных продуктов превращения пальмитиновой кислоты составил 97 \pm 2 мас. %, моноциклических аренов – 42 мас. %. После двукратной регенерации суммарный выход продуктов составил 76 \pm 3 мас. % (в том числе 16 мас. % ксилолов).

В [10] при превращении масла, выделенного из микроводорослей, на H-ZSM-5 с Si/Al = 280 содержание ароматических углеводородов в жид-ком продукте было выше, чем в случае переработ-ки другого биосырья, но меньше, чем в случае превращения длинноцепочечных алканов. При использовании цеолита ZSM-5 с Si/Al = 30 [11] получали жидкие ароматические продукты с выходом 44 мас. %.

Авторы [12] использовали цеолиты типа MFI, BEA, FAU в конверсии рапсового масла при 400–450°С, атмосферном давлении, массовой скорости подачи $1.0 \, \text{ч}^{-1}$. Цеолит MFI (ZSM-5) показал максимальный выход бензиновой фракции (39%, 450°С) и минимальное образование кокса (3.2%, 450°С), причем бензиновая фракция преимущественно состояла из ароматических углеводородов.

В превращении рапсового и пальмового масел на цеолите USY [13] получены жидкие продукты с преобладанием ароматические углеводородов. Во многих публикациях [14—21] по конверсии масел растительного происхождения на цеолитах авторы не анализируют химический состав продуктов реакции, а указывают лишь выход газообразных продуктов и жидких углеводородов (иногда разделяя их на бензиновую, керосиновую и дизельную фракции по температурам кипения).

Литературные данные и полученные нами ранее результаты [1–3] показывают, что, меняя условия проведения процесса, можно достигать более высокого выхода жидких углеводородных продуктов и регулировать их химический состав. Важным шагом на пути к практической реализации данного процесса является решение задач по его масштабированию. Это, в свою очередь, невозможно без проведения кинетического описания составляющего основу для проектирования пилотных, опытных, полупромышленных и промышленных установок.

Цель настоящей работы — кинетическое описание процесса конверсии триглицеридов жирных кислот с использованием массива экспериментальных данных, полученных в условиях варьирования параметров процесса.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Наработку экспериментальных данных для кинетического описания проводили с использованием катализатора на основе цеолита типа MFI (Si/Al = 33), изготовленного в H-форме на OAO "Новосибирский завод химконцентратов". В цео-

360

Таблица 1. Жирнокислотный состав переэтерифицированного метанолом рапсового масла "Российские семена"

Продукт переэтерификации	Количество, мас. %
Метилстеарат	4.79
Метилолеат	93.3
Метилгондоат	1.79
Метилэрукат	<0.2

лит в качестве промоторов вводили по 1 мас. % цинка и хрома. Для введения промоторов исходный цеолит предварительно нагревали до 300°С и, после охлаждения в эксикаторе, методом полного влагопоглощения пропитывали расчетным количеством водных растворов нитратов Zn и Cr с последующими высушиванием и прокаливанием в муфельной печи для разложения нитратов.

При наработке экспериментальных данных в качестве модельного соединения использовали рапсовое масло фирмы "Российские семена" марки "П" ГОСТ 8988-2002, жирнокислотный состав продукта переэтерификации метанолом исходного рапсового масла представлен в табл. 1. Каталитические испытания проводили с использованием проточной микрокаталитической установки со стационарным слоем катализатора, в токе водорода. Установка и методика проведения эксперимента аналогичны описанным ранее в [1, 2]. Загружали 5 мл катализатора (3.7 г), высота слоя катализатора составляла 8 см.

Для идентификации и определения содержания в образцах основных продуктов конверсии рапсового масла использованы методы газовой хроматографии и хроматомасс-спектрометрии, описанные в [1, 2].

План выполнения кинетических экспериментов представлен в табл. 2. Полученные результаты представлены в табл. 3.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Расчет значений концентраций реагентов и продуктов. Расчет концентраций всех компонентов в реакторе проводили с использованием уравнения состояния идеального газа. Непревращенное масло в условиях опытов остается жидким, однако поскольку исходная мольная доля масла в реакторе не превышает 6%, а объемная доля еще многократно меньше, вносимая погрешность невелика.

