УДК 544.473,544.478,546.824,54.057

ФОРМИРОВАНИЕ АКТИВНЫХ ЦЕНТРОВ ТИТАНСОДЕРЖАЩИХ ЦЕОЛИТОВ СО СТРУКТУРОЙ МГІ В ЭПОКСИДИРОВАНИИ ПРОПИЛЕНА ПЕРОКСИДОМ ВОДОРОДА

© 2016 г. И. А. Тябликов¹, Л. И. Родионова¹, П. Д. Соболев¹, И. И. Иванова^{1, 2}

¹Московский Государственный Университет имени М.В. Ломоносова

²Институт нефтехимического синтеза имени А.В. Топчиева РАН, Москва

E-mail: igortabl3@gmail.com

Поступила в редакцию 16.11.2015 г.

Эпоксидирование пропилена пероксидом водорода исследовано на титаносиликатах с различным соотношением Si/Ti и различным состоянием титана в катализаторе, полученных гидротермальной кристаллизацией по двум различным методикам. Продемонстрировано, что изменение pH кристаллизационного геля приводит к изменению последовательности встраивания титана в структуру цеолита при температуре гидротермального синтеза 170°С. Показано, что титан, встроенный в решетку цеолита в тетраэдрические позиции, является активным центром в реакции эпоксидирования, в то время как титан в виде диоксида титана приводит к нецелевому разложению пероксида водорода.

Ключевые слова: эпоксидирование пропилена, пропиленоксид, титаносиликат TS-1, активный центр.

DOI: 10.7868/S002824211603014X

В настоящее время проводятся интенсивные исследования в области создания новых промышленных процессов получения пропиленоксида, ценного сырья для нефтехимического синтеза [1]. Одним из последних достижений является разработка HPPO процесса (hydrogen peroxide propene oxide) [2], который заключается в окислении пропилена пероксидом водорода, где в качестве катализатора используется титаносиликат со структурой MFI-TS-1. Титаносиликат TS-1, синтез которого впервые осуществлен коллективом компании Enichem в 1980-х гг. [3], обладает чрезвычайно высокой активностью и селективностью в реакции эпоксидирования пропилена пероксидом водорода и уже в течение более 30 лет не имеет аналогов, несмотря на продолжающиеся попытки поиска новых каталитических систем.

Многочисленные исследования показали, что каталитические свойства титаносиликата сильно зависят от состояния титана в структуре. Так, в ряде работ было установлено, что активным центром для реакции эпоксидирования алкенов пероксидом водорода является титан в тетраэдрических позициях в каркасе цеолита ("структурный" титан) [4], который активирует пероксид водорода с образованием гетерогенных пероксотитановых соединений, являющихся окислительными агентами в реакциях эпоксидирования алкенов [2]. Кроме того, было показано, что внеструктурный титан в виде TiO_2 не обладает активностью в

процессе эпоксидирования. Однако стандартные методики синтеза титаносиликатов не позволяют ввести в структуру цеолита более 2% титана [5]. Поэтому большое значение приобретает разработка методов синтеза, позволяющих направленно регулировать состояние титана в силикате. В настоящее время этому вопросу уделяется большое внимание [6—9].

Авторами [8] было продемонстрировано, что изменение рН кристаллизационного геля приводит в смене механизма кристаллизации титаносиликата с твердо-жидкофазного ("liquid-solid mediated mechanism") на твердофазный ("solid-solid mediated mechanism"), что сопровождается изменением последовательности встраивания титана в структуру цеолита.

В настоящей работе, базируясь на результатах работы [8], мы изучали влияние способа синтеза титаносиликата на механизм встраивания титана в кристаллическую структуру и на активность полученных катализаторов в реакции эпоксидирования пропилена пероксидом водорода.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе были синтезированы 2 серии титаносиликатов. Образцы I серии кристаллизовали из реакционной смеси состава $SiO_2/0.0125-0.05TiO_2/0.5TPAOH$ (гидроксид тетрапропилам-

мония)/ $0.2H_2O_2/35H_2O$ по методике, описанной в работе [3]; при этом pH смеси был равен 11. Образцы серии II были синтезированы из геля состава $SiO_2/0.0125-0.05TiO_2/0.5TPAOH/0.2H_2O_2/35H_2O/0.3(NH_4)_2CO_3$ с pH 10 по методике предложенной в работе [8].

