УЛК 539.143.43

СТРУКТУРНО-ДИНАМИЧЕСКИЕ ФАЗОВЫЕ ПЕРЕХОДЫ В НЕФТЯНЫХ ДИСПЕРСНЫХ СИСТЕМАХ

© 2019 г. Р. С. Кашаев*

Казанский государственный энергетический университет, Казань, Россия *E-mail: kashaev2007@yandex.ru
Поступила в редакцию 05.10.2017 г.
После доработки 15.09.2018 г.
Принята к публикации 15.10.2018 г.

Методом протонной магнитно-резонансной релаксометрии (ПМРР) и ближней ИК-спектроскопии (БИК) экспериментально установлены полиэкстремальности зависимостей физико-химических свойств, фрактальность и квантование изменений ПМР-параметров, определяющих фазовые переходы между видами нефтяных дисперсных систем в ряду: углеводороды (УВ) \Leftrightarrow нефть \Leftrightarrow мазут \Leftrightarrow гудрон \Leftrightarrow битум \Leftrightarrow карбены \Leftrightarrow кокс. Предложена модель структурно-динамических переходов, связанная с изменением парного потенциала межчастичных взаимодействий (ППМВ), отличающегося наличием ряда минимумов.

Ключевые слова: ПМР-релаксометрия, полиэкстремальность физико-химических свойств, фрактальность, квантование, потенциал межчастичных взаимодействий.

DOI: 10.1134/S0028242119020084

Нефтяные дисперсные системы (НДС) в зависимости от степени карбонизации, температуры, плотности, вязкости и других физико-химических свойств (ФХС) в ходе переработки сырья претерпевают переходы в новые фазовые состояния в ряду: $YB \Leftrightarrow \text{нефть} \Leftrightarrow \text{мазут} \Leftrightarrow \text{гудрон} \Leftrightarrow \text{битум} \Leftrightarrow \Leftrightarrow \text{карбены} \Leftrightarrow \text{кокс.}$ Но природа этих структурнодинамических фазовых переходов (СДФП) до сих пор неясна.

Для обозначения элемента дисперсной фазы НДС в научной литературе принят термин "сложные структурные единицы" (ССЕ) – дисперсная фаза НДС [1] в виде коллоидных частиц, которые седиментированы в дисперсионной среде из легких УВ. ССЕ состоят из ядра, включающего асфальтены, и набора сольватных оболочек из смол и алканов. Под влиянием внешних условий и состава (степени карбонизации, температуры, концентрации асфальтенов, смол, парафинов, серы и др.) происходит изменение размеров ядра и толщины сольватных слоев ССЕ. Так, в нефтях и нефтяных остатках отношение смолы/асфальтены (C/A) варьируется в пределах от (9:1)-(7:3). Причины этих вариаций до сих пор не ясны. Привлечение методов ядерной (протонной) магнитно-резонансной релаксометрии (ПМРР) ближней инфракрасной спектроскопия (БИК) для выяснения причин варьирования С/А и полиэкстремальности зависимости изменений ФХС является целью данной работы.

При формировании ССЕ основные вклады в парный потенциал межчастичного взаимодействия (ППМВ) U(r) дают: оператор обменного взаимодействия $\pm K_0 \mathrm{e}^{-kr}$ между радикалами и другими молекулами и резонансное взаимодействие ± $\pm K_3 r^{-3}$ радикала с диамагнитными молекулами, которые характеризуют возможность обмена энергией с притяжением/отталкиванием в "пачечной" модели ССЕ [2]. Ядро ССЕ формируется из асфальтенов (АС Φ), структура которых состоит из конденсированного послойно упорядоченного ароматического ядра, содержащего 4-5 полиароматических слоев диаметром 0.9—1.7 нм, отстоящих друг от друга на расстоянии ~0.35 нм. Ядро ССЕ имеет оболочку из смол (СМ), имеющих межслоевые расстояния ~0.36 нм и обладающих менее плотной упаковкой слоев [2]. На основе квантово-механических постулатов по данным ЭПР, ЯМР и рентгеновской диффракции предложена еще одна модель [3] ассоциативной комбинации ССЕ в НДС, согласно которой молекулы с самым высоким потенциалом парного взаимодействия (ППВ) – свободные радикалы – образуют ядро ССЕ, а с более низким ППВ – межфазный слой, упрочненный сольватными слоями УВ. Ядро ССЕ может формироваться также из молекул любого вида, обладающих высоким ППВ.

