УДК 553.98

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПРИРОДНЫХ УГЛЕВОДОРОДНЫХ СИСТЕМ РАЗЛИЧНОГО ГЕНЕЗИСА

© 2016 г. С. А. Пунанова, Т. Л. Виноградова

Институт проблем нефти и газа РАН, Москва E-mail: punanova@mail.ru Поступила в редакцию 21.07.2015 г.

Проведена генетическая диагностика углеводородных систем различного генезиса – гипергенно измененных (биодеградированных) и незрелых флюидов по углеводородным (УВ) и микроэлементным (МЭ) показателям. Среди более, чем 30-ти УВ соединений, и более 10 МЭ, выбраны информативные и универсальные критерии отличия. К таковым отнесены величины отношений по C_{29} стеранам – 20S/(20S + 20R) и $\beta\beta/(\beta\beta + \alpha\alpha)$, диастераны/регулярные стераны, а также соотношения УВ-биометок: олеанан/ C_{30} гопан (Γ_{30}), моретан/ Γ_{30} , гаммацеран/ Γ_{30} . Типизация нефтей по содержанию МЭ выявила существенные отличия гипергенно измененных нефтей в общем цикле нафтидогенеза и показала, что они являются нефтями вторично обогащенными МЭ (V/Ni > 1), создавая металлогенические провинции ванадиевого типа с месторождениями УВ, промышленно обогащенными V, Ni, U, Мо и др.

Ключевые слова: генезис нефти, диагностика углеводородных систем. **DOI:** 10.7868/S0028242116040146

Проблема генезиса скоплений тяжелых нефтей, встречающихся на глубинах до 2 км и имеющих высокое содержание асфальтово-смолистых компонентов, часто высокую сернистость, является до сих пор однозначно нерешенной. Скопления УВ представлены двумя генетическими группами: ранней генерации (незрелыми) и гипергенно преобразованными (биодеградированными). Нефти ранней генерации – слабо преобразованы, "первичны", образованы в зонах протокатагенеза или раннего мезокатагенеза. Их УВ состав содержит информацию исходного органического вещества (OB), обогащен УВ биомаркерами и функционально связан с характером литофациальных обстановок захоронения органики (морские, континентальные) и их особенностями (типами). В результате процессов разрушения нефти биодеградируют, изменяется и затушевывается генетический код, обусловленный исходной биомассой. Количество биомаркеров уменьшается вплоть до полного исчезновения. Генетическая диагностика первичных (непреобразованных) и вторичных (биодеградированных) нафтидов, залегающих в сходных геологических условиях, имеюших близкие физико-химические свойства и даже единый химический тип, является актуальной научной и практически значимой задачей.

В настоящей работе проведена типизация скоплений нефтей первичного генезиса и вторично преобразованных нефтей в осадочных бассейнах различного геоструктурного типа и выработаны геохимические критерии их распознавания. Для этого подобран и проанализирован литературный материал по геологии и геохимии нафтидов нефтегазоносных бассейнов (НГБ) России, Азербайджана, Белоруссии, Грузии, Западной Туркмении, Таджикистана, Казахстана, США, Израиля, Западной Канады, Бразилии, Австралии, Гватемалы, Новой Зеландии, Индонезии, Китая, Нигерии, Венесуэлы [1].

За основу описания геохимического облика УВ взяты химические типы нефтей и конденсатов по классификации Ал.А. Петрова [2], в которой нефти подразделяются на две категории – А и Б, каждая из них образует две подгруппы: А-1 и А-2 в зависимости от относительной концентрации нормальных и изопреноидных алканов и Б-1 и Б-2 по наличию и отсутствию изопреноидных алканов. В [3] нафтеновые конденсаты и нефти категории Б дополнительно разделены по преобладанию в них — изопреноидных, циклоалкановых, моноцикланов геминального типа замещения, би- и трицикланов соответственно на подтипы Б-2и, Б-2ц, Б-1м, Б-1б и Б-1т.

При рассмотрении зональности размещения незрелых скоплений УВ в верхней зоне литогенеза [1, 4] показана генетическая связь химических типов нефтей и конденсатов, их фазового состояния с типом исходного ОВ, его литофациальными особенностями и стадиями катагенеза. Именно поэтому все многочисленные примеры незрелых флюидов, используемые для этого обобщения, сгруппированы по литофациальным обстановкам захоронения исходного OB — морским (глубоководным и мелководным) и континентальным (озерным, угленосным и субугленосным).

Особенностью незрелых нефтей всех фаций является высокое содержание отдельных индивидуальных УВ-биометок (олеанана, моретана, гаммацерана), низкие значения отношений УВ биомаркеров 20S/20(S + R) стераны C_{29} , 22S/22(S + R) гопаны Γ_{31} , диастераны/регулярные стераны, $\beta\beta/(\beta\beta + \alpha\alpha)$ стераны и преобладание среди ароматико-сернистых соединений бензотиофенов над дибензотиофенами. Для незрелых скоплений химического типа A-2, по сравнению со зрелыми флюидами, характерны повышенные значения пристан (Π)/*н*- C_{17} (до 9.7) и фитан (Φ)/*н*- C_{18} (до 5.2).