В качестве исходных реагентов были использованы тетрабутоксититанат, тетраэтоксисилан, тетрапропиламмоний гидроксид (25 мас. %), пероксид водорода (30 мас. %) и, для ІІ группы, карбонат аммония. Порядок добавления реагентов был следующий: вначале бутоксид титана растворяли в водно-пероксидном растворе, затем добавляли темплат (тетрапропиламмоний гидроксид), а затем тетраэтоксисилан. После этого смесь перемешивали в течение 4 ч при 60°C для удаления продуктов гидролиза, после чего для образцов II серии в смесь добавлялся карбонат аммония. Полученные гели помещали в автоклав для гидротермальной обработки. Гидротермальный синтез проводили при температуре 170°C в интервале времен от 1 до 48 ч. Твердые продукты синтеза отделяли от жидкой фазы фильтрованием или центрифугированием, отмывали, высушивали при 100°C в течение 12 ч и прокаливали при 500°C в течение 12 ч в токе воздуха (скорость нагрева 2 град/мин).

Элементный состав титаносиликатов исследовали с помощью рентгенофлуоресцентного анализа в Институте нефтехимического синтеза им. А.В. Топчиева РАН. Навески образцов, массой 0.07—0.15 г прессовали на поверхности таблетки борной кислоты. Полученные массовые доли элементов переводили в соответствующие мольные отношения.

Дифракционные данные были получены при комнатной температуре на порошковом дифрактометре D2 PHASER фирмы BRUKER в геометрии q-q. Режим генератора 30 кВ, 10 мА, рентгеновская трубка с медным анодом ($\lambda(Cu-K_\alpha)$ = = 1.5418Å). Съемку дифрактограмм проводили при вращении образца в горизонтальной плоскости в интервале угла 2θ от 5 до 50° с шагом 0.05° , ширина шелей на выходе из трубки 0.6 мм и перед детектором 1.15 мм, время регистрации в точке 3 с. Съемку дифрактограмм малоуглового рентгеновского рассеивания проводили в области углов $1.5{-}52\theta$ в низкофоновой кювете с шагом 0.01° , ширина щелей на выходе из трубки 0.1 мм и перед детектором 0.79 мм, время регистрации в точке 1 с. Обработку дифрактограмм проводили с использованием программного пакета diffrac. EVA от BRUK-ER. Идентификацию фаз проводили по базе ICDD PDF2.

Адсорбционные измерения осуществляли автоматическом сорбтометре ASAP 2000N Micromeritics. Перед измерением все образцы вакуумировали при 350° С и давлении 10^{-3} мм рт. ст. в течение 4 ч. Расчет удельной поверхности по методу БЭТ, объема и среднего диаметра пор образ-

цов проводили по изотермам адсорбции азота при 77 К с помощью пакета программ фирмы Micromeritics, входящего в комплектацию прибора.

ИК-спектры синтезированных образцов регистрировали в диапазоне $400-4000~{\rm cm^{-1}}$ на спектрометре Nicolet Protege $460~{\rm c}$ МСТ детектором. Для обработки данных использовали пакет программ OMNIC ESP версии 6.0. Спектры записывали с разрешением $4~{\rm cm^{-1}}$. Приготовление образцов проводили по методике таблетирования со связующим. Для этого $20~{\rm mr}$ TS-1 спрессовывали с прокаленным KBr в соотношении цеолит: KBr = $1:150~{\rm mo}$ массе. В качестве фона использовали спектр KBr.

Спектры ²⁹Si ЯМР регистрировали на приборе Varian Unity Inova Plus AS500 на датчике ТЗ НХҮ 7.5 мм (скорость вращения ротора 4.5 кГц), промежуток между импульсами в экспериментах ²⁹Si MAS NMR 30 с. Эксперименты ²⁹Si CP MAS NMR получены с использованием переноса поляризации от протонов. Время протонного импульса 5.1 мкс, время контакта 2000 мс. Стандарт хим. сдвига — тетраметилсилан.

Для определения состояния титана в титаносиликате использовали метод УФ-спектроскопии. Спектры получали на приборе Thermo Evolution 600 в диапазоне 190—850 нм с шагом 2 нм.

Спектры РФЭС регистрировали на приборе Axis Ultra DLD (Kratos Analysis) с Al- K_{α} в качестве источника рентгеновского излучения. Деконволюцию пиков в полученном спектре проводили с помощью программы Casa XPS. Шкалу энергий спектрометра калибровали по полосе золота $4f_{7/2}$ при $84.0\,$ эВ. Шкалу энергий связи калибровали по линии C 1s, принимая ее за $284.5\,$ эВ.