<i>Р</i> H ₂ , ат	<i>W</i> водорода, нмл/мин	<i>V</i> масла, мл/ч	Примечания							
	Перемени	ное время контакта								
10	160	16								
10	80	8	Постоянные – давление водорода							
10	40	4	и концентрация масла							
10	20	2								
	Переменно	е давление водорода	·							
5	20									
10	40	8	Постоянные – время							
20	80	8	и концентрация							
40	160	8	1							
Переменная концентрация масла										
20	80	2								
20	80	4	Постоянные – время							
20	80	8	и давление водорода							
20	80	16								

Таблица 2. План проведения кинетических экспериментов

T, °C	360	360	360	390	390	390	390	390	390	390	390	390	390	390	390
P, atm	20	20	20	10	10	10	10	5	10	20	40	20	20	20	20
$W \mathrm{H}_2$, нмл/мин	80	80	80	160	80	40	20	20	40	80	160	80	80	80	80
V macha, mh/4	5	4	8	16	8	4	2	8	8	8	8	2	4	8	16
Продукты		_	<u>-</u>	_	_	_	Bы	ход, мас.	%	-	_	-	_	-	
\mathbf{C}_1	8.36	6.29	6.11	1.35	2.22	2.75	6.53	1.43	2.47	3.21	4.12	12.34	11.65	3.21	2.11
C_2	7.54	5.98	4.39	1.87	3.15	3.41	7.87	2.96	3.65	4.39	5.36	8.48	11.43	4.39	1.34
$C_2 =$	2.34	4.35	4.98	1.22	1.43	0.32	0.11	0.34	0.23	0.19	0.25	0.01	0.08	0.19	4.56
ů	9.36	5.78	1.91	19.34	22.73	23.76	24.67	11.38	13.21	13.48	14.79	28.34	21.78	13.48	8.31
$C_3 =$	4.69	7.21	8.01	0.56	0.21	0.17	0.23	2.65	1.43	1.12	0.57	0.07	0.42	1.12	9.76
изо=С ₄	6.37	4.56	1.57	14.62	15.45	16.79	12.89	8.32	10.42	11.37	13.37	10.45	12.31	11.37	5.34
$C_4 =$	5.29	5.39	4.87	0.48	0.23	0.14	0.12	2.89	1.51	1.23	0.56	0.04	0.58	1.23	4.92
C.	1.37	1.09	0.52	4.32	5.38	5.75	3.51	3.25	3.86	4.21	3.48	3.23	3.21	4.21	2.43
ы	45.32	40.65	32.36	43.76	50.8	53.09	55.93	33.22	36.78	39.2	42.5	62.96	61.46	39.2	38.77
СО	3.23	2.56	2.81	3.41	3.79	3.54	4.02	3.56	3.15	2.76	2.37	1.78	3.01	2.76	4.76
CO_2	3.19	1.89	0.48	3.92	4.37	4.09	4.87	3.21	2.48	2.56	2.31	2.24	2.79	2.56	4.15
Бензол	4.74	4.75	5.20	4.60	6.67	9.24	8.93	11.59	9.19	8.52	8.88	8.69	5.75	8.52	3.37
Толуол	1.94	2.37	1.56	1.50	3.45	3.80	4.23	2.81	2.50	2.55	2.82	3.55	2.86	2.55	0.83
Этилбензол	0.39	0.45	1.22	0.96	1.20	1.26	1.04	2.54	2.14	2.00	2.30	0.72	0.55	2.00	0.52
м-Ксилол	2.59	2.32	3.76	3.08	3.58	4.94	4.35	8.80	7.07	6.16	6.38	4.75	2.81	6.16	2.22
о,п-Ксилол	0.77	0.66	1.08	0.83	1.01	1.42	1.26	2.27	1.99	1.76	1.80	1.41	0.80	1.76	0.54
Триметилбензол	0.20	0.22	1.77	1.28	0.57	0.80	1.02	4.24	3.66	2.90	3.35	0.37	0.26	2.90	0.44
Пропилбензол	0.38	0.31	0.72	0.36	0.43	0.67	0.67	1.54	1.44	1.19	1.30	0.69	0.38	1.19	0.17
Нафталин	0.46	0.22	0.33	0.22	0.16	0.40	0.38	0.25	0.57	0.53	0.56	0.85	0.27	0.53	0.09
2-Метилнафталин	0.90	0.39	0.37	0.48	0.40	0.92	0.87	0.78	0.72	0.61	0.75	1.66	0.48	0.61	0.26
ΣАром	12.39	11.71	7.53	13.30	17.47	23.45	22.75	34.83	29.26	26.22	28.13	22.68	14.17	26.22	8.43
Неидентиф.	35.87	43.19	56.82	35.61	23.57	15.82	12.43	25.18	28.33	29.26	24.69	10.34	18.57	29.26	43.89