Прослежены геохимические особенности УВ скоплений, генерированных различными литофациями (табл. 1). Для нефтей, генерированных ОВ морских глубоководных фаций, отмечены невысокие отношения Π/Φ (до 1.7), преобладание стеранов С27 (холестанов) и широкий ряд гопанов Г₂₇-Г₃₅. В нефтях терригенно-кремнистых фаций наблюдается мономодальное распределение н-алканов в области C₁₅-C₁₉, доминирование пристана над фитаном, трицикланов над тетрацикланами, трисноргопана Tm над Ts, стеранов над гопанами, присутствие олеанана и 28,30-бисноргопана. Нефти терригенно-карбонатных фаций отличаются бимодальным распределением н-алканов, преобладанием четных *н*-алканов в области С₂₂-С₂₈, фитана над пристаном, тетрацикланов над трицикланами, трисноргопана Ts над Tm, гопанов над стеранами, присутствием гаммацерана. В нефтях, генерированных ОВ морских мелководных и прибрежных фаций, содержания стеранов С₂₈ и С₂₉ равны, в небольших количествах присутствуют легкие стераны $C_{21}-C_{22}$, стеран C_{30} и олеанан и ряд гопанов Г₂₇–Г₃₃.

Нефти *озерных* фаций характеризуются повышенным содержанием трициклических УВ $C_{20}-C_{29}$, широким присутствием легких стеранов $C_{21}-C_{22}$, стеранов C_{30} , диностеранов и гаммацерана. Отличительным свойством нефтей соленоводных фаций является преобладание четных *н*-алканов над нечетными, фитана над пристаном, избыток алициклических изопреноидов, расширенный ряд гопанов $\Gamma_{27}-\Gamma_{35}$.

Конденсаты и нефти континентальных фаций отличаются высокими концентрациями пристана. Отношение П/Ф достигает 13.8. В нефтях Западной Канады установлено присутствие биснорлупанов и олеанана, а в нефтях Западной Сибири – 25,30 бисноргопана, 25,28,30 трисноргопана и 25 норгопанов. Характерной особенностью нефтей и конденсатов нафтенового типа Западной Сибири является наличие нескольких разновидностей, различающихся по преобладанию в их составе трицикланов, бицикланов и моноцикланов.

Нефти морского генезиса (табл. 1), генерированные ОВ сапропелевого, смешанного гумусового-сапропелевого типа при слабо восстановительных или даже окислительных условиях, отличаются низкими содержаниями микроэлементов (МЭ), металлопорфириновых комплексов (МПК) и преобладанием Ni над V (V/Ni < 1). Однако при увеличении катагенеза до слабомезокатагенетической сталии нефти морского генезиса с сапропелевым типом исходного ОВ, отлагавшемся в восстановительных условиях диагенеза, как правило, характеризуются высокими концентрациями МЭ, в частности V и Ni, причем содержание V превалирует над содержанием Ni (отношение V/Ni > 1). В этом случае высокие концентрации характерны и для порфириновых пигментов; содержание ванадилпорфиринов (Vp) может превышать в нефтях 100 г/т и преобладать над никельпорфиринами (Nip): Vp/Nip > 1.

Содержание МЭ и МПК в нефтях континентального генезиса существенно ниже, и они образуют класс нефтей, обедненных МЭ и МПК. Особенно низки в этих нефтях концентрации тех МЭ, которые ассоциированы с тяжелыми асфальтовосмолистыми компонентами. Первые места по концентрационному распределению в этих нефтях занимают Fe, Cu, Pb, Zn, Br и др. элементы, связанные с легкими, масляными компонентами. Содержание Ni в нефтях, как правило, выше содержания V (V/Ni < 1); аналогичное отношение характерно и для МПК (Vp/Nip < 1). По преобладанию Ni над V это группа никелевых нефтей. Нефти континентального генезиса, но образованные ОВ озерного типа, также характеризуются низкими концентрациями МЭ. Содержание суммы двух металлов – V и Ni редко превышает 10 г/т, а отношение V/Ni < 1. Эти нефти могут отличаться повышенными содержаниями Fe, и тогда отношение V/Fe < 1.

По содержанию МЭ нефти ранней генерации образуют самостоятельную группу флюидов никелевой металлогении с относительно низкими концентрациями Ni, Co, Mo и особенно V, т.е. элементов, ассоциированных со смолистоасфальтеновыми веществами. Элементы, связанные с более легкими фракциями нефтей — масляными, обнаружены в высоких концентрациях. Например, молодые нефти Калифорнии содержат следующие элементы в повышенных концентрациях (в г/т): Ca (87), Fe (80), Co (2.3), Se (0.63), Mn (0.6) и Ga (0.36).

Наиболее характерные изменения УВ и МЭ показателей в нефтях, генерированных ОВ различных литофациальных зон, показаны на рис. 1а, б. При переходе от флюидов морского генезиса к континентальному возрастают величины отношения

Рис. 1. Изменение минимальных и максимальных величин отношения Π/Φ (а), содержаний V и Ni (б) в нефтях из отложений различных фаций

 Π/Φ (как минимальные величины, так и особенно максимальные), уменьшаются содержания V, Ni и их отношение.