АППАРАТУРА И МЕТОДИКИ ИЗМЕРЕНИЯ

Для решения поставленных задач применяли аппаратуры ПМРР, БИК и вискозиметрии. Для

Рис. 1. Портативный релаксометр ПМР-*NP1*.

измерений методом ПМРР использовали разработанные нами по ТУ 25-4823764.0031-90 и релаксометры: лабораторный ПМР-09 [4, 5] и портативный релаксометр ПМР-NP1 [6, 7] (рис. 1) на резонансные частоты в диапазоне $v_0 = 9.6$ –14.3 МГц.

По показателю чувствительности $K = v_o^2 D^2$ [$10^6 \ \Gamma u^2 \ M^2$] = 2285 Мг $u^2 \ cm^3$ релаксометр ЯМР-*NP*1 близок к лучшему зарубежному аналогу *Minispec pc*120. Для температурных измерений использовано устройство термостатирования образца в датчике ПМР [7], которое отличается малым градиентом и низким уровнем электромагнитных шумов. На нижнем торце датчика термоэлементы на эффекте Пельтье, в зависимости от направления тока охлаждают или нагревают образец в диапазоне температур от -15 до 120° С.

В методе ПМРР зависимости огибающей амплитуд $A_{\rm e}$ спин-эхо, как правило, являются полиэкспоненциальными и описываются уравнениями:

$$A_{\rm e} = 1 - \Sigma A_{\rm oi} \exp\left(-t/T_{\rm li}\right),\tag{1}$$

$$A_{\rm e} = \sum A_{\rm oi} \exp\left(-t/T_{2i}\right),\tag{2}$$

где A_{oi} в относительных единицах соответствует относительному числу протонов P_{oi} протонных фаз разной степени упорядоченности, а T_{1i} , T_{2i} — временам спин-решеточной и спин-спиновой релаксации этих фаз $i=A,\ B,\ C$ с населенностями (концентрациями спинов) $P_{Ai},\ P_{Bi}$ и P_{Ci} .

Затухание f(t) поперечной намагниченности в гетерогенных системах описывается формулой, включающей спектр времен релаксации $P(T_{2i})$:

$$f(t) = \int P(T_{2i}) \exp(-t/T_{2i}) dT_{2i},$$
 (3)

который неизвестен. Используются разложения f(t) на компоненты переходом от интеграла к рядам. Но в [8] показано, что при таком решении в спектре-решении невозможно получить линию, ширина ΔT_2 которой на полувысоте меньше 0.5 амплитуды линии спектра декада, а линия шириной $\Delta T_2 > 0.5$ амплитуды линии декада может соот-

ветствовать целому набору узких линий. При количестве экспериментальных точек не меньше, чем 100, обратным преобразованием Лапласа (L^{-1}) временную функцию $\Sigma \exp(-t/T_{1,2i})$ можно преобразовать в набор дельта-функций $\delta(t-T_{1,2i})$ представляющих собой распределение времен релаксации [9]. Имеется ряд прикладных программ CONTIN, DASHA, UPEN и др. для такого преобразования. Однако, необходимое для этого требование – низкий уровень шума. При соотношении сигнал/шум = С/Ш < 100 наблюдается смещение величин $T_{1,2i}$ и искажения весовых коэффициентов и использование L^{-1} дает погрешность в определении времен релаксации. Но такие уровни шумов – обычное явление. Поэтому определение ПМРР-параметров нами осуществлялось традиционным путем построения огибающей в полулогарифмическом масштабе от времени и графоаналитического разделения полиэкспоненциальной огибающей на компоненты, в которой населенности P_i соответствуют точкам пересечения аппроксимирующих экспоненты прямых с осью ординат (см., например, [10]). Для каждой компоненты со временем релаксации T_{2i} и амплитудой A_i после логарифмирования будет выполняться соотношение $\ln (A_i/A_0) = -t/T_{2i} + \ln A_i$. Путем последовательного вычитания из экспериментальных точек теоретических прямых, соответствующих компонентам, начиная с самой длинно временной, последовательно получают $T_{1,2i}$ и A_i для протонных фаз. За постоянную $T_{1,2i}$ принимается время, в течение которого амплитуда сигнала спин-эхо уменьшается в е раз. Мы разлагали огибающие на две и три компоненты при различии времен релаксации более, чем в 4-5 раз. Погрешности обработки огибающей спин-эхо для однократных измерений времен релаксации составляют 3-4 и 2 отн. % амплитудных и снижалась в $(n)^{1/2}$ раз путем *n* накоплений амплитуд сигналов спин-эхо ЯМР. Результаты примера такого разделения и анализа на мониторе компьютера приведены на рис. 2.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