Таблица 3. Результаты гидроконверсии рапсового масла

2016

НЕФТЕХИМИЯ том 56 № 4

КИНЕТИЧЕСКОЕ ОПИСАНИЕ КОНВЕРСИИ РАПСОВОГО МАСЛА

361

	420	10	20	2	-	5.07	10.52	0.18	24.66	0.16	8.94	0.13	1.54	51.20	3.94	5.10	12.03	5.70	1.40	5.86	1.70	1.38	0.91	0.51	1.17	30.65	010
	420	10	40	4	_	4.45	8.89	0.31	23.03	0.14	8.84	0.09	1.40	47.13	3.54	4.09	12.55	5.17	1.72	6.71	1.93	1.09	0.91	0.55	1.25	31.86	LC C1
	420	10	80	8	_	3.19	5.84	1.74	20.38	0.21	10.02	0.14	1.74	43.27	3.39	3.10	14.38	7.44	2.59	7.72	2.18	1.24	0.92	0.35	0.86	37.67	17 58
	420	10	160	16	_	1.31	2.60	0.57	16.90	0.94	11.45	0.55	2.89	37.20	2.98	2.79	11.56	3.76	2.40	7.74	2.09	3.21	0.91	0.55	1.20	33.43	23.60
	420	40	160	8	_ %	4.93	6.51	0.13	15.12	0.40	7.07	0.16	1.55	35.87	0.85	1.48	9.01	2.86	2.33	6.47	1.83	3.40	1.32	0.57	0.76	28.54	33 26
	420	10	40	8	выход, мас. ?	1.92	2.41	0.41	12.80	0.62	6.98	0.32	1.11	26.57	2.77	3.88	12.04	3.27	2.80	9.26	2.61	4.79	1.88	0.75	0.94	38.34	78 45
	420	5	20	8	H	06.0	1.34	0.73	9.33	1.34	7.50	1.13	1.52	23.79	2.55	4.05	14.01	3.40	3.07	10.63	2.74	5.13	1.87	0.31	0.94	42.10	27 51
	420	20	80	16	_	1.76	2.27	2.33	12.51	3.32	12.70	2.76	5.32	42.98	3.57	2.98	16.01	3.92	2.47	10.56	2.57	2.07	0.82	0.41	1.22	40.05	10.42
Ы	420	20	80	8	_	2.97	4.37	0.19	16.47	0.21	7.04	0.14	1.28	32.68	2.33	3.73	11.43	3.42	2.68	8.27	2.36	3.89	1.59	0.72	0.81	35.17	26.09
лие услови	420	20	80	4	-	10.22	17.85	0.07	30.50	0.07	15.27	0.04	2.67	76.69	4.96	1.91	5.19	2.12	0.43	2.83	0.84	0.22	0.41	0.51	0.99	13.54	2.89
жение. Дру	420	20	80	2	_	10.22	17.85	0.07	30.50	0.07	15.27	0.04	2.67	76.69	4.96	1.91	5.19	2.12	0.43	2.83	0.84	0.22	0.41	0.51	0.99	13.54	2.89
Таблица 3. Продол	T, °C	P,ar	$W \mathrm{H}_2$, нмл/мин	Vмасла, мл/ч	Продукты	C1	C2	$C_{2}=$	C3	$C_{3}=$	u30-C ₄	$C_4 =$	č	М	CO	CO_2	Бензол	Толуол	Этилбензол	м-Ксилол	о, и-Ксилол	Триметилбензол	Пропилбензол	Нафталин	2-Метилнафталин	ZApom/	Неилентиф.

362

ДЕДОВ и др.

Также принимали, что объем смеси во время реакции не изменяется. Реально он незначительно возрастает, поэтому вносимая погрешность также невелика.