Таким образом, при анализе и систематизации геологогеохимических данных по раннекатагенетическим нефтям и конденсатам месторождений многих НГБ мира выявлена взаимосвязь распределения в них широкого спектра УВ-биомаркеров с литофациальными особенностями исходного ОВ. Разнообразие фациальных обстановок, характеризующих захоронение и преобразование исходного ОВ, отражается в особенностях геохимии нефтей, что является еще одним важным доказательством органического происхождения нефти.

Образование вторично измененных нефтей связано с процессами современного или древнего гипергенеза. В результате интенсивных восходящих движений нефти попадают либо на путях миграции, либо уже в залежах в область биохимического и/или химического окисления и подвергаются процессам физического выветривания, неорганического окисления, вымывания водами (промывания), биодеградации и осернения. Зоны накопления гипергенных нефтей приурочены, в основном, к крупным положительным структурам (своды, мегавалы, валы), испытавшим интенсивные восходящие движения на заключительных этапах своего развития. Наиболее измененные нефти встречаются в зонах активного водообмена (на водонефтяных контактах) и на относительно небольших глубинах.

В результате вторичных изменений нефтей в зоне гипергенеза сформированы крупнейшие и гигантские месторождения тяжелых нефтей и природных битумов в Западной Канаде, Восточной и Западной Венесуэле, США, России и других регионах [5–10]. С точки зрения оценки ресурсов эти скопления являются нетрадиционными и признаны во многих регионах промышленно ванадиеносными, в связи с чем, они рассматриваются как комплексное сырье добычи УВ и сопутствующих им металлов (табл. 2).

Процесс биохимической эволюции существенно меняет углеводородный состав нефти. По мере усиления степени деградации происходит последовательное удаление определенных УВ соединений (н-алканов, изопреноидов, регулярных стеранов и гопанов). Биодеградация включает несколько стадий (уровней) воздействия на состав флюида с различной степенью деструкции классов углеводородных соединений. Шкалы биодеградации нефтей с характеристикой ее уровней приводятся в работах [23-27] и др. Суммируя данные, полученные этими авторами, а также результаты анализа природных моделей, нами выделены пять основных стадий деструкции соединений УВ (табл. 3): I – легкая (малая, слабая): II – средняя (умеренная); III — высокая (сильная, экстенсивная); IV – очень высокая (очень экстенсивная); V- сверхвысокая (сверхэкстенсивная, экстремальная). Первичной считается типичная зрелая парафиновая нефть с избытком н-алканов (химический тип А-1).

При слабой степени биодеградации (подстадия I-1) в нефтях снижается количество *н*-алканов (в области *н*-С₅···*н*-С₁₆), отмечаются небольшие изменения в составе УВ бензиновой фракции (С5-С8), хотя порядок распределения УВ (н-гексан > 2-метилпентан > 3-метилпентан > 2,3-диметилбутан) и химический тип бензиновой фракции сохраняются. Возрастает содержание изопреноидов и изоалканов. Распределение циклических УВ внутри ряда остается прежним на фоне роста цикланов. При этом сохраняются и частично увеличиваются величины отношений П/Ф и значения коэффициента К_i, нафтеновый паспорт и общий химический тип нефтей A (A1 → A2). При средней степени биодеградации (подстадия II-4) *н*-алканы полностью разрушены, количество изопреноидов немного снижается, значительно увеличивается количество изоалканов, сохраняется величина П/Ф. При этом меняется порядок распределения легких алканов в бензиновой фракции. Он представлен рядом 3-метилпентан > 2-метилпентан > >2,3-диметилбутан > *н*-гексан. Частично наруша-