Эпоксидирование пропилена пероксидом водорода изучали в стальном реакторе автоклавного типа объемом 100 мл, оснащенным входным клапаном для подачи пропилена. В реактор помещали 0.1 г катализатора, к нему добавляли предварительно взвешенные 12 мл метанола, 2 мл раствора пероксида водорода, 0.4 мл бензола. Реактор закрывали, охлаждали в жидком азоте, добавляли пропилен из баллона. Масса пропилена в реакторе составляла примерно 13 г (12 атм), что определялось взвешиванием реактора до и после заполнения пропиленом. Температуру реакции контролировали с помощью хромель-алюминиевой термопары, помещенной в специальный стальной карман реактора. После завершения эксперимента, реактор охлаждали в жидком азоте; взвешивали; с помощью пипетки переносили содержимое реактора в колбу; взвешивали колбу с продуктом. В реактор добавляли 15 мл ТГФ и включали перемешивание на 5 мин. Переносили ТГФ в колбу с продуктом и взвешивали.

Продукты реакции анализировали методами ГЖХ на хроматографе Кристалл 2000 М фирмы

	I ("liquio	d-solid")	II ("solid-solid")				
Время кристаллизации, ч	SiO ₂ /0.0125 0.5TPAOH/0.2H ₂ O	$5-0.05\text{TiO}_2/$ $0_2/35\text{H}_2\text{O (pH} = 11)$	$SiO_2/0.0125 - 0.05TiO_2/0.5TPAOH/$ $0.2H_2O_2/35H_2O/0.3(NH_4)_2CO_3$ (pH = 10)				
	Si/Ti = 80	Si/Ti = 20	Si/Ti = 80	Si/Ti = 20			
1	TS-I-80-1	_	TS-II-80-1	_			
2	TS-I-80-2	_	TS-II-80-2	_			
3	TS-I-80-3	_	TS-II-80-3	_			
6	TS-I-80-6	_	TS-II-80-6	_			
12	TS-I-80-12	_	TS-II-80-12	_			
24	TS-I-80-24	_	TS-II-80-24	_			
48	TS-I-80-48	TS-I-20-48	TS-II-80-48	TS-II-20-48			

Таблица 1. Номенклатура синтезированных образцов

"Хроматэк Аналитик", снабженном ПИД и капиллярной колонкой с фазой SE-30 (30 м, 0.22 мм). Регистрацию хроматограмм и определение площадей пиков проводили с помощью программы "Хроматэк Аналитик". Конверсию пероксида водорода рассчитывали, исходя из результатов иодометрического титрования.

В качестве показателей процесса эпоксидирования пропилена были выбраны конверсия пероксида водорода (C) и эффективность использования пероксида водорода (E). Данные величины рассчитывали по следующим формулам:

$$C = \frac{n_0(H_2O_2) - n_t(H_2O_2)}{n_0(H_2O_2)} \times 100\%,$$

$$E = \frac{n(\Pi O)}{n_0(H_2O_2) - n_t(H_2O_2)} \times 100\%,$$

где

$$n_0(H_2O_2) = \frac{m(p-pa(H_2O_2))\omega(H_2O_2)}{M(H_2O_2)},$$

$$n_t({\rm H_2O_2}) = \frac{V(p\text{-}pa({\rm Na_2S_2O_3})) \times c(p\text{-}pa({\rm Na_2S_2O_3})) \times m(\text{продуктов})}{2 \times 1000 \times m(\text{навески})},$$

$$n(\Pi O) = \frac{m(C_6H_6) \times S(\Pi O) \times k(\Pi O)}{M(C_6H_6) \times S(C_6H_6) \times k(C_6H_6)},$$

где $n_0(\mathrm{H_2O_2})$ — количество пероксида водорода в момент времени t=0, моль; $n_t(\mathrm{H_2O_2})$ — количество пероксида водорода в момент времени t, моль; $n(\mathrm{\PiO})$ — количество образовавшегося пропиленоксида, моль; $\omega(\mathrm{H_2O_2})$ — массовая доля пероксида водорода в растворе; S(i) — площадь хроматографического пика i-го вещества, %; k(i) — коэффициент чувствительности i-го вещества; m(i) — масса i-го вещества, r; M(i) — молекулярная масса i-го вещества, r/моль.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

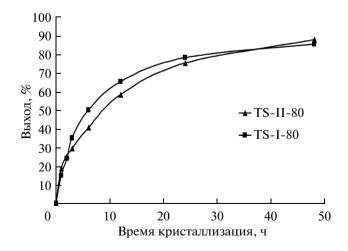
Изучение кинетики кристаллизации титаносиликатов проводили для серий образцов с соотношением Si/Ti = 80 (табл. 1). Для сравнения каталитической активности в реакции эпоксидирования пропилена пероксидом водорода были также синтезированы образцы с повышенным содержанием титана в исходном геле (Si/Ti = 20), время кристаллизации которых составило 48 ч.