Способ описания стехиометрии исследуемой реакции. Изучаемая реакция характеризуется сложным составом продуктов и механизмом, идентифицировано около 20 ее продуктов [6, 22, 23]. При описании инженерной (феноменологической, эмпирической) кинетики подобных процессов продуктивен подход, называемый лампинг-анализом [24, 25]. Он состоит в объединении родственных продуктов в некоторые суммы, которые и фигурируют в создаваемой кинетической модели. В нашем случае целесообразно рассматривать две такие суммы: алифатические углеводородные газы (УГ), представляющие собой парафины с количеством атомов углерода от 1 до 5, с примесью олефинов, и жидкие ароматические углеводороды (АУ), представляющие собой смесь ароматических веществ от бензола до метилнафталина. Состав УГ существенно зависит от условий проведения реакции: средний молекулярный вес, как и следовало ожидать, падает с увеличением времени контакта, давления водорода и уменьшением концентрации масла. УΓ нельзя приписать постоянную среднюю формулу. В модели УГ условно представлены в пересчете на метан. Как следствие, баланс по водороду предполагается приблизительным. Состав АУ в меньшей степени зависит от условий реакции, среднее количество атомов углерода составляет около семи. Поэтому АУ в модели условно представлены как толуол.

Стадии исследуемой реакции. Образование УГ описано в виде обобщенного уравнения сложных стадий гидрирования-декарбонилирования с учетом преобладания в рапсовом масле олеиновой кислоты:

$$C_{57}H_{104}O_6 + 41H_2A_1CH_4 + 3CO + 3H_2O.$$
 (1)

Здесь A_1 — эмпирический стехиометрический коэффициент (по стехиометрии для образования метана— 54; для образования пропана — 41).

Образование АУ описано в виде обобщенного уравнения сложных стадий ароматизации-декарбонилирования:

 $C_{57}H_{104}O_6 \rightarrow 18.15H_2 + A_2C_7H_8 + 3CO + 3H_2O.$ (2) Здесь $A_2 -$ эмпирический стехиометрический коэффициент (по стехиометрии равен 7.714 для образования толуола).

Состав смеси оксидов углерода (соотношение CO и CO₂) существенно зависит от времени: доля CO₂ возрастает с его ростом. В модели это отнесено к протеканию известной стадии паровой кон-

НЕФТЕХИМИЯ том 56 № 4 2016

версии СО (ПКСО), которая в условиях реакции является обратимой:

$$CO + H_2O \leftrightarrow CO_2 + H_2.$$
 (3)

Первичным продуктом принят CO, образующийся по стадии декарбонилирования исходного триглицерида или интермедиата — жирной кислоты — это не имеет значения для инженерной модели.

Эксперименты показали, что количество образующейся воды, как правило, существенно превышает три моля на моль масла, особенно с ростом времени контакта. Поэтому для соблюдения баланса по воде в модель введена известная стадия метанирования СО, адекватно описывающая наблюдаемое поведение системы. В условиях эксперимента равновесие этой реакции смещено вправо:

$$CO + 3H_2 \rightarrow CH_4 + H_2O. \tag{4}$$

Отметим, что вышеуказанные 4 уравнения являются минимальным набором для получения адекватного описания кинетики рассматриваемого процесса.

Стадии исследуемой реакции (кинетическое описание). В результате перебора двух десятков гипотез по методике [24,25] предложены следующие кинетические уравнения стадий изучаемого процесса:

$$w_{1} = k_{1}C_{1}(1 + k_{11}C_{1}^{3})C_{2}^{k_{12}}/(1 + k_{16}C_{6}).$$

$$w_{2} = k_{2}C_{1}(1 + k_{21}C_{1}^{3})C_{2}^{k_{22}}/(1 + k_{26}C_{6}).$$

$$w_{3} = k_{3}(C_{5}C_{6} - C_{2}C_{7}/K_{3}).$$

$$w_{4} = k_{4}C_{2}C_{5}/(1 + k_{46}C_{6}).$$

В данной математической модели приняты обозначения концентраций: C_1 – масло, C_2 – водород, C_3 – алифатические углеводородные газы, C_4 – жидкие ароматические углеводороды, C_5 – оксид углерода, C_6 – вода, C_7 – диоксид углерода, w_i – скорость стадии номер *i*, k_i – константа скорости стадии номер *i*, k_{ij} – параметр, описывающий степень влияния концентрации вещества *j* на скорость стадии *i*.

