УДК 547.313.2:547.532:661.183.6

СИНТЕЗ И ИССЛЕДОВАНИЕ КАТАЛИЗАТОРОВ АЛКИЛИРОВАНИЯ БЕНЗОЛА ЭТИЛЕНОМ НА ОСНОВЕ ЦЕОЛИТА ZSM-5

© 2016 г. М. Л. Павлов, Д. А. Шавалеев¹, Б. И. Кутепов², О. С. Травкина², И. Н. Павлова², Р. А. Басимова, А. С. Эрштейн¹, И. М. Герзелиев³

E-mail: ink@anrb.ru ООО "Научно-технический центр Салаватнефтеоргсинтез" ¹ОАО "Салаватнефтехимпроект" ²Институт нефтехимии и катализа РАН, Уфа ³Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва Поступила в редакцию 20.08,2015 г.

Путем смешения 70% цеолита H⁺ ZSM-5 с модулем 30 и 30%-ного псевдобемита с последующим формованием гранул, их сушкой и прокалкой в течение 6 ч при 650°C в атмосфере воздуха был приготовлен катализатор для процесса алкилирования бензола этиленом в этилбензол. Часть синтезированного катализатора подвергли термопаровой обработке в среде 100%-ного водяного пара при 600°C в течение 3 ч. Изучены физико-химические и каталитические свойства полученных образцов. Каталитических опыты проводили на лабораторной установке в интервале температур 380–420°C, при давлении 2.5 МПа, объемной скорости по бензолу 15 ч⁻¹ и мольном соотношении бензол/этилен 7/1. В тех же условиях были изучены свойства импортного аналога – катализатора EBEMAX-1. Установлено, что по своим каталитическим свойствам синтезированные катализаторы не уступают импортному образцу.

Ключевые слова: цеолит ZSM-5, катализатор, термопаровая обработка, алкилирование, бензол, этилен, этилбензол.

DOI: 10.7868/S0028242116020118

Большинство современных разработок в области технологии алкилирования бензола этиленом посвящены созданию и использованию гетерогенных катализаторов, которые представляют собой твердые пористые многокомпонентные системы, содержащие активный компонент (цеолит) и матрицу (связующее вещество). В качестве активного компонента используют цеолиты типов ZSM-5, ZSM-11, морденит, USY, β, МСМ-22, MCM-49. Матрица может состоять из Al_2O_3 , SiO_2 , аморфного алюмосиликата или смеси этих веществ. После смешения всех компонентов из полученной массы различными способами формируют гранулы заданного размера, которые затем термически обрабатывают – высушивают и прокаливают. В некоторых случаях катализатор подвергают дальнейшему модифицированию. Обычно содержание цеолита в катализаторах составляет от 60 до 80 мас. % [1-11].

Из-за сравнительно небольшого диаметра пор цеолитов ZSM-5 и ZSM-11 [12], размер которых составляет 0.5–0.6 нм и сопоставим с размером молекулы бензола (5.9 нм), внедрение молекулы бензола в молекулярно-ситовую структуру этих цеолитов может происходить только в возбужденном состоянии. Это условие достигается только при высоких температурах (выше 300°С), когда реакция алкилирования бензола этиленом происходит в газофазных условиях.