Указанные группы отличаются друг от друга составом геля, а именно, наличием или отсутствием карбоната аммония, использующегося в данных синтезах в качестве рН-определяющего агента. Для изучения кинетики кристаллизации обеих групп образцов общим варьируемым параметром было выбрано время гидротермального синтеза в диапазоне от 1 до 48 ч. Номенклатура титаносиликатов, полученных в различных условиях, представлена в табл. 1. По литературным данным [8] синтез титаносиликатов из указанных гелей идет по различным механизмам "liquid-sol-

Время кристаллизации, ч	TS-I-80			TS-II-80				
	X*, %	Si/Ti	$I_{960 \text{ cm}^{-1}}/I_{550 \text{ cm}^{-1}}$	Q^4/Q^3	X, %	Si/Ti	$I_{960 \text{ cm}^{-1}}/I_{550 \text{ cm}^{-1}}$	Q^4/Q^3
3	90	200	0.41	7.1	90	90	0.58	8.5
6	90	120	0.44	7.6	90	90	0.58	8.9
12	90	90	0.48	7.7	90	90	0.59	9.0
24	90	85	0.5	8.6	90	90	0.6	9.1
48	90	80	0.6	9.0	90	80	0.6	9.2

Таблица 2. Физико-химические свойства образцов

іd" для І группы образцов и "solid-solid" для ІІ группы. Разница в механизмах заключается в том, что для "liquid-solid" механизма характерно формирование цеолитной фазы через образование и рост зародышей, а "solid-solid" механизм реализуется путем формирования фазы вторичного геля и рекристаллизации цеолитных частиц в твердой фазе без участия раствора, а дальнейший рост частиц при этом может происходить по первому механизму.


Полученные образцы титаносиликатов были исследованы методом рентгенофазового анализа. Из табл. 2 видно, что при данных условиях гидротермального синтеза образцы достигают максимальной степени кристалличности уже после 3 ч кристаллизации. При этом все образцы являются однофазными (MFI). Для меньших времен кристаллизации наблюдается присутствие аморфной фазы в образцах.

Химический состав. В образцах серии II длительность гидротермальной обработки не влияет на полное соотношение Si/Ti в твердом продукте (табл. 2). Иная картина наблюдается для образцов серии І: увеличение времени синтеза в данном случае сопровождается постепенным уменьшением соотношения Si/Ti от 200 до 80. Схожие данные были получены авторами [8] для меньших температур кристаллизации и объяснялись различием механизмов гидротермального синтеза для серий I и II. Так, для цеолитов, синтезированных в менее щелочной среде, характерен более равномерный гидролиз, при котором концентрация титана в твердой фазе остается постоянной в течение гидротермального синтеза. Подобное различие обусловлено разными скоростями гидролиза прекурсоров титана при различных рН. Таким образом, через 48 ч синтеза в образцах двух групп соотношение Si/Ti составляет 80.

На рис. 1 приведены кривые выхода для образцов двух серий TS-I-80 и TS-II-80. Из приведенных данных видно, что необходимое для получения высоких выходов продуктов время кристал-

лизации составляет не меньше двух суток. Форма кривых выхода для обеих серий образцов практически одинакова и характерна для liquid-solid механизма формирования цеолитной структуры, включающего формирование зародышей и постепенный их рост с увеличением количества твердой фазы. Из приведенных данных можно сделать вывод о том, что, хотя для второй серии образование первых цеолитных частиц идет через solid-solid механизм, дальнейший рост кристаллов идет при взаимодействии твердой фазы с раствором (liquid-solid), что объясняет полученные экспериментальные данные.

Пористую структуру образцов характеризовали методом низкотемпературной адсорбции азота. Исследование изотерм адсорбции—десорбции выявило, что полученные образцы титаносиликатов не имеют мезопор, а весь адсорбированный объем азота сосредотачивается в микропорах образца. Внедрение титана в образец также не влияет на площадь поверхности и размер пор. Все образцы с максимальной кристалличностью после предобработки обладают площадью поверхности

Рис. 1. Кривые выхода для образцов TS-I-80 и TS-II-80.