Таким образом, кинетическая модель включает влияние концентраций масла, водорода и воды на скорость образования алифатических газов и жидких ароматических продуктов, а также воды на скорость метанирования оксида углерода. Этих связей достаточно для адекватного описания наблюдаемых в эксперименте зависимостей.

Ниже приведены значения рассчитанных параметров модели при температуре проведения реакции 420°С. Размерности соответствуют концентрациям компонентов в молях на литр и времени контакта в секундах в расчете на полный объем слоя катализатора. Значения параметров модели определяли решением обратной кинетической задачи при помощи специального пакета программ, описанного в [26, 27]. Исходными данными для решения служили рассчитанные по величинам, приведенным в табл. 3 значения концентраций масла, УГ (в пересчете на метан), АУ (в пересчете на толуол), оксида углерода, воды и диоксида углерода. Целевая функция при минимизации отклонений расчет-модель имеет вид:

$$F = \{ \sum [(C_{ei} - C_{ci})/\varepsilon_i]^2 / N \}^{1/2}$$

где $C_{\rm e}$ — экспериментально измеренное значение концентрации, $C_{\rm c}$ — соответствующее ему вычисленное по модели значение, ε — погрешность измерения, i — сквозной номер измерения по всем опытам, наблюдаемым концентрациям и време-

нам измерения, *N* – общее число измерений (оно составляет 54).

Было определено 14 параметров, значения которых приведены ниже.

Константы скорости стадий при 420°С

$$k_1$$
 k_2 k_3 k_4
2.07 × 10² 2.52 × 10⁻² 7.51 × 10² 1.09 × 10⁻¹
Константа равновесия паровой конверсии
оксида углерода при 420°С
 K_3
4.97

Это значение хорошо согласуется с известными из литературы данными [28].

		Параметры кин	етических урав	нений при 420°С		
k_{11}	<i>k</i> ₁₂	k_{16}	<i>k</i> ₂₁	k ₂₂	k ₂₆	k_{46}
1.35×10^6	$4.54 imes 10^{-1}$	3.35×10^5	2.55×10^7	$-4.23 imes 10^{-1}$	$2.85 imes 10^2$	$9.61 imes 10^{-1}$
	Эмпир	ические стехиом	метрические коз	эффициенты при	420°C	
		A_1	A_2			
		77.47	5.86			

Численный анализ идентифицируемости параметров показал, что однозначно определяются 12 параметров. Константа скорости k_1 и константа торможения водой k_{16} определены не раздельно, а в виде частного в силу большой величины k_{16} . Константа скорости k_3 паровой конверсии СО определена с очень большой погрешностью в силу близости этой стадии к состоянию равновесия. Однозначно определены стехиометрические параметры A_1 и A_2 (погрешность ±15 и 30% соответственно). Остальные параметры определены однозначно, но с большими (±15 и 30%) стандартными погрешностями из-за сильного их влияния на значения измеряемых откликов.

Вид уравнений и значения параметров качественно и количественно отображают наблюдаемые по данным экспериментов зависимости:

 ускорение превращения масла при увеличении его концентрации;

 ускорение водородом образования алифатических углеводородов ;

 торможение водородом образования ароматических углеводородов;

– торможение парами воды образования УГ, АУ и метанирования оксида углерода.

Некоторые зависимости вполне естественны с учетом предполагаемого химизма реакции. Так,

водород потребляется при образовании алифатических углеводородов и выделяется при ароматизации. Соответственно, он ускоряет образование УГ и тормозит образование АУ. Вода, выделяющаяся при декарбонилировании масла, разложении кислородсодержащих интермедиатов и метанировании оксида углерода, способна взаимодействовать с кислотными центрами катализатора, обратимо уменьшая его активность и тем самым снижая скорость образования всех продуктов. Завышенное против теоретического значение стехиометрического коэффициента A_1 объясняется пренебрежением небольшим увеличением объема газов во время реакции. Заниженное против теоретического значение стехиометрического коэффициента А₂ можно связать с тем, что реальное среднее содержание атомов углерода в получаемых АУ ближе к 6 (бензол).