В ОАО "Газпром нефтехим Салават" по лицензии ЗАО ГрозНИИ [13] реализована технология получения этилбензола в процессе газофазного алкилирования бензола этиленом на импортном цеолитном катализаторе EBEMAX-1 фирмы "Зюд-Хеми". Поэтому исследования, направленные на создание российского катализатора для указанного процесса с целью проведения импортозамещения, особенно актуальны.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения катализаторов использовали порошкообразный цеолит ZSM-5 с модулем 30, синтезированный в ООО "Ишимбайский специализированный химический завод катализаторов" (ООО "ИСХЗК"). Н+форму цеолита готовили путем ионного обмена цеолита в водном растворе нитрата аммония при 80–90°С, соотношении катионов $\rm NH_4^+$ в растворе и катионов $\rm Na^+$ в цеолите, равном 1.5 г-экв/г-экв, pH 5.5–7.0 и продолжительности каждой обработки 1 ч. Количество обработок — 3. Затем цеолит промывали дистиллированной водой, высушивали и прокаливали в атмосфере воздуха при 600°С в течение 6 ч. Рентгенограмма порошкообразного цеолита H⁺ZSM-5 характеризовалась наличием на ней наиболее интенсивных дифракционных пиков, наблюдаемых при следующих углах: 7.92; 7.94; 8.78; 8.89; 13.95; 14.77; 23.08; 23.25; 23.40; 23.82; 23.96° и присущих только цеолиту ZSM-5 [14], что свидетельствует о высокой фазовой чистоте полученного продукта.

В качестве связующего материала для приготовления катализатора использовали псевдобемит того же производителя.

Катализатор получали следующим образом: цеолит H⁺ZSM–5 смешивали с псевдобемитом в соотношении 70 мас. %/30 мас. %. Смесь формовали в гранулы методом экструзии, высушивали и прокаливали при 650°С в атмосфере воздуха в течение 6 ч (Кат-1). Затем часть полученного катализатора дополнительно подвергали термопаровой обработке (ТПО) в атмосфере водяного пара при 600°С в течение 3 ч (Кат-2).

Химический состав образцов анализировали методами комплексонометрического титрования и пламенной фотометрии [15-16]. Фазовый состав цеолита и катализаторов определяли на автоматическом дифрактометре PHILIPS PW 1800 в монохроматизированном Си-Ка излучении в области углов от 5 до 40° по 20 с шагом 0.5 град/мин и временем накопления в каждой точке 20 с. ИК-Спектры цеолитсодержащих материалов снимали на приборе VERTEX70V фирмы BRUKER с использованием таблетирования образцов с КВг, в диапазоне сканирования от 4000 до 400 см⁻¹ с разрешением 4 см⁻¹. Для определения размеров частиц порошкообразного цеолита использовали дифракцию (рассеяние) лазерного излучения $(\lambda = 680 \text{ нм})$ на частицах дисперсной фазы, распределенных в дисперсионной среде. Морфологию кристаллов цеолита изучали на электронном микроскопе JEOL JSM-6490 LV, ускоряющее напряжение 20-30 кВ, использованные увеличения — 500, 2000, 5000 и 10000 раз.

Характеристики пористой структуры катализаторов определяли методом низкотемпературной адсорбции-десорбции азота (НАДА) на сорбтометре ASAP-2020 "Micromeritics". Перед анализом образцы вакуумировали при 350°С в течение 6 ч. Удельную поверхность рассчитывали по БЭТ при относительном парциальном давлении $P/P_0 = 0.2$; распределение размера пор – по десорбционной кривой методом BJH (Баррета–Джойнера–Халенды); общий объем пор определяли методом ВЈН при относительном парциальном давлении $P/P_0 = 0.95$. Объем микропор в присутствии мезопор определяли t-методом де Бура и Липпенса [17]. Характеристику пористой структуры катализаторов изучали методом ртутной порометрии (РП) на приборе "Porosimeter-2000". Перед анализом образцы вакуумировали при 25°С в течение 4 ч. Давление интрузии изменяли от 1 до 1900 атм. Контактный угол ртути составлял 141.3° [17]. По результатам измерений рассчитывали удельную поверхность и объем пор, их средний радиус и распределение по размеру. Распределение пор по размеру рассчитано из модели цилиндрической поры [17], а удельная поверхность как суммарная поверхность всех модельных цилиндров.

Равновесную адсорбционную емкость катализаторов по парам воды, бензола и гептана определяли эксикаторным способом при $P/P_0 = 0.8$ и температуре 25°С. Кислотные свойства цеолита и катализаторов исследовали методом термопрограммированнной десорбции аммиака (ТПД NH₃) [18].

