УДК 665.644.2

КАТАЛИТИЧЕСКИЙ КРЕКИНГ ГИДРООЧИЩЕННОГО ВАКУУМНОГО ГАЗОЙЛЯ НА ЦЕОЛИТСОДЕРЖАЩЕМ КАТАЛИЗАТОРЕ, МОДИФИЦИРОВАННОМ НАНОЧАСТИЦАМИ НИКЕЛЯ И КОБАЛЬТА

© 2016 г. И. М. Герзелиев, Р. М. Арсланов, В. М. Капустин¹, Г. Н. Бондаренко

Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва ¹ОАО ВНИПИнефть, Москва E-mail: ramisarslanov@gmail.com; gerzeliev@ips.ac.ru Поступила в редакцию 05.08.2015 г.

Изучено влияние концентрации прекурсоров никеля и кобальта на показатели каталитического крекинга. Проведено ИК-Фурье исследование поверхности катализаторов после крекинга в присутствии прекурсоров никеля и кобальта. Показана возможность модификации поверхности промышленных катализаторов *in situ* соединениями металлов VIII группы в реакциях кислотно-каталитической конверсии вакуумного дистиллята.

Ключевые слова: каталитический крекинг, гидроочищенный вакуумный дистиллят, никель, кобальт, ИК-Фурье анализ.

DOI: 10.7868/S0028242116010020

Одним из новых направлений регулирования показателей каталитического крекинга является повышение гидрирующей активности без снижения активности в реакциях разрыва С–С-связей, перераспределения водорода и изомеризации. Для этой цели в [1] предложено промотирование цеолитсодержащего катализатора наноразмерными частицами, полученными in situ в реакционной среде. В работе [2] исследовано влияние синтезированных in situ в исходном сырье из прекурсоров наночастиц сульфида молибдена в присутствии цеолитсодержащего катализатора крекинга на показатели процесса. Модификация сырья наночастицами сульфила молиблена и их взаимолействие с катализатором крекинга позволило интенсифицировать реакции гидрирования и обогатить газовую фракцию насыщенными углеводородами.

Цель настоящей работы — изучение влияния добавок никеля и кобальта, полученных *in situ* в исходном сырье из прекурсоров, на физико-хи-мические характеристики промышленного катализатора крекинга и показатели каталитического крекинга.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы и характеристики. В качестве дисперсионной среды для синтеза *in situ* наноразмерных частиц никеля и кобальта использовали гидроочищенный вакуумный дистиллят Западно-Сибирских нефтей (плотность 885 кг/м³, фракционный состав 220–535°С, содержание серы 0.06 мас. %), в качестве прекурсоров никеля и кобальта — гексагидраты: Ni(NO₃)₂ · 6H₂O (чда) и Co(NO₃)₂ · 6H₂O (чда) (Лабтех). Для стабилизации обратной микроэмульсии применяли эмульгаторы: Span 80 (MERCK), OП-7 (Синтез-Ока). В качестве катализатора использовали равновесный микросферический катализатор крекинга марки REDUXION DMS (BASF, Германия).

Методика приготовления эмульсии. Подбор композиции и способ эмульгирования приведены в [3]. В вакуумный дистиллят вводили навеску эмульгатора в количестве Span 80–2 мас. %, ОП-7 – 1 мас. %, после чего смесь перемешивали магнитной мешалке. Нитрат металла растворяли в бидистиллированной воде и вводили в вакуумный газойль в количестве 2 мас. % Содержание Ni и Со при этом варьировали в пределах 500–2000 рртw металла на вакуумный газойль. Далее полученную смесь диспергировали ультразвуком при температуре 25°C в течение 5 мин и частоте 22+/1.65 кГц.

Методика каталитических экспериментов. Исследования по каталитическому крекингу проводили на лабораторной установке по методу SCT-MAT [4].

Анализ газообразных продуктов осуществляли методом газовой хроматографии. На капиллярной PLOT-колонке (HP-PLOT/Q) определяли содержание углеводородных газов, CO₂ и H₂S. На набивной колонке, заполненной цеолитом CaX, определяли содержание N₂, O₂, CO, CH₄.

Фракционный состав жидкого продукта определяли методом имитированной дистилляции по ASTM.