Полученная модель адекватно описывает данные измерений при 420°С со среднеквадратической погрешностью ±12.7%. На рисунке (график "измерено-модель") по оси абсцисс отложены величины измеренных откликов, по оси ординат – значения, полученные при моделировании. Наблюдаются два значительных отклонения для измерений УГ при максимальной концентрации масла и максимальном давлении водорода. Это может объясняться сложностью процессов образования УГ при крекинге алкильных фрагментов масла и деалкилировании АУ, а также грубостью предположения о нахождении масла только в газообразном состоянии.

Расчеты, проведенные по результатам, полученным при понижении температуры до 390°С показали, что, поскольку реакция ожидаемо замедляется, модель описывает данные измерений с несколько повышенной по сравнению с 420°С среднеквадратической погрешностью ±15.0%. Надежность данных двух опытов – при предельно высоком давлении водорода и при максимальной концентрации масла – ввиду зафиксированного относительного ускорения дезактивации катализатора несколько понижается.

Константы скорости стадий при 390°С равны

 k_1 k_2 k_3 k_4 1.63 × 10² 1.29 × 10⁻² 7.51 × 10² 1.08 × 10⁻¹ Константа равновесия паровой конверсии оксида углерода ("шифт") при 390°С равна K_3 3.20

Сравнение данных, полученных при 420°С и 390°С, показало, что существенно зависят от температуры только константы скорости образования газов и ароматических соединений k_1 и k_2 . Энергия активации этих стадий составляет 7.3 ккал/моль и 20.4 ккал/моль соответственно. Константа равновесия K_3 изменяется относительно мало. Остальные параметры приняты не зависящими от температуры. Значения энергии активации двух главных стадий свидетельствуют о том, что реакция протекает в кинетическом режиме. В противном случае эти значения не должны были превысить 2–3 ккал/моль, что характерно для диффузии при высокой температуре и соответственно низкой вязкости.

При температуре 360°С разброс полученных экспериментальных данных возрастает, а межрегенерационный пробег катализатора уменьшается. Следует полагать, что при этой и более низких температурах проведение процесса нецелесообразно.

ЗАКЛЮЧЕНИЕ

В результате проделанной работы получены экспериментальные данные по гидроконверсии рапсового масла на цеолитном катализаторе структуры MFI, промотированном ионами цинка и хрома, при варьировании температуры, давления и скорости подачи реагентов. На основе данных кинетических экспериментов построена эмпириче-

График соответствия экспериментальных (ось X) данных результатам моделирования (ось Y) при температуре 420°С.

ская математическая модель, описывающая динамическое поведение главных компонентов реакции разложения модельного соединения — рапсового масла.

Показано, что в изученном интервале условий проведения реакции увеличение времени контакта и температуры приводят к росту выхода продуктов за счет более полного превращения сырья.

Установлено, что влияние давления подаваемого в реактор водорода на выход ароматических углеводородов, газообразных углеводородов и водорода носит экстремальный характер с максимумом, причем оптимум лежит в середине интервала давлений водорода — 10—20 атм. Подобные зависимости, согласно [29], могут быть связаны с участием водорода в образовании сверхкислотных протонных центров, формированием на них карбениевых ионов — интермедиатов реакции и с разложением карбениевых ионов при более высоких давлениях водорода.

Полученные результаты могут быть использованы для обоснования выбора оптимальных технологических подходов к получению ароматических углеводородов переработкой биоресурсов: непищевых масел растительного происхождения, водорослевой биомассы.

Работа выполнена при финансовой поддержке Минобрнауки России в рамках выполнения базовой части государственного задания "Организация проведения научных исследований", анкета № 1422, проектной части государственного задания в сфере научной деятельности № 4.306.2014/К и РФФИ (грант 14-03-31816).