Процесс формирования ССЕ и их упорядочения вследствие карбонизации НДС по мере роста их плотности и роста числа ССЕ имеет признаки формирования статистических фрактальных структур, и временные СД-упорядоченные образования могут представлять собой фрактальные объекты разной степени упорядоченности, характеризующиеся соотношением между массой M (или плотностью) и линейным масштабом L:

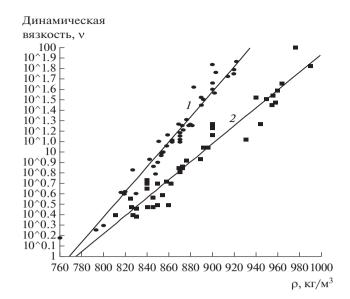
$$M(L) \propto L^d,$$
 (4)

где d —показатель скейлинга массы.

Методом ПМРР нами установлено, что в нефтях имеет место следующее соотношение между

Рис. 2. Огибающие сигналов спин-эхо (в левой нижней части экран) и их разложения на компоненты (правая часть экрана монитора) при измерениях времен спин-решеточной T_{1i^-} и спин-спиновой, T_{2i^-} релаксации и населенностей протонных фаз P_{1i} и P_{2i} . Параметры измерений задаются в верхней левой части экрана.

населенностями $P_{\rm C}$ протонов, играющих роль M(L) массы протонной фазы C и межпротонным расстоянием R_{ij} характеризующим размеры L:


$$P_{\rm C} = R_{ij}^d. (5)$$

Другим признаком фрактальности является зависимость оптического рассеяния света в БИК-диапазоне спектра. Согласно работе [12] при наличии фрактальных структур и агрегации, как обобщение уравнения Смолуховского, долж-

на наблюдаться зависимость интенсивности рассеянья света в виде:

$$I(k) \propto k^{-x},\tag{6}$$

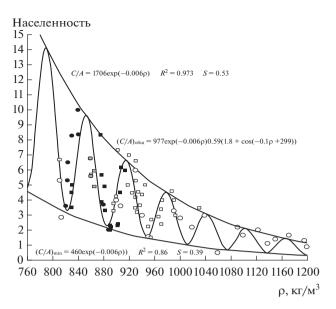
где $k=(4\pi/\lambda)\sin(\theta/2)$, θ — угол рассеяния. Такая зависимость в нефтях в диапазоне плотностей $\rho=847.5-901$ кг/м³ для длин волн $\lambda=1.85-2.05$ мкм в углах $\theta=2.5-17$ нами действительно наблюдалась методом БИК; она может быть описана уравнением:

Рис. 3. Зависимость между динамической вязкостью η и плотностью ρ для температур $T = (20 \pm 1)^{\circ}$ С (прямая I) и $(50 \pm 1)^{\circ}$ С (прямая 2).

$$(\sum_{2.5}^{17} I_i)/I_0 = 2.364 \times 10^{15} \exp(-r/\Delta \rho_f),$$
 (7) где $\Delta \rho_f = 24.1 \ \text{кг/m}^3 - \text{параметр "квантования", который, как мы предполагаем, указывает на группирование нефтей по плотности через интервал $\Delta \rho_f \sim 24 \pm 7 \ \text{кг/m}^3$. Однако, величина данного параметра квантования $\Delta \rho_f = 24 \ \text{кг/m}^3$ не столь однозначно подтверждается альтернативными$

Были обобщены наши и литературные данные для корреляций между вязкостью и плотностью $\eta_{20}(\rho)$ (мПа с). Графики представлены на рис. 3. Они описываются для температур (20 ± 1)°С (прямая I) и (50 ± 1)°С (прямая I) с коэффициентами корреляции I0 и I1 и I2 и I3 с коэффициентами корреляции I3 и I4 соотношениями:

исследованиями.