Выходы продуктов конверсии и показатели конверсии процесса		Добавка										
	_	500 ppm Co	1000 ppm Co	1500 ppm Co	2000 ppm Co	500 ppm Ni	1000 ppm Ni	1500 ppm Ni	2000 ppm Ni			
Выход, мас. %												
Газ, в т.ч.	1.3	1.2	1.3	1.3	1.3	1.3	1.3	1.5	1.5			
Бензин (нк-200°С)	2.8	2.8	2.8	3.0	3.2	2.8	2.8	2.8	2.9			
Легкий газойль (200–320°С)	8.5	9.0	9.2	9.4	9.8	8.5	8.6	8.6	9.0			
Остаток (320°С+)	87.4	87.0	86.7	86.3	85.7	87.4	87.3	87.0	86.6			
Показатели процесса, мас. %												
Конверсия (газ + бензин)	4.1	4.0	4.1	4.3	4.5	4.1	4.1	4.4	4.4			
Конверсия фр. 350-500°С	12.6	13.0	13.3	13.7	14.3	12.6	12.8	13.0	13.4			

Таблица 1. Выход продуктов конверсии обратных микроэмульсии в присутствии прекурсоров металлов

ИК-спектры образцов суспензии вакуумного дистиллята в режиме пропускания регистрировались на ИК-Фурье спектрометре IFS 66 v/s "Bruker" (30 скан., разрешение 1 см⁻¹, диапазон 400–4000 см⁻¹). ИК-спектры образцов катализаторов в режиме отражения с поверхности порошков фиксировались на ИК-микроскопе HYPERION-2000 (кристалл ZnSe, 150 скан., диапазон 600–4000 см⁻¹).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследование конверсии микроэмульсий гидроочищенного вакуумного газойля (ГВГ) в присутствии прекурсоров никеля и кобальта без цеолитсодержащего катализатора крекинга. Конверсию прекурсор-содержащих обратных микроэмульсий ГВГ без цеолитсодержащего катализатора крекинга проводили на проточной лабораторной установке SCT-MAT при атмосферном давлении, импульсном нагреве до 560°С в течении 0.51 с. Содержание прекурсоров варьировали от 500 до 2000 ррту металла (никеля или кобальта) в пересчете на гидроочищенный вакуумный дистиллят. В качестве базы для сравнения каталитических свойств синтезируемых частичек проводили конверсию микроэмульсии гидроочищенного вакуумного дистиллята без добавок. Результаты конверсии ГВГ с добавками прекурсоров никеля и кобальта, а также без добавок представлены в табл. 1. При конверсии микроэмульсии ГВГ с прекурсором и без добавки прекурсора превращение фракции 350-550°С не превышает 14.3 мас. %.

Выход газовой фракции составляет 1.3–1.5 мас. %, бензиновой фракции 2.8–3.2 мас. %, выход легкого газойля 8.5–9.8 мас. % для всех испытанных проб. Близкие результаты по конверсии ГВГ позволяют сделать вывод о невысокой активности синтезируемых *in situ* из прекурсоров частичек кобальта и никеля в реакциях крекинга углеводородов. Для качественной оценки влияния синте-

зированных из прекурсоров частичек кобальта и никеля проведен ИК-Фурье анализ трех образцов жидкого продукта конверсии: образец 1 – микроэмульсия ГВГ без добавки прекурсора; образец 2 – микроэмульсия ГВГ с добавкой 2000 рртw прекурсора кобальта; образец 3 – микроэмульсия ГВГ с добавкой 2000 рртм прекурсора никеля. ИКспектры жидких продуктов конверсии вакуумного газойля с прекурсорами (образцы 2 и 3) в сравнении со спектром образца 1 (без прекурсора) представлены на рис. 1. Спектры отнормированы по полосе 1462 см⁻¹, относящейся к деформационным колебаниям –СН₂-групп. Интенсивности полос от валентных колебаний всех связей С-Н в группах -CH₂- (2840-2960 см⁻¹) резко падают при конверсии в присутствии прекурсора металла, особенно кобальта, а полосы деформаций в метильных группах $-CH_3$ (1378 см⁻¹), напротив, растут по интенсивности. Такое поведение полос. связанных с насыщенными углеводородными группами газойля, однозначно свидетельствует о перераспределении в составе –СН₂– и –СН₃- групп. Анализ спектров рис. 16 показывает значительный рост общей интенсивности спектров продуктов конверсии в присутствии прекурсора (кобальта – сильнее, никеля - слабее) в области поглощения ароматических углеводородов (700–850 см⁻¹ – δ CH Ph, $1605-1500 \text{ cm}^{-1} \text{ v CC Ph}$, $3000-3100 \text{ cm}^{-1} - \text{vCH}$ Ph). По-видимому, рост содержания ароматических углеводородов и перераспределение в составе содержания насыщенных –CH₂– и –CH₃-групп под влиянием конверсии в присутствии металлов (особенно кобальта) происходит в результате изомеризации и переалкилирования заместителей в ароматических кольцах. Содержание α-олефинов: (910, 995 см⁻¹ $-\delta C = CH_2$ в группе RCH=CH₂) в присутствии никеля увеличивается в 2 раза по сравнению с интенсивностью этой полосы для образцов без добавки. Добавка в сырье прекурсора никеля, как