СПИСОК ЛИТЕРАТУРЫ

- Chistyakov A.V., Zharova P.A., Tsodikov M.V., Shapovalov S.S., Pasinskiy A.A., Murzin V.Yu., Gekhman A.E., Moiseev I.I. // Doklady Chemistry. 2015. V. 460. Part 1. P. 26.
- Tsodikov M.V., Chistyakov A.V., Gubanov M.A., Murzin V.Yu., Bukina Z.M., Kolesnichenko N.V., Khadzhiev S.N. // Petrol. Chemistry. 2013. V. 53. № 1. P. 46.
- 3. Dedov A.G., Loktev A.S., Kosakova T.V., Isaeva E.A., Kartasheva M.N., Gekhman A.E., Moiseev I.I. // Theor. Found. Chem. Eng. 2012. V. 46. № 5. P. 556.
- Prasad Y.S., Bakhshi N.N. // Applied Catalysis. 1985.
 V. 18. № 1. P. 71.
- 5. Haag W.O., Rodewald P.G., Weisz P.B. // Pat USA 4300009, 1981.
- Benson T., Hernandez R., French W., Alley E., Holmes W. // J. of Mol. Catalysis A: Chem.. 2009. V. 303. № 1–2. P. 117.
- Dupain X., Costa D.J., Schaverien C.J., Makkee M., Moulijn J.A. // Appl. Catalysis B: Environmental. 2007. V. 72. № 1–2. P. 44.
- Ooi Y.-S., Zakaria R., Mohamed A.R., Bhatia S. // Energ. Fuel. 2005. V. 19. P. 736.
- Mo N., Tandar W., Savage P.E. // Journal of Supercritical Fluids 2015. V. 102. P. 73.
- Torri C., Fabbri D., Garcia-Alba L., Brilman D.W.F. // J. of Analytical and Applied Pyrolysis. 2013. V. 101. P. 28.
- 11. *Li Z., Savage P.E.* // Algal Research. 2013. V. 2. № 2. P. 154.
- 12. Chen D., Tracy N.I., Crunkleton D.W., Price G.L. // Appl. Catal. A: General. 2010. V. 384. Iss. 1–2. P. 206.

- Černý R., Kubů M., Kubička D. // Cat. Today. 2013. V. 204. P. 46.
- 14. *Twaiq F.A., Zabidi N.A.M., Bhatia S.* // Ind. Eng. Chem. Res. 1999. V. 38. № 9. P. 3230.
- 15. Twaiq F.A., Mohamad A.R., Bhatia S. // Fuel Processing Technology. 2004. V. 85. № 11. P. 1283.
- 16. Twaiq F.A., Mohamed A.R., Bhatia S. // Microporous and Mesoporous Materials. 2003. V. 64. P. 95.
- 17. Ooi Y.-S., Zakaria R., Mohamed A.R., Bhatia S. // Appl. Catalysis A: General. 2004. V. 274. P. 15.
- Tamunaidu P., Bhatia S. // Bioresource Technology. 2007. V. 98. P. 3593.
- Chew T.L., Bhatia S. // Bioresource Technology. 2009. V. 100. P. 2540.
- 20. Ooi Y.-S., Zakaria R., Mohamed A.R., Bhatia S. // Catal. Communications. 2004. V. 5. P. 441.
- 21. *Li H., Shen B., Kabalu J.C., Nchare M.//* Renewable Energy. 2009. V. 34. P. 1033.
- 22. Kubičkova I., Snåre M., Eränen K., Mäki-Arvela P., Murzin D.Yu. // Catalysis Today. 2005. V. 106. P.197.
- 23. Snåre M., Kubičkova I., Mäki-Arvela P., Wärna J., Murzin D.Yu.// Chem. Eng. J. 2007. V. 134. P. 29.
- 24. *Gorsky V.G.* A prior parameter identifiability analysis of fixed structure models. // Design of experiments and data analysis: new trends and results / Edited by Letzky E.K. Moscow: Antal, 1993. P. 92.
- Gorskii V.G., Katsman E.A., Klebanova F.D., Grigor'ev A.A.// Theor. and Exper.l Chemistry. 1987. V. 23. Iss. 2. P. 181.
- Кацман Е.А., Беренблюм А.С. Пакет программ для построения и анализа кинетических моделей и его применение. М.: Издательство МИТХТ, 2010.
- 27. *Кацман Е.А., Соболев О.Б. //* Инф. бюлл. хим. пром. СЭВ. 1982. Т. 68. № 5. С.47.
- Twigg V., Loyd M.V., Ridler D. E. Catalyst Handbook. Wolfe Publishing, 1989.
- 29. Olah G.A. // J. Org. Chem. 2001. V. 66. № 18. P. 5943.