НЕФТЕХИМИЯ том 56 № 4 2016

Литофациальные условия осадконакопления органического вещества		носные леносные мо-болотные	поненты ОВ	лейптинит до 20%; резинит – 5%	10		2 A-2; A ^B -1	3 0.99–1.06	е моно	3.5-13.8	1.0 - 9.7	0.14-4.6	$u-19 \ge u-16 \ge 2u-16 \ge 2u-15 > u-18 > 2u-20$		Orc.	OTC.		I	1								
	фации	Углел и субуг: аллювиаль	микроком	резинит 10—15%	6		B-1; B-1⁶; B- 3	Нет алканов	Нет алканов	2.2-11.3	I	I	<i>u</i> -13- <i>u</i> -20		$\begin{array}{c} C_{27} > C_{29}^{\wedge\wedge} \\ C_{29} > C_{27}^{\vee} \end{array}$	30-60		2.24^^	0.61°								
	нентальные		IPIG	пресноводн	8		A ⁶ -1	0.9–1.1	би	0.6 - 1.0	0.9 - 1.1	1.0			$C_{29} > C_{27}$	25-30		I	0.2-0.7								
	Конти	озерные	озерные	_	солоновато водные	7		A ⁶ -1	1.1–1.2	би	0.7 - 0.8	0.5-0.6	0.5	<i>u</i> -13- <i>u</i> -25		$C_{27} > C_{29}$	20-30		I	0.4-0.5							
	-													олено- олено-	6		A-2	0.4-1.0	оном	0.4	1.5–2.9	2.8-5.2		I	$C_{27} \approx C_{29}$	28-33	I
	,	морские фации водные мелководные	зодные	_	морские прибрежно	N N	Алкань	Алкан	Алкан	B-1; B-2	Нет <i>н</i> -алканов	Нет алканов	0.3 - 2.0		I	<i>u</i> -14- <i>u</i> -25	Стерань	$C_{29} \approx C_{28}$ $C_{28} > C_{29} > C_{27}$	26-50	Терпань	I	1.1–1.3					
	іе фации		MCJIKOF	морские и прибрежн дельтовые	4		A ⁶ -1	≈1	би	0.7	0.5	0.3	<i>u</i> -20> <i>u</i> -19		I	I		I	I								
	Морски		водные	יוק יוק, יופ,	терригенно карбонатнь карбонатнь	3		A-2; A ⁶ -1; B-2	0.9–1.4	би и моно	0.15-0.70 1.3-1.4*	$0.54-0.76^{**}$ 1.26^{*}	$1.2 - 3.8 ** \\ 1.05 *$	<i>u</i> -14- <i>u</i> -25		$C_{27} > C_{29} C_{29}^{***}$	27-48		0.11	1.03^{**} 0.9^{***}							
		срригенно- Сромнистые		терригенно кремнисты	2		A-2; A ^a -1	от>1 до <1	оном	0.71-1.7	0.66–2.26	0.61-2.12	<i>u</i> -14- <i>u</i> -25		$C_{27} > C_{29}$	32-47		≥	0.42-0.45								
			параметры		1		Химич. тип нефти	Нечетные <i>н</i> -алканы/четные <i>н</i> -алканы	Модальность	П/Ф	Π/μ -C ₁₇	Ф/н-С ₁₈	Изопреноиды		Стераны С ₂₇ –С ₂₉	$20S/20(S + R) C_{29}, \%$		Трицикланы/ тетрацикланы	Ts/Tm Γ_{27}								

Таблица 1. Распределение углеводородов, микроэлементов и их соотношений в нафтидах незрелого генезиса

329

		осные сносные о-болотные	оненты ОВ	лейптинит до 20%; резинит – 5%	10	I	I	I	Ι	I	I	I		0.23	1.2	0.2	I	I	I	ой, в квадратных		
T	рации	Угленс и субугле аллювиальн	шикрокомп	резинит 10—15%	6	$\frac{\Gamma_{27}-\Gamma_{31}^{\wedge}}{\Gamma_{27}-\Gamma_{35}^{\wedge}}$	$0.10-0.61^{\circ}$ $0.32-16.7^{\circ\circ}$	0.12−0.95^ Orc.	Отс.	>1	1.62^^	48-55^^		$1.5 - 4.0^{-5}$	2.4–5.1 ^^	$0.6-0.8^{\wedge\wedge}$	$O_{TC.^{\wedge,\wedge}}$	$0.4^{\wedge\wedge}$	I	А, свита Монтере		
Литофациальные условия осадконакопления органического веществ	нентальные ф		ресноводные		8	$\Gamma_{27}-\Gamma_{33}$	0.17-0.28		0.1 - 0.2	<1	0.4-0.6	52–59							Ι	лых скобках СШ		
	Конт	озерные	-	отаноновато болоновато биндов	7	Γ ₂₇ -Γ ₃₃ 0.13-0.16 Οτc. 0.4-0.8		<1	0.4-0.5	53-58		0.2-0.4	0.2 - 15.7	0.1	I		I	ой Сибири; в круг х.				
				-олено-	9	$\Gamma_{27}-\Gamma_{35}$	0.12-0.13		0.4–1.1	<1	0.5-1.5	57-59	лементы					I	анаде, ^^ Западно тсутствие данны			
		водные	_	арские прибрежно	5	$\Gamma_{27}-\Gamma_{33}$	0.12-0.24	0.08-0.15	Ι	0.44-0.73	I	54-58	Микроал 10.01-3.17 0.03-10.5				OTC.	8–36	I	те, ^ Западной К; грк в таблице – о		
	ге фации	мелков	мелков	те фации мелко	-01	морские и прибрежн дельтовые	4	I	1	Ι	Ι	Ι	I	I			I	I	Ι	Ι	I	сии, *** Гватема. исутствует; проч
	Mopcki	водные	$\begin{array}{c c} 0.40-0.43 \end{array}$ 0.29 $\begin{array}{c c} \Gamma_{27}-\Gamma_{35} \\ 0.29 \end{array}$ харбонатные, карбонатные	0.40 - 0.43	$0.51 - 0.71^{**}$ 1.6^{***}	0.61 ≈1***	54 56		1–5.2 19.8	19.8	0.3	Ι	Ι	I	алии, ** Белорус нтерей; + УВ пр							
		шубоко	9 -	терригенно кремнисты	2	$\Gamma_{27}-\Gamma_{35}$	0.17 - 0.20	0.07-0.33	OTC.	0.52-0.79	0.571.45	53-60		2.0–22.7 (174)	4.9–57 (174)	0.20.6 (1.0)	0-17 [350]	9-35	5.0	нные по * Австра р и Nip свита Мо		
			11apamerph		1	Гопаны Г ₂₇ —Г ₃₅	Моретан/ гопан βαM ₃₀ /Г ₃₀ αβ	Олеанан 18α(Н)/Г ₃₀	Гаммаце- ран/Г ₃₀	Γ_{29}/Γ_{30}	Γ_{35}/Γ_{34}	$\frac{22S/22(S+R)}{\Gamma_{31},\%}$		V, Γ/T	Ni, r/T	V/Ni	Vp, r/T	Nip, r/T	Vp/Nip	Примечание. Да скобках сумма Vj		