для
$$T = 20$$
°C $\eta = 5.96 \times 10^{-10} \exp(0.028 \rho)$, (8)

для
$$T = 50$$
°C $\eta = 2.27 \times 10^{-7} \exp(0.02 \rho)$. (9)

Среднеквадратическая ошибка составила, соответственно. S = 6.6 и S = 8.

По данным работы [13] вязкость η от температуры ведет себя экстремально, и максимумы η в диапазоне 35—61°C квантуются с величиной $\Delta \eta =$ = 24 мПа с. Расчет значений $\Delta \rho_{\eta}$ из $\Delta \eta$ с использованием уравнения (9) показывает, что $\Delta \rho_{\eta}$ лежит в диапазоне 14—24 кг/м³. На наш взгляд, максимумы вязкости $\eta(\rho)$ могут быть интерпретированы как максимумы группирования упорядоченных структур ССЕ.

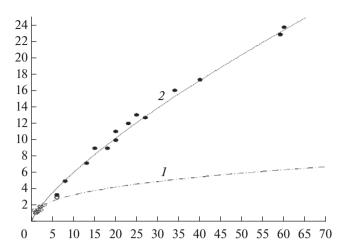
На рис. 4 представлены отношения P_A/P_C населенностей протонов фаз дисперсионной среды P_A к фазе асфальтенового ядра P_C , полученные по данным ППМР и совмещенные с отношениями C/A концентраций смол C к асфальтенам A. Ап-

Рис. 4. Отношения экспериментально полученных методом ПМРР населенностей P_A/P_C (точки \square), совмещенные с отношениями C/A концентраций смол C к асфальтенам A (точки \bigcirc) в зависимости от плотности НДС. Сплошные кривые — аппроксимации экспериментальных данных по уравненю (\bullet).

проксимация экспериментальных зависимостей $P_{\rm A}/P_{\rm C}$ и C/A от плотности ρ , приведенная в виде сплошной кривой на рис. 4, дает зависимость C/A для максимумов с коэффициентом корреляции $R^2=0.973$, ошибкой S=0.53 в виде:

$$C/A = 1706 \exp(-0.006 \,\rho),$$
 (10)

для минимумов $R^2 = 0.861$, S = 0.39:


$$C/A = 460 \exp(-0.006 \rho),$$
 (11)

и средним значением $\Delta \rho_{\text{ЯМР}} = 30.8$ между минимумами и максимумами.

Зависимость отношения $P_{\rm A}/P_{\rm c}$ и C/A на рис. 4, указывает на наличие экстремальных значений C/A от плотности т.е. зависимости толщин сольватных оболочек при значениях плотности, вязкости и температур размягчения, совпадающих с аномальными точками. Кроме того, по нашим данным [5, 14, 15] по мере увеличения вязкости НДС η , которая связана с ρ , наблюдается рост скорости спин-спиновой релаксации $T_{\rm 2A}^{-1}$ с аномалиями в виде изломов и экстремумов при $\eta_{\rm 20}$ = =1.5 мПа с, $\eta_{\rm 20}=5-6$ мПа с (например, рис. 5), $\eta_{\rm 20}=40$ мПа с, $\eta_{\rm 50}=150$ мПа с, $\eta_{\rm 50}=700$ мПа с, $\eta_{\rm 50}=1000$ мПа с и $T_{\rm P}\approx45-48$ °C (например, рис. 6).