^{*} X — степень кристалличности, $I_{960~{
m cm}^{-1}}/I_{550~{
m cm}^{-1}}$ — соотношение интенсивностей полос 960 см $^{-1}$ и 550 см $^{-1}$ в ИК-спектрах образцов, Q^4/Q^3 — соотношение интенсивностей сигналов в ЯМР спектрах 29 Si.

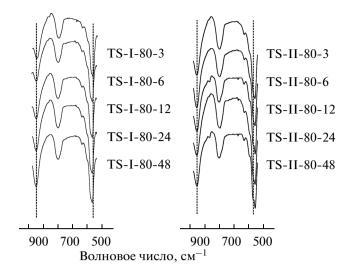


Рис. 2. ИК-спектры образцов ТS-I-80 и ТS-II-80.

порядка $400 \text{ m}^2/\text{г}$ и объемом микропор $0.12 \text{ m}^3/\text{г}$, что соответствует адсорбции азота на цеолите типа MFI.

ИК-спектры всех синтезированных нами образцов характеризуются полосой поглощения 550 см⁻¹, характерной для структуры MFI. Относительная интенсивность полосы 960 см⁻¹, характеризующей внедрение титана в структуру цеолита [10—13], в спектрах для образцов TS-I-80 растет с увеличением времени кристаллизации, что свидетельствует об увеличении концентрации титана в структуре (рис. 2 и табл. 2). Эти данные хорошо согласуются с результатами химического анализа (табл. 2).

Для образцов серии TS-II-80 относительная интенсивность соответствующей полосы поглощения остается постоянной со времени кристаллизации 3 ч, что свидетельствует об отсутствии изменений в концентрации титана, встроенного в структуру цеолита.

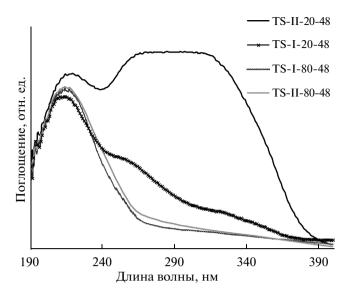
Соотношение интенсивностей полос 960 и 550 см⁻¹ может являться косвенной оценкой количества титана встроенного в структуру цеолита. Из табл. 2 видно, что для образцов серии I соотношение растет с увеличением времени кристаллизации от 0.41 до 0.6, в то время как для образцов серии II соотношение практически не зависит от времени синтеза и достигает значения 0.6 уже через 3 ч кристаллизации. Однако в литературе как возможное отнесение полосы 960 см⁻¹ так же встречаются колебания Si—О внутриструктурных гнезд силиката без внедрения титана в структуру [14, 15], что не позволяет сделать строгий количественный вывод о степени встраивании титана.

Из литературных данных известно, что в спектрах ²⁹Si ЯМР силиката со структурой MFI можно выделить два основных сигнала: сигнал

при -113 м.д. (O^4), относящийся к тетраэдрическому кремнию в Si(OSi)₄ фрагментах решетки и менее интенсивный сигнал при -103 м.д. (Q^3), относящийся к дефектному (SiO)₃SiOH [11]. При этом в ряде статей указывается, что встраивание титана в структуру силиката приводит к уменьшению дефектности структуры цеолита и как следствие к увеличению соотношения Q^4/Q^3 в спектрах ²⁹Si ЯМР [8]. В табл. 2 приведены соотношения O^4/O^3 для двух серий синтезированных образцов. Видно, что для образцов, полученных по методике I, происходит увеличение соотношения Q^4/Q^3 со временем кристаллизации, при этом для образцов группы II соотношение остается постоянным, что так же косвенно свидетельствует о разной последовательности встраивания титана в структуру цеолита при изменении метода синтеза.

Для сравнения каталитической активности в реакции эпоксидирования пропилена пероксидом водорода были выбраны образцы, время кристаллизации которых составило 48 часов. Изучение активных центров отобранных катализаторов проводили методами УФ-спектроскопии и РФЭС.