Каталитические свойства образцов изучали в реакции алкилирования бензола этиленом в этилбензол (ЭБ) на лабораторной установке в проточном реакторе. Загрузку реактора (диаметр 10 мм и высота 120 мм) проводили в следующей последовательности: в нижнюю часть помещали фарфоровую насадку в количестве 25 см³, далее катализатор – 5 см³. Поверх катализатора насыпали фарфоровую насадку.

Исследования проводили в температурном интервале $380-420^{\circ}$ С, давлении 2.5 МПа, объемной скорости по бензолу – 15 ч^{-1} и мольном соотношении бензол : этилен = 7 : 1.

Продукты реакции анализировали на газовом хроматографе "Кристаллюкс 4000" с ПИД, кварцевой капиллярной колонкой размером 60 м × × 0.32 мм × 1.0 мкм с неподвижной фазой ZB-1. Обработку результатов проводили на программно-аппаратном комплексе по методу "внутренней нормализации".

Для характеристики каталитических свойств образцов катализаторов использовали следующие показатели: конверсия бензола (Б), селективность образования ЭБ.

Конверсию бензола ($K_{\rm b}$, %) рассчитывали по формуле: $K_{\rm b} = 100 \times (C_{\rm ucx}^{\rm b} - C_{\rm scc}^{\rm b})/C_{\rm ucx}^{\rm b}$,

где $C_{\mu cx}^{b}$ – массовая доля бензола в исходном сырье, мас. %; $C_{_{3Kc}}^{b}$ – массовая доля бензола в алкилате, мас. %. Селективность по этилбензолу (S^{9b} , %) характеризовали относительной концентрацией этилбензола в расчете на образующиеся продукты реакции: $S^{9b} = 100C_{_{3Kc}}^{b}/K_{b}$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты изучения дисперсного состава порошкообразного цеолита H^+ -ZSM-5 (табл. 1) показывают, что около 80% кристаллов имеют размер от 0.5 до 4.0 мкм.

Наименование	Интервал значений							
Размер кристаллов, мкм	0.1-0.5	0.5-2.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0		
Массовая доля, %	0.45	36.32	44.55	17.47	1.20	0.01		

Таблица 1. Дисперсный состав порошкообразного цеолита H⁺-ZSM-5

Так как наличие более крупных кристаллов относительно невелико, то можно говорить о том, что для приготовления катализатора использовался высокодисперсный цеолит. Результаты изучения морфологии цеолита H⁺ZSM-5 с помощью сканирующей электронной микроскопии (рис. 1) показывают, что частицы цеолита отличаются как по форме (из-за наличия сростков кристаллов), так и по размеру кристаллов, размер которых совпадает с данными, полученными при изучении дисперсного состава цеолита.

По химическому составу синтезированные катализаторы Кат-1и Кат-2 мало отличаются друг от друга. Содержание $Al_2O_3 \sim 34\%$, SiO₂ ~ 66%, а Na₂O не превышает 0.04 мас. %.

На рентгенограммах катализаторов Кат-1 и Кат (рис. 2) отмечены только фазы цеолита ZSM-5 и γ-Al₂O₃. Причем, дифракционные пики на рентгенограмме Кат-1 интенсивнее, что свидетельствуют о частичной аморфизации цеолита в Кат-2 после ТПО.

На рис.3. приведены ИК-спектры катализаторов Кат-1 и Кат-2. В спектре катализатора Кат-2 частота основной полосы поглощения ассиметричных валентных колебаний первого типа (1110 см⁻¹), то есть колебаний внутри тетраэдров TO_4 , сохраняется. Это свидетельствует о наличии в его решетке, после проведения ТПО, тетраэдрически координированного алюминия.