Аномалии параметров проявляются также в виле:

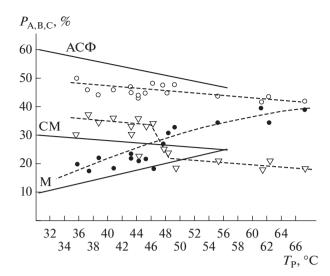
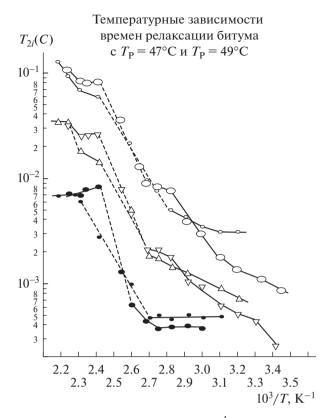

— первого излома І $T_{\rm 2A}^{-1}$ и локального минимума C/A (рис. 4), которые наблюдаются при переходе от УВ с концентрацией АСФ < 0.02% (когда

Рис. 5. Зависимости $T_{2\mathrm{A}}^{-1}(\mathrm{c}^{-1})$ от η_{20} (м Π а c) для H -парафинов (кривая I) и нефти (кривая $\mathit{2}$).

выполняется условие $\eta T_{1,2}/T = \text{const}$) к легкой нефти, в которой уже возникли ССЕ, но расстояния h между ними слишком велики (h > 7 нм), чтобы их взаимодействия сказались на физикохимических свойствах и ЯМР-параметрах;

- второго излома II T_{2A}^{-1} (рис. 5) при $\eta_{20} = 6$ мПа с и максимума C/A, которые наблюдаются при $AC\Phi = 1.5\%$, CM = 7%, $\eta = 6$ спз, при переходе от легкой нефти к средней при расстоянии между $CCE\ h \approx 7$ нм, когда межчастичные взаимодействия уже достаточно велики и следует учитывать $P\Phi P$ при диффузии CCE;
- третьего излома III $T_{\rm 2A}^{-1}$ и минимума C/A наблюдается при переходе к тяжелым нефтям с $AC\Phi > 7\%$, CM > 22-24%, $\eta_{20} > 40$ спз, $\rho > 900$ кг/м³, межчастичными расстояниями h < 4 нм. Область тяжелых нефтей перекрывается с областью мазутов, с характерными концентрациями $AC\Phi = 1.5-7.7\%$, CM = 6-20% $\eta_{50} = 170-800$ спз;
- переход IV к мазуту вызывает перегиб в $\eta_{50}(\rho)$ при $\rho \approx 950$ кг/м³. При переходе к нефтяным остаткам, гудронам и битумам параметр η заменяется на температуру размягчения $T_{\rm P}$. По данным [16] при переходе от тяжелых нефтей к битумам, соответствующим ACФ + CM = 35%, наблюдается излом времен спин-решеточной релаксации $T_{\rm I}$, что связывается с переходом в критическое состояние с изменением размеров ССЕ (например, рис. 6);
- переход V к гудронам с AC Φ = 8–12%, CM = 20–34% характеризуется экстремумом зависимости T_{2A}^{-1} и максимумом C/A;
- переход VI от гудронов к битумам с локальными максимумами T_{2A}^{-1} и C/A возникает при $\rho \ge 1000$ кг/м³ и расстояниях $h \approx 4$ нм между ССЕ. Структура ССЕ существенно изменяется, появляется дальнее упорядочение с отсутствием (при


Рис. 6. Зависимости между населенностями протонных фаз $P_{\rm A}$ (точки ∇), $P_{\rm B}$ (Δ) и $P_{\rm C}$ (\bullet) и температурами размягчения $T_{\rm P}$, соединенные пунктирными линиями. Сплошные прямые — значения концентраций АСФ, СМ и масел M, полученных аналитическими методами (литературные данные).