Титаносодержащие цеолиты, такие как TS-1. характеризуются наличием полос поглощения, относящихся к переносу заряда между металлом и лигандом, для титана, находящегося в различных локальных окружениях [10]. Например, энергия перехода для изолированного титана в тетраэдрическом окружении соответствует поглощению квантов с длинной волны 212 нм. Для пентакоординированного изолированного титана характерна полоса поглощения при 220 нм, а олигомерный октаэдрический титан поглощает УФ-излучение при длинах волн 260 нм и выше в зависимости от размера частиц. В случае, когда весь титан встраивается в структуру цеолита, УФ-спектры титаносиликатов содержат полосу поглошения диапазоне 205-215 нм, что характеризует наличие титана в тетраэдрическом окружении. Полосы, присутствующие в более длинноволновой области, свидетельствуют об искажении локальной структуры титана или даже о формировании внеструктурных частиц TiO₂ [16].

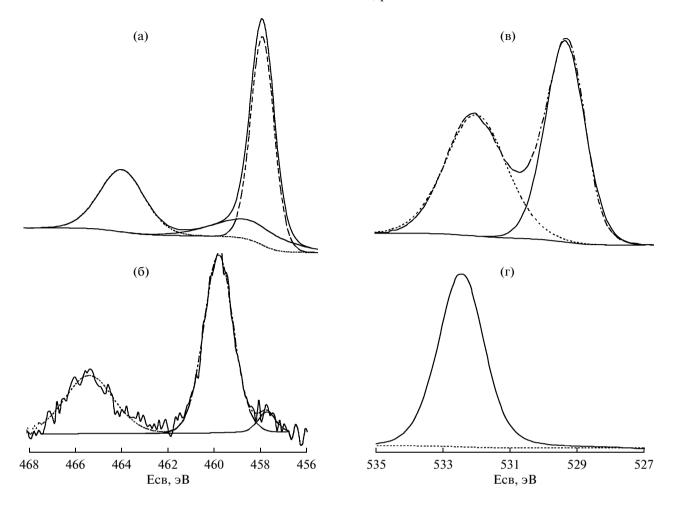

Исследование полученных образцов с помощью УФ-спектроскопии, показало, что для образцов с соотношением Si/Ti = 80 в спектрах не присутствует полосы поглощения при длинах волн свыше 215 нм вне зависимости от способа синтеза, что свидетельствует об отсутствии титана в другом состоянии, кроме тетраэдрического (рис. 3). Следовательно, весь титан, присутствующий в образцах по данным химического анализа, является "структурным".

Иная картина наблюдается для титаносиликатов с соотношением Si/Ti = 20 в геле (рис. 3). Для образца TS-I-20-48 в УФ-спектре наблюдаются

две низкоинтенсивные полосы поглощения при 260 и 310 нм, которые относятся к пентакоординированному изолированному титану и внеструктурному оксиду титана, соответственно. В то время как для образца TS-II-20-48 подавляющее количество титана находится в виде олигомерного TiO_2 , с высокоинтенсивной полосой в области 270-320 нм.

Метод РФЭС позволяет оценить состояние титана в приповерхностном слое образца. На рис. 4а и 4б приведены спектры РФЭС для уровня Ті 2р образцов TS-II-20-48 и TS-II-80-48, соответственно. На спектрах наблюдаются две достаточно интенсивные полосы с максимумами около 465.4 эВ и 459.8 эВ, относящиеся к Ті $2p^{1/2}$ и Ті $2p^{3/2}$, соответственно, и характерные для титана, входящего в структуру титаносиликатов в виде титанокислородных тетраэдров [11, 17]. Также на спектрах присутствует полоса для Ті 2р^{3/2} с максимумом около 457.7 эВ, которая, согласно литературным данным, соответствует внеструктурному титану в виде ТіО2 [17, 18]. При этом для образца TS-II-20-48 интенсивность этой полосы значительно превосхолит интенсивность полосы при 459.8 эВ, характеристичной для титана в структуре цеолита, в то время как для образца TS-II-80-48 эта полоса обладает низкой интенсивностью.

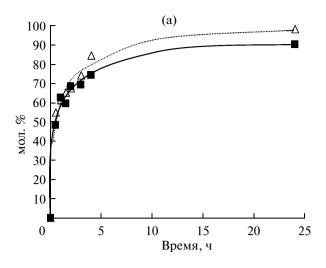
Из данных табл. 3 следует, что образцы с высоким содержанием титана, содержат как Ті, входяший в структуру титаносиликата (α), так и внеструктурный титан (β). Из соотношения площадей данных полос следует, что наибольшее содержание внеструктурного титана в образце с соотношением Si/Ti = 30 (TS-II-20-48), при этом для образца TS-I-20-48 с соотношением Si/Ti = 50присутствуют лишь следовые количества внеструктурного титана в приповерхностном слое. На рис. 4в и 4г приведены спектры РФЭС для уровня O 1s образцов TS-II-20-48 и TS-II-80-48. В отличие от остальных образцов, в спектре O 1s TS-II-20-48 наблюдается две полосы при энергиях связи 529 и 532 эВ, характерные для кислорода в ТіО2, а также для кислорода, входящего в структуру титаносиликата, соответственно, что так же подтверждает наличие внеструктурного титана в последнем образце [17]. При этом для остальных


Рис. 3. УФ-спектры образцов, кристаллизованных в течение 48 ч.