Пористая структура гранул катализаторов, состоящих из смеси кристаллов цеолита и γ -Al₂O₃ – сложная система. Цеолиту присуща микропористая структура, а γ -Al₂O₃ – мезопористая. Кроме того, между кристаллами цеолита и γ -Al₂O₃ образуется вторичная пористая структура. Таким образом, объем пор гранул катализатора состоит из трех перечисленных составляющих. В табл. 2 приведена величина равновесной адсорбционной ем-

Рис. 1. Электронно-микроскопические снимки порошкообразного цеолита H⁺-ZSM-5 a, б, в, г – увеличение в 500, 2000, 5000, и 10000 раз, соответственно.

Рис. 2. Рентгенограммы катализаторов: (1) Кат-1; (2) Кат-2.

Рис. 3. ИК-Спектры катализаторов: (1) Кат-1; (2) Кат-2.

кости цеолита H⁺ ZSM-5 и катализаторов на его основе по парам воды, бензола и гептана.

Адсорбционная емкость катализаторов по парам воды значительно меньше, чем по парам бензола и гептана. Это объясняется наличием в гранулах катализаторов мезопор, в которых указанные углеводороды переходят в жидкое состояние из-за капиллярной конденсации, а пары воды нет.

После проведения ТПО (Кат-2) адсорбционная емкость по парам воды снижается из-за частичного разрушения каркаса цеолита и, как следствие, уменьшения объема микропор. Величина объема пор по водопоглощению катализаторов выше, чем адсорбционная емкость по углеводородам из-за наличия макропор в гранулах катализаторов.

На рис. 4 приведены похожие по форме изотермы адсорбции-десорбции азота на катализаторах Кат-1 и Кат-2.

В области относительных давлений (P/P_0) от 0 до 0.05 наблюдается резкий подъем изотерм, характерный для микропористых углей и цеолитов [17]. При давлениях 0.45 до 1.0 видна петля гистерезиса, обусловленная широким распределением размера мезопор. При достижении $P/P_0 \sim 0.98$ снова наблю-

Наименование	Равновесная адо	Объем пор по водопо-		
	H ₂ O	C ₆ H ₆	C ₇ H ₁₆	глощению, см ³ /г
H ⁺ -ZSM-5	0.13	0.16	0.18	_
Кат-1	0.11	0.30	0.38	0.67
Кат-2	0.09	0.27	0.37	0.66

Таблица 2. Адсорбционная емкость цеолита и катализаторов

дается резкий подъем изотерм, связанный с присутствием в катализаторах макропор.

Распределение мезопор по размеру в катализаторах имеет широкий диапазон от 2 до 60 нм с максимумом в области 4—6 нм (рис. 5). Наличие максимума этой области обусловлено использованием γ -Al₂O₃ в качестве связующего материала. Проведение ТПО практически не влияет на интервал распределения размера пор в катализаторе. В табл. 3 приведена характеристика пористой структуры катализаторов по методам БЭТ (по азоту) и РП (по ртути).

После ТПО происходит незначительное снижение удельной поверхности от 273 до 268 м²/г и увеличение объема мезопор от 0.266 до 0.309 см³/г за счет частичной аморфизации цеолита в составе катализатора (Кат-2). Кроме того, в этой же таблице приведена характеристика вторичной пористой структуры (мезо- и макропоры) катализаторов по данным ртутной порометрии. После ТПО (Кат-2) наблюдается увеличение суммарного объема пор из-за перехода части мезопор в макропоры.

Результаты исследований кислотных свойств цеолита и катализаторов методом ТПД NH₃ приведены в табл. 4.

Суммарная концентрация и концентрации "сильных" и "слабых" кислотных центров существенно меньше в катализаторе, содержащем 30% связующего материала (Кат-1), чем в порошкообразном цеолите H⁺ZSM-5. После ТПО (Кат-2) концентрация кислотных центров еще больше снижается, причем особенно заметно для "сильных" кислотных центров.

В табл. 5 приведены результаты исследования каталитических свойств синтезированных и импортного (ИмК) катализаторов в реакции алкилирования бензола этиленом.

С повышением температуры реакции от 380 до 420°С конверсия бензола, концентрация ЭБ в алкилате и селективность образования ЭБ на всех катализаторах возрастают.