330

Таблица 1. Окончание

ПУНАНОВА, ВИНОГРАДОВА

НЕФТЕХИМИЯ том 56 № 4

4 2016

Нефтегазоносные бассейны (НГБ), нефтегазоносные провинции (НГП), нефтегазоносные области (НГО), стоктурные элементы	Основные месторождения, возраст нефтегазоносного комплекса	Авторы	Тектоническая характеристика региона	Содержа в гипеј преобраз нафти	ние МЭ огенно ованных (ах, г/т
				Λ	Ni
Западно-Канадский НГБ	Пис-Ривер, Вабаска, Атабаска; К ₁	[6-10]	Древние платформы (краевые системы плат- форм. граничание	168 *290	*120
НГБ Юинта-Пайсенс (США, штат Юта), НГБ Скалистых гор	Асфальт-Ридж, Уайтрокс; Р–Т, J ₂ , К ₁ – верхний палеоген		с выходами фундамента с выходами фундамента или примыкающие к складчатым областям)	110	30
Восточно-Венесуэльский (Оринокский) НГБ	Офисина, Тембладор, Герро- Негро; К, олигоцен-плиоцен			182 *470	72 *90
Тимано-Печорская НГП, Ухто-Ижемский вал, Варандей-Адьзвинская структура	Усть-Войское, Ижемское, Усинское, Ярегское; D, CP	[10, 11, 12]		253	100
Волго-Уральская НГП, Южно-Татарский свод, Мелекесская впадина	Нурлатское, Ашальчинское, Сугушлинское; С ₁ , Р ₁ , Р ₂	[10, 13–16]		900 *1200	100 *340
Лено-Тунгусский НГБ, Лено-Алданская НГО, Оленекский свод	Оленекское; PR ₂ , J ₃	[17–19]		124 *3640	53.6 *640
Южно-Мангышлакская НГО, Бузачинский свод	Сев. Бузачи, Каражанбас;	[20]	Эпипалеозойские молодые платформы	70–384	50-164
Сурхан-Вахшский НГБ Афгано-Таджикская впадина	Учкизыл, Хаудаг, Кошкар; палеоцен, бухарский пласт	[21]	Впадины эпиплат- форменных орогенов	570	170
Западно-Венесуэльский (Маракаибский) HГБ	Западная Мара, Мара, Бочакеро; К, палеоген–неоген	[7, 10, 22]	Межскладчатые области, альпийские подвижные пояса	216–1000 *935–1250	96 *110–150

Таблица 2. Основные регионы развития гипергенно преобразованных нафтидов, вторично обогащенных микроэлементами

НЕФТЕХИМИЯ том 56

2016

<u>№</u> 4

Примечание. * – содержания V и Ni в природных битумах.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПРИРОДНЫХ УГЛЕВОДОРОДНЫХ СИСТЕМ

№Nº	Стадии. Степень биодеградации	Подстадии. Изменения в составе УВ нефтей	Примеры природных моделей нефти нефтегазоносных бассейнов различных регионов
Ι	Легкая (слабая, малая)	 Низшие гомологи <i>н</i>-алканов разрушены. Общее исчезновение <i>н</i>-алканов Только следы <i>н</i>алканов 	Уиллистонский, Гвинейский
II	Средняя (умеренная)	 Разрушены нпарафины полностью, изопреноиды не затронуты. Ациклические изопреноиды отсутствуют (деградированы) 	Средне-Каспийский, Волго-Уральский, Северо-Восточный НГБ Бразилии, Западно-Канадский
III	Высокая (сильная, экстенсивная)	 6. Регулярные стераны частично деградированы 7. Регулярные стераны деградированы полностью. Диастераны не затронуты 	Галф-Кост, Юинта
IV	Очень высокая (очень экстенсивная)	 8. Регулярные гопаны частично деградированы, появляются 25-норгопаны 9. Регулярные гопаны отсутствуют. Диастераны частично деградируют 	Северо-Восточный НГБ Сахалина, НГБ Калифорнии, Карнарвон (Австралия), НГБ Морондова (о. Мадагаскар), битумы Оленёкского поднятия (Восточная Сибирь)
V	Сверхвысокая (сверхэкстенсивная)	10. Диастераны и ароматические стераны С ₂₆ —С ₂₉ разрушаются. Протекает деметилирование три и тетрацикланов	Битумы Оленёкского поднятия (Восточная Сибирь), нефти Северного моря

Таблица 3. Шкала биодеградации с характеристикой уровней эволюции типичной зрелой нефти