образцов присутствует только одна полоса с энергией 532 эВ.

Каталитические свойства образцов исследовали в реакции эпоксидирования пропилена пероксидом водорода, которая согласно литературным данным [1] протекает на тетраэдрическом титане, встроенном в решетку силиката, по следующей схеме:

Таблица 3. Характеристические полосы РФЭС синтезированных в течение 48 ч образцов для уровней Si 2p, Ti $2p_{3/2}$ и O 1s


Образец	Si/Ti	Si 2 <i>p</i> , эВ	Ті $2p_{3/2}$, эВ		S_{β}/S_{α}	Θ (s, s)	
			α	β	S_{β}/S_{α}	A	b
TS-I-80-48	80	103.3	459.8	457.5	0.04	532.5	_
TS-II-80-48	80	103.3	459.8	457.7	0.07	532.5	_
TS-I-20-48	50	103.3	459.7	458.1	0.3	532.4	
TS-II-20-48	30	103.0	458.8	458.2	3.5	532.1	529.5

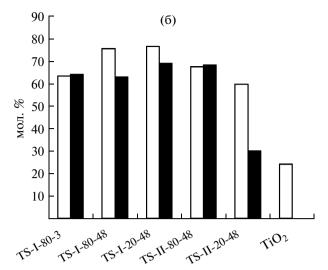


Рис. 4. Спектры РФЭС: а - для уровня Ti 2р образца TS-II-20-48, б - для уровня Ti 2р образца TS-II-80-48, в - для уровня O 1s образца TS-II-20-48, г - для уровня O 1s образца TS-II-80-48.

В ряде работ, посвященных активности титаносиликата TS-1 в реакции эпоксидирования пропилена пероксидом водорода, были исследованы оптимальные условия реакции, которые соответствуют диапазону температур 40-60°C и давлению пропилена 4-8 МПа; при этом конверсия пероксида водорода за 4 ч эксперимента составляет 96%, а селективность образования пропиленоксида превышает 95% [19]. При проведении экспериментов при температуре 40°C в течение 4 ч на всех образцах катализаторов, синтезированных в течение 48 ч, были достигнуты конверсии пероксида водорода выше 95%, что не позволяет проводить корректную оценку активности катализатора в процессе. Поэтому для сравнительной оценки катализаторов температура эксперимента была понижена до 30°C. На рис. 5а представлены зависимости конверсии пероксида водорода и эффективности образования пропиленоксида от времени проведения эксперимента при 30°C для эксперимента с использованием катализатора TS-II-80-48. Для сравнения каталитической активности титаносиликатов было выбрано время проведения эксперимента 2 ч, так как конверсия пероксида водорода в это время еще не выходит на плато, что позволяет делать корректные сравнения.

На рис. 5б представлены результаты расчета конверсии пероксида водорода и эффективности образования пропиленоксида для образцов TS-I-80-3, TS-I-80-48, TS-II-80-48, TS-II-20-48, а так же для оксида титана(IV), который был использован в качестве образца сравнения. Видно, что рост соотношения Si/Ti от 200 до 50 для образцов, синтезированных по методике I, приводит к росту конверсии пероксида водорода; при этом сохраняется высокая эффективность образования пропиленоксида. Для образцов из группы II рост соотношения Si/Ti приводит к значительному уменьшению эффективности образо-

Рис. 5. Каталитические свойства образцов: а — кинетические зависимости конверсии пероксида водорода (Δ) и эффективности образования пропиленоксида (\blacksquare) для образца TS-II-80-48 при $T=30^{\circ}$ С; б — сравнение конверсии пероксида водорода (белые столбики) и эффективности образования пропиленоксида (черные столбики) через 2 ч проведения эксперимента при $T=30^{\circ}$ С для синтезированных катализаторов.