комнатных температурах) трансляционной подвижности ССЕ ($T_p = 26-27^{\circ}$ С);

- переходы VII в битумах (рис. 7) аномалии в зависимостях T_{2A}^{-1} , P_A/P_C и C/A наблюдаются в интервале температур размягчения $T_P \approx 47 \pm 2$ °C, концентрации ACФ $\approx 22.5\%$, расстоянии $h \approx 2.9$ нм между CCE, когда содержание смол резко меняется от 35 до 20% и наблюдается экстремальное изменение физических параметров битумов, в частности экстремумы дуктильности, пенетрации, температуры вспышки. По-видимому, уже можно говорить о плотной упаковке ядер CCE с минимальной оболочкой, образовании гелеподобной асфальтен-смолистой структуры и их эволюции до карбенов с $h \approx 2$ нм;
- следующая стадия перехода к карбенам, повидимому наблюдается при $T_{\rm P} > 72 {\rm ^{\circ}C}$. При этих температурах должна наблюдаться агрегация карбенов в карбоидные кристаллиты и сильное влияние парамагнитных центров свободных радикалов, что нивелирует проявления структурных изменений на времена релаксации;
- переход к коксу соответствует: пределу аппроксимации $P_{\rm B} \to 100\%$; нулевому значению нормированной амплитуды $A_{\rm I}/A_{\rm Ict}$ спин-эхо ЯМР, что характеризует практическое отсутствие атомов водорода в НДС с h < 2 нм при температуре размягчения чистого асфальтена $T_p \approx 300^{\circ}{\rm C}$ или возгорания аморфного графита.

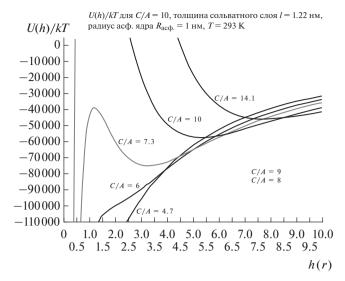
Все экспериментальные ФХС, ПМР-параметры НДС сведены в табл. 1.

Полученные экспериментальные результаты позволяют предложить качественную модель

Рис. 7. Температурные зависимости $T_{2\mathrm{A}}^{-1}$ в битумах. Точки $\nabla, \Delta - T_{2\mathrm{A}}, \circ, \circ - T_{2\mathrm{B}}, \bullet, \bullet - T_{2\mathrm{C}}$ соответственно в битумах с температурами размягчения $T_P = 47$ и 49°C.

структурных изменений в НДС при переходах УВ ⇔ легкие нефти ⇔ средние нефти ⇔ тяжелые нефти ⇔ мазут ⇔ гудрон ⇔ битум ⇔ карбены ⇔ ⇔ кокс и используя уравнения (10), (11) рассчитать парный потенциал межчастичных (ССЕ) взаимодействий.

Переходы от молекулярных УВ к коксу характеризуются поэтапным процессом увеличения степени упорядоченности НДС через образование ССЕ в легких нефтях, повышения концентрации и усиления межчастичного взаимодействия в нефтях и мазуто-гудронах, образование сетки связанных сольватными оболочками ССЕ в мягких битумах, образование плотной упаковки ССЕ в твердых битумах с образованием гексагональной плотной упаковки асфальтеновых ядер. Населенности протонов $P_{\rm B}$ коротковременной фазы (соответствующей асфальтеновому ядру и ароматическим кольцам внутренней сольватной оболочки) имеют значения 84-96% для гудрона и мягкого битума и 93-96% для твердого битума. Такая плотность достижима только для гексагонально плотно-упакованных (ГПУ) цилиндров [17, 18] и для тяжелых нефтяных остатков мы можем говорить о гексагональной плотной упаковке (ГПУ) цилиндров ССЕ с тонкой прослойкой УВ смол толщиной ≈32 Å для гудрона и ≈5 Å для твердых битумов. Это согласуется с данными [19], по которым в состав оболочек ССЕ входят УВ состава C_8H_{18} – $C_{16}H_{34}$ с длиной УВ цепочек ~20–40 Å.