Рис. 1. ИК-Фурье спектры жидких продуктов конверсии микроэмульсий ГВГ : (а) детализация $2800-3100 \text{ см}^{-1}$, (б) детализация $400-1750 \text{ см}^{-1}$.

и ожидалось, в отсутствие цеолитсодержащего катализатора усиливает реакции дегидрирования.

Каталитический крекинг гидроочищенного вакуумного дистиллята в присутствии прекурсоров никеля и кобальта. Влияние содержания прекурсора никеля и кобальта в сырье́ на показатели каталитического крекинга изучали на лабораторной установке SCT MAT при температуре 560°С, соотношении катализатор : сырье — 3.85. Содержание прекурсора варьировали в интервале 0—2000 рртw металл в пересчете на ГВГ. В качестве базы для сравнения представлены результаты каталитического крекинга микроэмульсии ГВГ без добавок прекурсоров. Результаты экспериментов представлены в табл. 2. При добавке никель-содержащего прекурсора наблюдается постепенное снижение конверсии (газ + бензин) от 72.9 мас. % до 67.8 мас. % с увеличением концентрации прекурсора от 500 рртм до 2000 рртм металла в пересчете на ГВГ. Максимальная конверсия наблюдалась при концентрации прекурсора никеля 500 рртм и составила 72.9 мас. %. Снижение конверсии связано с умень-

Продукты	Добавка												
каталитического крекинга и показатели процесса	_	500 ppm Co	1000 ppm Co	1500 ppm Co	2000 ppm Co	500 ppm Ni	1000 ppm Ni	1500 ppm Ni	2000 ppm Ni				
Выход, мас. %													
Газ, в т.ч.	21.2	22.6	23.7	22.8	22.2	22.0	21.6	21.4	19.9				
Сухой газ	2.0	2.1	2.1	2.1	2.1	2.0	1.9	1.9	1.9				
Пропан-пропиленовая фр. в т.ч.	5.8	6.2	6.4	6.5	5.9	5.8	5.7	5.7	5.2				
— пропилен	4.7	5.1	5.3	5.3	4.9	4.8	4.8	4.8	4.5				
Бутан-бутиленовая фр., в т.ч.	13.4	14.3	15.2	14.2	14.1	14.1	13.9	13.8	12.8				
— изобутан	5.2	5.8	5.8	5.4	5.3	5.0	5.0	4.9	4.6				
— бутилены	7.1	7.4	8.2	7.6	7.6	7.9	7.8	7.9	7.2				
Бензин (нк-200°С)	51.0	52.4	52.6	52.0	51.8	50.9	49.9	48.6	47.9				
Легкий газойль (200–320°С)	16.2	15.4	15.4	15.5	15.5	16.3	16.3	16.1	17.2				
Остаток (320°С+)	6.8	5.7	4.7	5.6	6.0	6.8	7.5	9.2	9.7				
Кокс + потери	4.9	4.0	3.6	4.0	4.5	4.1	4.7	4.6	5.3				
Показатели процесса, мас. %													
Конверсия (газ + бензин)	72.1	75.0	76.3	74.8	74.0	72.9	71.5	70.0	67.8				
Конверсия фр. 350-500°С	93.2	94.3	95.3	94.4	94.0	93.2	92.6	90.8	90.3				

Таблица 2. Влияние типа прекурсора и его концентрации на состав продуктов и показатели процесса каталитического крекинга (температура реакции – 560°С, соотношение катализатор:сырье – 3.85, время опыта – 12 с)

НЕФТЕХИМИЯ том 56 № 1 2016

Рис. 2. Спектры отражения с поверхности закоксованных цеолитных катализаторов с добавками прекурсора никеля: а – детализация области структуры алюмосиликата; б – детализация области поглощения ароматических углеводородов.