вания пропиленоксида. Наблюдаемые эффект связан с тем, что для образов группы I весь титан находится в структуре цеолита в кремнийкислородных тетраэдрах, в то время, как для образца TS-II-20-48 большая часть титана находится в виде внеструктурного оксида титана, что приводит к нецелевому разложению перекиси, как и на массивном образце TiO_2 .

Таким образом, было показано, что повышение рН реакционной среды с 10 до 11 в результате добавления к реакционной смеси карбоната аммония приводит к изменению механизма формирования активных центров титаносиликата. При рН = 11 происходит постепенное встраивание титана в структуру силиката, в то время как уменьшение рН до 10 приводит к внедрению титана в состав твердой фазы силиката уже на первом этапе синтеза. При высоких концентрациях титана в исходном геле (Si/Ti = 20) первый способ синтеза приводит к меньшим степеням включения титана в образец (Si/Ti = 50), по сравнению со вторым способом синтеза (Si/Ti = 30). Однако первый способ позволяет достигнуть более высоких степеней изоморфного замещения в Т-позиции каркаса цеолита, в то время как при втором способе синтеза большая часть титана присутствует в образце в виде внеструктурного ТіО2. Наибольшая конверсия и эффективность образования пропиленоксида достигается на образце с соотношением Si/Ti = 50, полученным при pH = 11, в котором большая часть титана находится в структуре цеолита. Для титаносиликата с соотношением Si/Ti = 30, полученного при pH = 10 эффективность образования пропиленоксида не превышает 30% за счет нецелевого разложения пероксида водорода на TiO_2 .

Исследование выполнено за счет гранта Российского научного фонда (проект № 14-23-00094).

СПИСОК ЛИТЕРАТУРЫ

- 1. Russo V., Tesser R., Santacesaria E., Di Serio M. // Ind. Eng. Chem. Res. 2013. V. 52. № 3. P. 1168.
- Clerici M.G., Ingallina P. // J. of Catalysis. 1993. V. 140. P. 71.
- 3. Perego G., Bellusi G., Corno C., Taramasso M., Buonomo F., Esposito A.// Studies in Surface Science and Catalysis. 1986. V. 28. № C. P. 129.
- 4. *Chen L.Y., Chuah G.K., Jaenicke S. //* J. of Molecular Catalysis A: Chemical. 1998. V. 132. P. 281.
- 5. *Millini R.*, *Previde Massara E.*, *Perego G.*, *Bellussi G.* // J. of Catalysis. 1992. V. 137. P. 497.
- Tuel A., Ben Taarit Y. // Applied Catalysis A: General. 1994. V. 110. P. 137.
- 7. Thangaraj A., Eapen M.J., Sivasanker S., Ratnasamy P. // Zeolites. 1992. V. 12. P. 943.
- 8. Fan W., Duan R.-G., Yokoi T., Wu P., Kubota Y., Tatsumi T. // J. Am. Chem. Soc. 2008. V. 130. P. 10150.
- 9. *Nandi M.*, *Bhaumik A.* // Chemical Engineering Science. 2006. V. 61. № 13. P. 4373.
- Clerici M. G., Domine M.E/Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications, John Wiley & Sons. 2013. P. 546.

- 11. *Vayssilov G.N.* // Catal. Rev.-Sci. Eng. 1997. V. 39. № 3. P. 209.
- Deo G., Turek A.M., Wachs Zettlemo I.E., Huybrechts D.R.C., Jacobs P.A. // Zeolites. 1993. V. 13. P. 365.
- 13. Zecchina A., Spoto G., Bordiga S., Ferrero A., Petrini G., Leofanti G., Padovan M. // Studies in Surface Science and Catalysis. 1991. V. 69. № C. P. 251.
- 14. *Dartt C.B.*, *Khouw C.B.*, *Li H.-X.*, *Davis M.E.* // Microporous Materials. 1994. V. 2. P. 425.
- 15. Schraml-Marth M., Walther K.L., Wokaun A., Handy B.E., Baiker A. // J. of Non-Crystalline Solids. 1992. V. 143. P. 93.
- Laha S.C., Kumar R. // J. of Catalysis. 2002. V. 208. P. 339.
- Hasegawa Y., Ayame A. // Catalysis Today. 2001. V. 71. P. 177.
- 18. Blasco T., Camblor M. A., Fierro J.L.G., Perez-Pariente J. // Microporous Materials. 1994. V. 3. P. 259.
- 19. *Wang X.-S.*, *Guo X.-W.*, *Li G.* // Catalysis Today. 2002. V. 74. P. 65.