Для описания устойчивости таких дисперсных систем, как эмульсии чаще всего применяется Дерягина-Лондона-Вервея-Овербека теория (ДЛВО) [20], либо модификации на ее основе. Согласно теории, частицы подвергаются воздействию двух видов дальнодействующих сил: вандер-ваальсовых сил притяжения и отталкивания частиц. Притяжение действует на дальние расстояния по уравнению:

$$U_{\rm np} = -AD/12h, \tag{12}$$

 $U_{\rm np} = -AD/12h, \eqno(12)$ где $A = \pi^2 n^2 \beta \approx 0.5 \times 10^{-12} - 4 \times 10^{-12}$ эрг — константа Гамакера, D — диаметр частиц, h — расстояние между поверхностями частиц. В более общем виде суммарная (молекулярно-дисперсионная, электростатическая, структурная) энергия взаимодействия

Таблица 1.	Экспериментальные	ФХС и ПМРР-параметры	ы НДС
таолица т.	Экспериментальные	ΨΛC II IIIVII I - IIapameipi	N 112

Параметры	УВ	Легкая нефть	Средн. нефть	Тяж. нефть	Мазут	Гудрон	Мягк. битум	Тверд. битум
АСФ, %	0	0-1.8	1.8-7.0	1.8-8.0	1.5-12.0	2.3-12.0	10-22.5	22.5-40
CM, %	0 - 3.0	3-15	8-22	17-26	6-22	18.5-26	30-43	19-27
$r_{\rm CCE}$, Å	>80	>80	60-80	40-70	40-70	40-60	40-50	35-45
ρ, kγ/m ³	до 780	780-850	850-900	900-930	900-980	935-1060	1000	>1100
$\eta_{20,50,80}$, спз	η_{20}	η_{20}	η_{20}	η_{20}	$\eta_{80\mathrm{cp}}$	η_{80}	_	_
	0.24 - 4.00	1.5-8.0	8-38	34-140	25	11-157		
М.в., а.е.м	50-200	50-200	200-260	250-450	450-670	600-680	680-900	900-1400
C/A	∞-3.5	3.5-10	10-2.4	2.4-4.8	4.8-0.8	0.8-3.3	1.2-2	2.7-0.4
$P_{ m B},\%$	0	0-20	20-45	45-80	64-82	89,0	84-96	93–96
$T_{2A,}$ MC	0.7-14 c	0.3-1.0	50-300	18-50	1.4-11	2.2,0	2-4.7	2.3-3.8
$T_{2\mathrm{B}}$, мс	_	20-90	10-20	0.5-10	0.45-3	0.46	0.3 - 0.4	0.3-0.4
$T_{ m 2rot,}$ мс	600-900	300-1500	70-280	15-67	8.50	2.6.0	2.6	2.6

Рис. 8. Зависимости U(h)/kT от расстояния h между поверхностями частиц радиуса r=1.15-2.47 нм. $A=8.5\times 10^{-20}$ Дж; $K=5\times 10^6$ н/м², l=0.15-1.47 нм.

между двумя микрочастицами радиуса r определяется формулой [21]:

$$U(h)/kT = (U_i + U_M + U_S)/kT$$
, (13)

$$U(h)/kT = \left\{\pi\varepsilon\varepsilon_0 r\varphi^2 \lg(1 + \exp(-\chi h)) - Ar/12h + \pi r l^2 K \exp(-h/l)\right\}/kT,$$
(14)

где ϕ_0 , l, K потенциал Штерна, размеры приповерхностного структурно-упорядоченного слоя воды, константа упругих свойств приповерхностного слоя; χ — параметр Дебая двойного электрического слоя (ДЭС), величина которого определяется ионной силой раствора электролита I, числом Фарадея F, диэлектрической постоянной среды ε , электрической постоянной гостоянной ε , газовой постоянной ε . Энергию парного межчастичного взаимодействия оценивают в единицах ε Нарис. 8 приведены рассчитанные ППМВ ε В зависимости от расстояния ε между поверхностями частиц ССЕ с постоянным радиусом ядра ε 1 нм и меняющейся толщиной ε сольватного слоя в соответствии с ε ε на рис. 4.

Из графиков рис. 8. видно, что ППМВ U(h)/kT меняется в зависимости от C/A, т.е. в зависимости от радиуса ССЕ и толщины сольватного слоя l. При C/A < 4.7 минимум не проявляется, что можно интерпретировать как переход к твердой структуре.