ется порядок распределения цикланов на фоне общего роста цикланов. Химический тип нефти Б-2. При средней степени биодеградации, на подстадии II-5, в нефтях исчезают изопреноиды. Остаются только изоалканы, увеличиваются цикланы. Внутри циклановой группы возрастает число три-, тетра-, пента- и гексацикланов. Состав стеранов и гопанов не изменен. Среди ароматической группы УВ начинают преобладать диароматические УВ. Химический тип нефти меняется на Б-1. В ходе высокой (подстадии III-6, III-7) и очень высокой (IV-8, IV-9) стадий биодеградации к перечисленным изменениям последовательно добавляются следующие. Исчезают регулярные стераны состава C_{27} . Среди стеранов состава C_{28} и C_{29} деградируют 20R-стереоизомеры. Диастераны сохраняются. Внутри пентациклических УВ (тритерпанов) на фоне присутствия регулярных гопанов Г27, Г29-Г35 начинают появляться деметилированные гопаны (нор-Г₂₈, нор-Г₃₀) и моретаны (нор-M₂₈, нор-M₂₉, нор-М₃₀). Трициклические терпаны сохраняются. При переходе от подстадии IV-8 к подстадии IV-9 все регулярные стераны разрушаются; увеличивается число деметилированных гопанов (нор- Γ_{26} , нор- Γ_{28} , нор- Γ_{30} , нор- Γ_{31} нор- Γ_{32}), которые начинают преобладать.

К примерам нефтей, испытавших легкую стадию биодеградации, относятся каменноугольные нефти Уиллистонского НГБ и кайнозойские нефти Гвинейского НГБ. Меловые нефти Западно-Канадского НГБ, миоценовые нефти Старо-Грозненского месторождения (Средне-Каспийский НГБ), палеозойские нефти Мелекесской впадины (Волго-Уральский НГБ), меловые нефти Северо-Восточного НГБ Бразилии прошли легкую и среднюю стадии биодеградации. Эоценовые нефти и битумы НГБ Юинта, нижнеюрские нафтиды НГБ Морондова (о. Мадагаскар), кайнозойские нефти бассейнов США Галф-Кост и Калифорнии, мезозойские нефти НГБ Карнарвон (Австралия), миоценовые нефти Сахалина (Северо-Восточный НГБ), палеозойские и протерозойские битумы Оленёкского поднятия (Восточная Сибирь) подверглись высокой и очень высокой стадии биодеградации.

В зонах гипергенеза под действием перечисленных процессов изменяются содержание МЭ и их соотношения [28–31]. В связи с потерей легких фракций в нефтях значительно возрастает абсолютная концентрация элементов, связанных со смолисто-асфальтеновыми компонентами – V, Ni, Co, Mo, Cr, Cu и др. Кроме того, смолисто-асфальтеновые гетероатомные компоненты нефтей, контактирующих с маломинерализованными пластовыми водами в зоне гипергенеза, способны сорбировать из вод МЭ с переменной валентностью (V, Fe, U).

Сравнительный анализ незрелых и биодеградированных нефтей [32, 33] позволил выявить наиболее информативные УВ критерии их различия (рис. 2, табл. 4). Для флюидов химических типов А-2, Б-2, Б-1 I-III стадий (подстадий 16) биоде-

Тип нефти А-2	
УВ соотношения	Оси
$\beta\beta/(\beta\beta+\alpha\alpha)$	1
20S/(20S + 20R)	2
диастер/рег. стераны	3
олеанан/Г ₃₀	4
моретан/Г ₃₀	5
Σбензот./Σдибензтиоф.	6

333

Тип нефти Б-1	
УВ соотношения	Оси
20S/20R	1
$\beta\beta/(\beta\beta+\alpha\alpha)$	2
20S/(20S + 20R)	3
олеанан/Г ₃₀	4
моретан/Г ₃₀	5

Тип нефти Б-2	
УВ соотношения	Оси
20S/20R	1
$\beta\beta/(\beta\beta+\alpha\alpha)$	2
20S/(20S + 20R)	3
диастер/рег. стераны	4
олеанан/Г ₃₀	5
моретан/Г ₃₀	6
Σбензот./Σдибензтиоф.	7

Рис. 2. Сравнительная характеристика биодеградированных (ряд 1) и незрелых (ряд 2) нефтей (использованы усредненные величины отношений, в %).

		Незр	Биодеградированные нефти								
Параметры	химические типы нефтей по Ал. А. Петрову										
(соотношения УВ), %		A-2		Б-2	Б-1		БО	Г 1			
	1	2	3	4	5	A-2	D-2	D-1			
20S/(20S + 20R)	32-47	27-48	28-33	26-35	30–46 48–52	50-55	50-55	58-85; 100			
20S/20R	_	_	_	40-52	10-52	_	79	100-120			
$\beta\beta/(\beta\beta+\alpha\alpha)$	31-54	_	_	60	47-58	86-87	86-87	87-100			
Диастераны/ регулярные стераны	12-34	_	_	38	_	52-54	52-54	48			
$22S/(22S + 22R) (\Gamma_{31})$	53-60	54-56	57-59	54-58	48-55	53-55	53-55	51			
Олеанан/Г ₃₀	5-33	_	—	15-36	38-95	5-8	8-10	46-82			
Моретан/Г ₃₀	18-20	29	12-13	19-24	20-61	12	6-14	7-8			
Гаммацеран/Г ₃₀	_	40-44	40-110	_	_	_	13-20	8-10			
ΣБензотиофенов/ Σдибензотиофенов	140-20	_	_	120	_	69	62	61			
23,28-Биснорлупан/Г ₃₀	Нет	Нет	Нет	72-78	78-190	Нет	Нет	Нет			

Таблица 4. Сравнительные критерии незрелых (различных литофаций) и биодеградированных нефтей

Примечание. Прочерк в таблице означает отсутствие данных; литофации: 1 – морские терригеннокремнистые; 2 – морские терригенно-карбонатные; 3 – озерные соленоводные; 4 – морские мелководные; 5 – континентальные.