шением выхода бензиновой фракции с 51.0 мас. % до 47.9 мас. %. В то же время выход газовой фракции сначала возрастает от 21.2 мас. % до 22.0 мас. % при добавке 500 рртм и далее снижается до 19.9 мас. %. В составе газа увеличивается доля непредельных углеводородов. Пропан-пропиленовая фракция (ПП Φ) обогащается пропиленом, а бутан-бутиленовая фракция (ББФ) бутиленами. Возрастание непредельных углеводородов в газовой фазе указывает на усиление реакции дегидрирования легких углеводородов. Добавка прекурсора никеля в сырье оказывает существенное влияние на групповой состав жидкого продукта каталитического крекинга. В составе жидкого продукта снижается содержание ароматических углеводородов с 59 до 46 мас. %, что может в определенных условиях представить интерес для промышленной практики.

Эксперименты с добавлением прекурсора кобальта выявили отличные от прекурсора никеля закономерности в процессе каталитического крекинга (табл. 2). В опытах с прекурсором кобальта, напротив все значения конверсии находились выше аналогичного показателя без добавки (72.1%). Максимальная конверсия наблюдалась при введении в сырье 1000 ррту Со (76.3%). При повышении содержания прекурсора кобальта до 1000 ррту выход газа увеличивался с 21.2 мас. % до 23.7 мас. %. При дальнейшем повышении содержания прекурсора выход газа снижается до 22.2 мас. %. Выход легкого газойля снизился с 16.2 до 15.4–15.5 мас. % при добавке 500 рртм прекурсора кобальта и оставался на этом уровне при дальнейшем повышении концентрации. Выход бензина возрастает от 51.0 до 52.6 мас. % при концентрации прекурсора 1000% ррт и далее снижается до 51.8 мас. % при повышении концентрации прекурсора до 2000 рртм. Введение прекурсора кобальта в ГВГ приводило к снижению выхода тяжелого газойля каталитического крекинга с 6.7 до 4.7-6.0 мас. %. При конверсии микроэмульсии ГВГ с добавкой прекурсора кобальта без цеолитсодержащего катализатора повышение конверсии не наблюдалось и это свидетельствует о взаимодействии прекурсора и катализатора.

ИК-Фурье исследование образцов катализатора после крекинга. Спектры отражения с поверхности закоксованных цеолитных катализаторов после экспериментов с добавками прекурсора никеля и кобальта представлены на рис. 2 и рис. 3, соответственно. В спектрах асимметричные валентные колебания SiOSi (v as Si-O-Si) находятся в области 1068 см⁻¹, полосы симметричных валентных колебаний (v s SiOSi) лежат в области 835 см⁻¹. В результате введения прекурсора кобальта происходят незначительные сдвиги и изменения в соотношении интенсивностей этих полос, что указывает на возникновение неоднородностей в значении валентных углов Si-O-Si без нарушения кристаллического каркаса цеолита. В спектре катализатора крекинга полоса, связанная с анионами прослеживается при 884 см⁻¹. Под влиянием прекурсора никеля интенсивность данной полосы несколько снижается. Вероятно, координация прекурсора никеля на апротонных центрах катализатора (ЛКЦ) снижает их кислотность. В спектре образцов с добавкой прекурсора кобальта (особенно для образца 2000 рртw Со) интенсивность этой полосы сильно возрастает. В данном случае частицы, полученные из прекурсоров кобальта, усиливают анионные центры цеолита, не нарушая кристаллического каркаса цеолита. Детализация спектров в области 1650-1400 см⁻¹ (рис. 3б) показывает появление в спектрах образцов 500 ррт Со и, особенно, 2000 ррт Со ряд новых полос, отсутствующих в спектре аналогичного катализатора без добавок прекурсора. Полосы 1594, 1550, 1526 и 1484 см⁻¹ могут быть отнесены к валентным колебаниям связей СС в конденсированных ароматических кольцах, координированных на ЛКЦ цеолитного катализатора – аналога аренового комплекса переходных металлов. Полоса 1442 см⁻¹ может быть отнесена к деформационным колебаниям НСН в насыщенных алкильных заместителях в конденсированных ароматических соединениях. Изменения полос в спектрах никель-содержащих образцов в области 1100-700 см¹ небольшие. На рис. 26 представлено появление полос от координированной на ЛКЦ конденсированной ароматики. Незначительные изменения в положении полос по сравнению со спектрами кобальт-содержащих образцов вполне объясняются другой природой металла. более того, это является указанием на то, что переходный металл тоже коорлинирован с ароматическими кольцами. В случае никелевого прекурсора конденсированной координационно связанной с ЛКЦ ароматики оказывается больше в образце 500 ppm Ni, чем в образце 2000 ppm Ni. Избыток оксида никеля, вероятно, дезактивирует ЛКЦ, на которых возможна координация ароматики. Данные ИК-Фурье спектроскопии образца с прекурсором никеля и результаты каталитического крекинга хорошо коррелируют: при концентрациях прекурсора никеля выше 500 ррт наблюдается снижение конверсии ГВГ.