выводы

1. Установлены аномалии в параметрах ПМР и физико-химических свойств нефтяных дисперсных систем в ряду УВ \Leftrightarrow нефть \Leftrightarrow мазут \Leftrightarrow \Leftrightarrow гудрон \Leftrightarrow битум \Leftrightarrow карбены \Leftrightarrow кокс, меняющиеся при переходах. Установлены зависимости отношений C/A концентраций смол СМ к асфальтенам АСФ от плотности НДС.

- 2. Предложена обобщенная модель процесса динамики структурных изменений при переходах, основанная на предположении упорядочения сложных структурных единиц в нефтяных дисперсных системах и данных ПМРР.
- 3. Для описания взаимодействий между структурными единицами предложен парный потенциал межчастичных взаимодействий (ППМВ), в форме, раскрывающей причины структурно-динамического упорядочения в НДС через формирование и эволюцию ССЕ.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Сафиева Р.З.* Физико-химия нефти. Физико-химические основы технологии переработки нефти. Под ред. Кошелева В.Н. М.: Химия, 1998. 448 с.
- Espinat D. // Revue de L'Institut Français du Petrole. 1991. V. 46. P. 775.
- 3. *Красногорская Н.Н., Унгер Ф.Г., Андреева Л.Н., Габ- дикеева А.Р., Соков Ю.Ф., Хлесткин Р.Н.*// Химия и технология топлив и масел. 1987. № 5. С. 35.
- Идиятуллин З.Ш., Темников А.Н., Кашаев Р.С.// Приборы и техника экспенримента. 1992. № 5. С. 237.
- 5. *Кашаев Р.С.* Аппаратура и методики ЯМР-анализа нефтяных дисперсных систем. Lambert Academic publishing, Saarbruken, Germany, 2012. C. 92.
- 6. Идиятуллин З.Ш., Кашаев Р.С., Темников А.Н.// Патент РФ № 67719. 2007. Бюлл. № 30.
- 7. Идиятуллин З.Ш., Кашаев Р.С., Темников А.Н.// Патент РФ № 2319138. 2008. Бюлл. № 7.
- 8. Clark A.H., Lillford P.J. // J.Magnet. Reson. 1980. V. 40. P. 42.
- Provencher S.W.// Comput. Phys. Commun. 1982. V. 27. P. 229.
- 10. *Чижик В.И.* Квантовая радиофизика. СПб.: Изд. С.-Пб ун-та, 2004. 689 с.
- 11. *Вашман А.А.*, *Пронин И.С.* Ядерная магнитная релаксация и ее применение в химической физике. М.: Наука, 1979. 235 с.
- Пьетронеро П., Тозатти Э. // Сб. Тез. Докл. VI Межд. Симпоз. "Фракталы в физике", Триест, Италия, 1985. С. 56.
- 13. Марфин Е.А., Кравцов Я.И., Абдрашитов А.А. // Сб. Матер. Межд. н./пр. конф. Инновации в развитии и разработке нефтяных и газовых месторождений. Казань, 7—8 сент. 2016. С. 182.
- 14. *Кашаев Р.С.* Дис. ... докт. техн. наук. ИГИ РАН. Москва. 2001. 302 с.
- 15. Кашаев Р.С. // Нефтехимия. 2003. Т. 43. № 2. С.153.
- 16. *Кашаев Р.С., Кемалов А.Ф., Дияров И.Н., Фахрумди*нов Р.З. // Химия и технология топлив и масел. 1999. Т. 2. С. 33.
- 17. Jonstrom R., Olsson U., O'Neil Parker W., Jr. // J. Chem. Phys. 1995. V. 11. P. 61.
- Fukuda K., Olsson U., Wurtz U. // Langmuir. 1994.
 V. 10. № 9. P. 3222.
- 19. *Гимаев Р.Н., Кузеев И.Р., Абызгильдин Ю.М.* Нефтяной кокс. М.: Химия, 1992. 80 с.
- Дерягин Б.В., Ландау Л.Д. // Журн. эксперим. и теорет. физики. 1945. Т. 15. С. 663.
- 21. *Третиник В.Ю., Слипенюк Т.С., Борук С.Д., Макаров А.С.* // Украинский хим. журн. 2011. Т. 77. № 3/4. С. 101.