градации таковыми являются величины отношений по стеранам C₂₉ 20S/(20S + 20R), $\beta\beta/(\beta\beta + \alpha\alpha)$, диастераны/регулярные стераны, по гопанам Г₃₁ 22S/(22S + 22R) и отношения Σ -бензотиофенов/ Σ дибензотиофенов по ароматико-сернистым соединениям. В незрелых нефтях значения первых четы-

Рис. 3. Углеводородные критерии биодеградированных (1) и незрелых (2) нефтей.

рех показателей невысокие и составляют соответственно 26-52, 31-60, 12-38 и 48-53%. Для них характерно также доминирование бензотиофенов над дибензотиофенами, а и за счет повышенного содержания отдельных индивидуальных УВ увеличены отношения олеанан/Г₃₀, моретан/Г₃₀ и гаммацеран/Г₃₀. В биодеградированных нефтях, сохраняющих в основном облик зрелых нефтей, значения первых четырех критериев повышены, отмечается преобладание дибензотиофенов над бензотиофенами. В высоко биодеградированных нефтях типа Б-2 (стадии III-V, подстадии 710) за счет редукции эпимера 20R регулярных стеранов и гопана Г₃₀, значительноувеличиваются величины отношений олеанан/Г₃₀, 20S/(20S + 20R), $\beta\beta/(\beta\beta + \alpha\alpha)$ и отношение диастеранов к регулярным стеранам. На рис. 3 четко очерчивается группа биодеградированных нефтей, в которых величины 20S/(20S + 20R) > 50 и моретан/ $\Gamma_{30} < 14\%$, и незрелых нефтей. В последних величины отношений 20S/(20S + 20R) < 50 и моретан/ $\Gamma_{30} > 10\%$.

Типизация нефтей по содержанию "биогенных" микроэлементов (V, Ni, Fe), детально описанная нами в работе [34], выявила в процессе нафтидогенеза существенные отличия нефтей ранней генерации от гипергенно измененных. Незрелые нефти обеднены МЭ, характеризуются низкими содержаниями V и Ni (V < 10 и Ni < 50 г/т) (за исключением нефтей, генерированных морским OB свиты Монтерей, Калифорния) и преобладанием Ni над V (V/Ni < 1), т.е. образуют провинции с никелевой металлогенией. Гипергенно преобразованные нефти и генетически связанные с ними природные битумы отличаются высокими, вплоть до промышленных, концентрациями $M \ni$ (V > 150, Ni > 50 г/т), за счет вторичного обогащения металлами, преобладанием V над Ni (V/Ni > 1) и создают металлогенические провинции ванадиевого типа.

Таким образом, на материале изучения нефтей и конденсатов месторождений НГБ всех пяти континентов (более 30 НГБ) установлены градации значений УВ и МЭ соединений, что помогает распознать стадию данного процесса и генетическую природу углеводородной системы (первичная или вторичная). Совокупность рассмотренных геохимических характеристик и генетическая диагностика флюидов является основой прогноза их качественного состава и фазового состояния, а также способствует совершенствованию методов оценки перспектив нефтегазоносности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Виноградова Т.Л., Пунанова С.А. Углеводородные системы ранней генерации. Особенности состава и геологогеохимические закономерности формирования. Издво ISBN: Lambert Academic Publishing. Saarbruchen. Germany. 2012. 244 с.
- 2. *Петров Ал. А.* Углеводороды нефти. М. Издво: Наука. 1984. 264 с.
- Соколова И.М., Абрютина Н.Н., Петров Ал. А. Углеводородный состав и химическая типизация нафтеновых газовых конденсатов и нафтеновых нефтей. М. 1989. Обзор ВИЭМС "Геология, методы поисков и разведки месторождений нефти и газа". 69 с.
- 4. Виноградова Т.Л., Пунанова С.А. // Геология нефти и газа. 2010. № 3. С. 61.
- 5. *Тиссо Б., Вельте Д.* Образование и распространение нефти. М. Изд-во: Мир, 1981. 502 с.
- 6. *Yen T.F.* The role of trace metals in petroleum. Ann. Arbor Science Publishers. Ann Arbor. USA. 1975. 275 p.
- Грибков В.В. Один из возможных природных процессов обогащения нефтей ванадием. Сб. научн. тр. ВНИГРИ "Попутные компоненты нефтей и проблемы их извлечения", Л.: ВНИГРИ. 1989. С. 28–39.
- Гольдбере И.С. Природные битумы СССР (Закономерности формирования и размещения). Л.: Недра, 1981. 195 с.
- 9. Суханов А.А., Петров Ю.Э. Ресурсная база попутных компонентов тяжелых нефтей России // Нефтегазовая геология. Теория и практика. 2008. № 3.
- Якуцени С.П. Распространенность углеводородов, обогащенных тяжелыми элементами-примесями. Оценка экологических рисков. СПб.: Недра, 2005. 372 с.