Среди рассмотренных катализаторов Кат-1 является наиболее активным. Как было показано выше, после ТПО (Кат-2) кислотность катализатора снижается, что закономерно приводит к некоторому снижению его активности, по сравнению с Кат-1.

В реакции алкилирования бензола этиленом образуются нежелательные примеси— изомеры ксилола, пропилбензола (ПБ), этилтолуола, а также ди-

Рис. 4. Изотермы адсорбции-десорбции азота на катализаторах Кат-1 (а), Кат-2 (б).

Рис. 5. Распределение мезопор по размеру для катализаторов Кат-1 (а), Кат-2 (б), рассчитанное по ВЈН.

Понорологи		Наименование				
	показатели	Кат-1	Кат-2			
	Микро- и мезопоры					
_	Удельная поверхность, по методу БЭТ, м ² /г	273	268			
ЧДА	Объем пор, см ³ /г:					
μ	менее 1 нм	0.110	0.090			
Іето	более 1 нм	0.266	0.309			
2	Средний диаметр пор, нм	7.9	8.2			
	Удельная поверхность, м ² /г	51.4	68.1			
	Мезо- и макропоры					
	Объем пор, см ³ /г в интервале радиусов пор, нм					
ПЧ	менее 50	0.254	0.217			
[дол	50-100	0.411	0.540			
Meı	более 100	0.035	0.040			
	суммарный	0.700	0.797			
	Средний диаметр пор, нм	50.0	50.0			

Таблица 3.	Характеристика	пористой	структуры	катализаторов
------------	----------------	----------	-----------	---------------

Таблица 4. Кислотные свойства цеолита и катализаторов (метод ТПД NH₃)

Наименование	Кислотные свойства, мкмоль NH ₃ /г							
	"слабые" кислотные центры	"сильные" кислотные центры	общая кислотность					
H ⁺ -ZSM-5	284	186	470					
Кат-1	199	130	329					
Кат-2	63	18	81					

Показатели		Температура, °С								
показатели	Cumua	380					420			
углеводородный	Сырыс	ИмК	Кат-1	Кат-2	ИмК	Кат-1	Кат-2	ИмК	Кат-1	Кат-2
состав, мас. %		алкилат								
Добензольная фр.	0.05	0.33	0.08	0.14	0.39	0.11	0.12	0.27	0.07	0.12
Бензол	99.86	86.36	82.54	85.54	85.57	81.46	82.79	85.04	81.30	81.40
Толуол	0.03	0.07	0.08	0.050	0.07	0.09	0.05	0.07	0.11	0.05
Этилбензол	0.00	11.30	14.50	11.75	12.41	15.80	14.34	13.18	16.50	16.20
ПБ	0.00	0.07	0.28	0.15	0.05	0.23	0.13	0.05	0.20	0.09
Σ Ксилолы	0.00	0.01	0.03	0.01	0.01	0.04	0.01	0.02	0.06	0.01
Этилтолуол	0.00	0.07	0.14	0.15	0.04	0.09	0.10	0.04	0.06	0.05
ΣДЭБ	_	1.72	2.16	2.09	1.41	1.99	2.32	1.26	1.47	1.94
ПАБ	0.06	0.07	0.19	0.13	0.06	0.20	0.15	0.08	0.23	0.14
Сумма	100	100	100	100	100	100	100	100	100	100
Конверсия по бензолу, %	_	13.5	17.3	14.3	14.0	18.4	17.1	14.8	18.6	18.5
Селективность ЭБ, %	—	84	84	82	87	86	84	89	89	88

Таблица 5. Сравнение каталитических свойств катализаторов

этилбензолов (ДЭБ) и полиалкилбензолов (ПАБ), содержание которых, однако, находится в допустимых пределах. Максимальное количество этих примесей образуется на катализаторе Кат-1. Следует отметить, что с увеличением температуры реакции количество изомеров ксилола на импортном катализаторе и Кат-1 увеличивается, тогда как на Кат-2 практически не изменяется и имеет минимальную величину (~0.01 мас. %).