Таким образом, исследованы закономерности конверсии микроэмульсий ГВГ в присутствии прекурсоров никеля и кобальта. Обнаружено, что прекурсор никеля в два раза увеличивает содержание непредельных углеводородов в жидком продукте конверсии микроэмульсии ГВГ. В продуктах конверсии в присутствии прекурсора (кобальта – сильнее, никеля — слабее) наблюдалось увеличение содержания ароматических углеводородов с разветвзаместителями. Рост ленными содержания ароматических углеводородов и перераспределение в составе содержания насыщенных -CH₂-и -CH₃групп под влиянием конверсии в присутствии металлов (особенно кобальта) происходит вероятно в результате изомеризации и переалкилирования заместителей в ароматических кольцах.

Добавка прекурсора кобальта при крекинге прекурсорсодержащих микроэмульсий на цеолитсодержащем катализаторе стимулировала интенсификацию реакций разрыва С-С-связи и способствовала повышению выхода газовой и бензиновой фракций во всем исследованном интервале концентраций. Добавка прекурсора никеля проявила иную природу: способствовала перераспределению водорода между продуктами крекинга. В бензиновой фракции наблюдалось снижение ароматических углеводородов, в газовой фракции увеличилось содержание непредельных углеводородов. При концентрации добавки никеля выше 500 рртw наблюдалось снижение конверсии ГВГ.

Методом ИК-Фурье спектроскопии показано, что синтезируемые *in situ* частицы никеля и кобальта координируются на апротонных центрах катализатора (ЛКЦ), не разрушая каркаса цеолита. При координации кобальта на ЛКЦ наблюда-

Рис. 3. Спектры отражения с поверхности закоксованных цеолитных катализаторов с добавками прекурсора кобальта: а – детализация области структуры алюмосиликата; б – детализация области поглощения ароматических углеводородов.

ется увеличение интенсивности; при координации никеля, наоборот, снижение интенсивности полосы 884 см⁻¹. Вероятнее всего прекурсоры никеля и кобальта, в исследованных концентрациях, по-разному модифицируют кислотные центры промышленного катализатора крекинга, что в конечном итоге приводит к изменению состава продуктов реакции.

СПИСОК ЛИТЕРАТУРЫ

- 1. Хаджиев С.Н., Герзелиев И.М., Капустин В.М., Кадиев Х.М., Дементьев К.И., Пахманова О.А. // Нефтехимия. 2011. Т. 51. № 1. С. 33. [Petrol. Chemistry. 2011. V. 51. № 1. Р. 32].
- 2. Герзелиев И.М., Дементьев К.И., Хаджиев С.Н. // Нефтехимия. 2015. Т. 55. № 4. С. 331. [Petrol. Chemistry. 2015. V. 55. № 6. Р. 481].
- 3. Герзелиев И.М., Арсланов Р.М., Капустин В.М. // Технологии нефти и газа. 2015. № 4. С. 8.
- 4. *Wallenstein D., Seese M., Zhao X.* // Applied Catalysis A: General. 2002. T. 231. C. 227.