 Пунанова С.А., Чахмахчев В.А. Экспериментальные исследования преобразования микроэлементного состава нафтидов при процессах их миграции, катагенеза и гипергенеза. Сб. научн. тр. "Моделирование нефтегазообразования". М.: Наука, 1992. С. 119.

- Окнова Н.С. Тяжелые нефти в девонских отложениях Варандей-Адзьвинской зоны Тимано-Печорской провинции. Сб. мат. Межд. научн.-практ. конф. "Природные битумы и тяжелые нефти". СПб.: Недра, 2006. С. 58.
- Пермские битумы Татарии (Под редакцией Троепольского В.И.). 1976. Казань. Казанский университет. 212 с.
- Каюкова Г.П., Петров С.М., Успенский Б.В. Свойства тяжелых нефтей и битумов пермских отложений Татарстана в природных и техногенных процессах. М.: ГЕОС, 2015. 343 с.
- 15. *Мухаметшин Р.З., Пунанова С.А* // Геология нефти и газа. 2011. № 4. С. 74.
- 16. Мухаметшин Р.З., Пунанова С.А., Нукенов Д. К вопросу о генезисе геохимических разновидностей нефтей полуострова Бузачи и Урало-Поволжья. Матер. межд. научн.-практ. конф. "Инновационное развитие нефтегазового комплекса Казахстана". Р.К. Актау. АО "КазНИПИмунайгаз". 2013. Ч. 2. С. 361.
- 17. Поляков А.А., Блинова В.И., Каширцев В.А., Смирнова М.Е. // Нефтегазовая Геология. Теория и практика. 2011. Т. 6. № 3.
- Белинкин В.А., Кушмар И.А. Природные битумы и проблемы комплексного освоения углеводородного сырья Сибирской платформы. Сб. мат. Межд. научн.-практ. конф. "Природные битумы и тяжелые нефти". СПб.: Недра, 2006. С. 339.
- Арчегов Б.В., Смыслов А.А., Козлов А.В., Степанов В.А. Природные битумы Сибирской платформы и перспективы их освоения. Сб. мат. Межд. научн.практ. конф. "Природные битумы и тяжелые нефти". СПб.: Недра, 2006. С. 347.
- 20. *Нукенов Д.Н., Пунанова С.А., Агафонова З.Г.* Металлы в нефтях, их концентрация и методы извлечения. М.: ГЕОС, 2001. 77 с.
- 21. *Пунанова С.А., Сафранов Т.А.* // Нефтехимия. 1993. Т. 33. № 6. С. 510.
- Lopez L. Monaco S.L., Galarraga F., Lira A., Cruz C. V/Ni ratio in maltene and asphaltene fractions of crude oils from the west Venezuelan basin: correlation studies // Chemical Geology. 1995. V. 119. P. 255.
- Volkman J.K., Alexander R., Kagi R.J., Woodhouse G.W. //Geochim. et Cosmochim. Acta. 1983. V. 47. P. 785.
- 24. *Peters K.E., Moldowan J.M.* The biomarker guide. Prentice Hall. Englewood Cliffs. New Jersey. 1993. 363 p.
- Каширцев В.А., Конторович А.Э., Филп Р.П., Чалая О.Н., Зуева И.Н., Иванова И.К., Маметова Н.П. // Геология и геофизика. 2001. Т. 42. № 1112. С. 1792.
- Попович Т.А. Оценка биодеградации нефтей Сахалина и шельфа. Генезис нефти и газа. М.: ГЕОС, 2003. С. 260.

НЕФТЕХИМИЯ том 56 № 4 2016

- Waples D.W., Machihara Ts. Biomarkers for Geologists a Practical Guide to the application of steranes and triterpanes in Petroleum Geology // AAPG. Tulsa. Oklahoma. USA. 74101. 1992. 185 p
- 28. Пунанова С.А. // Геохимия. 2014. № 1. С. 64.
- Шпирт М.Я., Пунанова С.А. Микроэлементы каустобиолитов. Проблемы генезиса и промышленного использования. Издво ISBN: Lambert Academic Publishing. Saarbruchen. Germany. 2012. 367 с.
- 30. *Гольдберг И.С.* // Геология нефти и газа. 1990. № 3. С. 2.
- 31. *Пунанова С.А., Виноградова Т.Л.* // Геология, геофизика и разработка нефтяных и газовых месторождений. 2011. № 10. С. 27.
- 32. Виноградова Т.Л., Пунанова С.А. // Геология нефти и газа. 2012. № 3. С. 44.
- 33. Виноградова Т.Л. // Геология нефти и газа. 2013. № 6. С. 55.
- 34. Бабаев Ф.Р., Пунанова С.А. Геохимические аспекты микроэлементного состава нефтей. М.: ООО "Издательский дом Недра". 2014. 181 с.