Таким образом, синтезированные катализаторы по своим каталитическим свойствам не уступают импортному аналогу.

СПИСОК ЛИТЕРАТУРЫ

- Degnan T.F. Jr., Smith C.M., Venkat Ch.R. // Appl. Catal. A: General. 2001. V. 221. P. 283.
- Perego C., Ingallina P. // Green Chem. 2004. № 6. P. 274.
- Martin West, Suheil F. Abdo. // Pat. US 5157180. 1992 // Union Oil Company Of California. 1991. 10. C.
- Jamin Chen. // Pat.US 5866736. 1999 // Catalytic Distillation Technologies. 1997. 8. C.
- 5. James T. Merrill, James R. Butler. // Pat. US 5955642. 1999 // Fina Technology, Inc. 1996. 10. C.
- Hye Kyung C. Timken, Arthur W. Chester, Susan C. Ardito, Mark P. Hagemeister. // Pat. US 6596662. 2003 // Exxonmobil Chemical Patents Inc. 2001. 11. C.
- Hye Kyung C. Timken, Arthur W. Chester, Susan Ardito, Mark P. Hagemeister. // Pat. US 6747182. 2004 // Exxonmobil Chemical Patents Inc. 2001. 7. P.
- Curt B. Campbell, Thomas V. Harris, Pierre Tequi, Jean-Louis Le Coent. // Pat. US 7109141. 2006 // Chevron Oronite Company Llc, Chevron Oronite S.A. 2005. 15. P.

НЕФТЕХИМИЯ том 56 № 2 2016

- Рогов М.Н., Рахимов Х.Х., Елин О.Л., Ишмияров М.Х., Мячин С.И., Прокопенко А.В., Лукъянчиков И.И., Мельников В.Б., Макарова Н.П., Вершинин В.И., Смирнов В.К. // Пат. РФ 2256640. 2005 // Открытое акционерное общество "Газпром нефтехим Салават". 2004. 7. С.
- Рогов М.Н., Рахимов Х.Х., Ишмияров М.Х., Мячин С.И., Лукъянчиков И.И., Елин О.Л., Прокопенко А.В., Патрикеев В.А., Смирнов В.К., Павлов М.Л., Галяутдинов А.А., Басимова Р.А. // Пат. РФ 2265482. 2005 // Открытое акционерное общество "Салаватнефтеоргсинтез". 2004. 9. С.
- Рогов М.Н., Рахимов Х.Х., Ишмияров М.Х., Мячин С.И., Лукъянчиков И.И., Елин О.Л., Прокопенко А.В., Патрикеев В.А., Смирнов В.К., Павлов М.Л., Галяутдинов А.А., Басимова Р.А. // Пат. РФ 2265483. 2005 // Открытое акционерное общество "Салаватнефтеоргсинтез". 2004. 10. С.
- 12. *George T. Kokotailo.*//Pat. US 4229424. 1980 // Mobil Oil Corporation. 1979. 11. P.
- 13. Герзелиев И.М., Мячин С.И., Тасуева И.Д., Хаджиев С.Н. // Нефтехимия. 2009. Т. 49. № 1. С. 59.
- 14. Treacy M.M.J., Higgins J.B. // Elsevier. 2001. P. 586.
- 15. Полуэктов Н.С. Методы анализа по фотометрии пламени. М.: Госхимиздат. 1959. С. 231.
- Шарло Г. Методы аналитической химии. М.: Химия. 1965. 976 с.
- 17. *Карнаухов А.П.* Адсорбция. Текстура дисперсных и пористых материалов. Новосибирск. М.: Наука. 1999. 470 с.
- 18. Хазипова А.Н., Павлова И.Н., Григорьева Н.Г., Кутепов Б.И., Павлов М.Л., Басимова Р.А. // Хим. технология. 2012. № 1. С. 5.