УДК 665.61,543.429.23,54.062,550.84

ЗАКОНОМЕРНОСТИ РАСПРЕДЕЛЕНИЯ ОСНОВНЫХ СТРУКТУРНО-ГРУППОВЫХ ПАРАМЕТРОВ СОСТАВА НЕФТЕЙ ЛЕНО-ТУНГУССКОГО НЕФТЕГАЗОНОСНОГО БАССЕЙНА ПО ЛАННЫМ ЯМР ¹Н

© 2019 г. М. Б. Смирнов^{1, *}, Н. А. Ванюкова¹

¹Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, Россия *E-mail: m1952s@yandex.ru
Поступила в редакцию 22.07.2017 г.
После доработки 18.06.2018 г.
Принята к публикации 15.10.2018 г.

Получено распределение измеряемых методом ЯМР 1 Н характеристик структурно-группового состава нефтей Лено-Тунгусского бассейна. Показано, что одни распределения достаточно близки к нормальному, другие же сильно от него отличаются и асимметричны. Нефти бассейна отличаются от нефтей Волго-Урала и Западной Сибири существенно меньшим содержанием ароматических соединений и большим — радиогенных непредельных углеводородов. Средняя степень замещения ароматики в них выше, чем в нефтях Западной Сибири, максимум распределения по характеризующему эту величину параметру попадает в область между двумя максимумами распределения для нефтей Волго-Урала. Отношение $H_{\rm ap,2+}/H_{\rm ap,1}$ распределено примерно так же, как в нефтях Волго-Урала и Западной Сибири. Установлена достоверная разница в составе нефтей Байкитской антеклизы и Непско-Ботуобинской антеклизы.

Ключевые слова: состав нефти, ЯМР ¹Н, Восточная Сибирь, плотность распределения.

DOI: 10.1134/S0028242119020175

Один из основных вопросов, возникающих при постановке любой работы в области геохимии нефти и нефтепереработки (см., например, [1-9]) — можно ли считать используемые образцы типичными (для рассматриваемого бассейна, какой-то его части или нефтей в целом) при, как правило, небольшом их общем числе. Для разработки же систем классификации нефтей необходимо убедиться, что в выборке представлены разнообразные по составу пробы, включая крайние варианты. Решение этой задачи, во-первых, требует простого, дешевого и быстрого метода анализа, позволяющего охарактеризовать состав нефтей в целом. Во-вторых, нужны массовые полученные этим методом данные о составе соответствующей совокупности нефтей (например, изучаемого бассейна). На сегодня одним из наиболее перспективных для этого методов представляется ЯМР в варианте, описанном в [10, 11]. Он позволяет работать непосредственно в сырыми нефтями (без какого бы то ни было разделения) и требует около 1 ч общего времени регистрации спектров, если не определять малые концентрации непредельных соединений. Время обработки спектров при характеристике общей ароматичности нефти, средней степени замещения ароматики, соотношения между моно- и би-+полициклической ароматикой. доле н-алкильных структур и некоторых других

моментов (измеряется 11 параметров состава) также не более 1 ч [10, 11]. За счет умеренного увеличения времени обработки можно получить дополнительный набор данных о составе изоалкильных и моноциклических структур, наибольший объем которых примерно соответствует приведенному в [12]. Минимизировать затраты (время регистрации ~ 5 мин, обработки -20 мин) можно, ограничившись данными ЯМР ¹Н с сокращенным числом сканирований. При этом теряются основные сведения о насыщенных структурах и увеличивается до ~0.3 мас. % предел обнаружения непредельных, что для многих случаев допустимо. Следует отметить, что активно продвигаемое в настоящее время направление работ, получившее название "петролеомика" (см., например, [13-16]), мало что дает для решения основных задач в области геохимии нефти.

Лено-Тунгусский НГБ выделяется среди прочих бассейнов России наибольшим возрастом продуктивных отложений (рифей — нижний кембрий) [17]. Полученные ранее методом ЯМР ¹Н данные о составе нефтей этого бассейна недостаточны для решения сформулированной выше задачи [18]. Поэтому в настоящей работе проведен анализ достаточного числа представительных для

бассейна проб нефтей и выполнена необходимая статистическая обработка опытных данных.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Часть проанализированных образцов составляли пробы нефтей из коллекции ИНХС РАН, отобранные в 1960-80-x гг.; другие отбирали существенно позднее. Исходя из принятой методики пробоподготовки [10] при структурно-групповом анализе об объектах изучения следует говорить как о суммарных фракциях C_{8+} или C_{9+} . Целесообразность такого ограничения обоснована в [10].

Спектры ПМР растворов нефтей в CDCl₃ (400 МГц) с концентрацией 250—350 мг/мл регистрировали при 313 K на спектрометре DRX-400 ("Bruker", ФРГ) с пятимиллиметровым датчиком без вращения образца. Режимы регистрации: время сбора данных -4 с, релаксационная задержка -3 с, длительность импульса -55° ; 128-256 сканирований. Поправочные коэффициенты для всех аналитических групп сигналов, учитывающие их насыщение, измерены с погрешностью $\pm 1\%$ сопоставлением интегральных интенсивностей сигналов в спектрах, полученных без насыщения (релаксационная задержка — 20 с, длительность импульса — 70°) и с насыщением (12 образцов, для каждого — по 3 спектра в каждом режиме). Поправочные коэффициенты определены отдельно для газоконденсатов и легких нефтей, "обычных" нефтей и нефтей с существенным уширением сигналов в спектрах ПМР. Поскольку величины химических сдвигов (ХС) при измерении от стандарта – тетраметилсилана сильно зависят от концентрации фракции в растворе, ее состава и температуры регистрации, отсчет ХС проводили от самого интенсивного сигнала, отвечающего резонансу СН₂-групп в середине алкильных цепей, приняв для него $\delta = 1.280$ м.д.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Изучено 99 образцов нефтей 37-ми месторождений, разведочных площадей и лицензионных участков (табл. 1), перекрывающих всю площадь бассейна. Представлены пробы из всех продуктивных комплексов: рифейского, вендского, нижнекембрийского, и из основных крупнейших тектонических структур (Байкитской антеклизы, Непско-Ботуобинской антеклизы, Катангской седловины) [17]. Диапазон глубин — 1000—3600 м.

Для всех образцов измерены следующие структурно-групповые параметры (в процентах от общего водорода образца (H_{o6}) , $H_{\pi B} - \times 100$):

- H_{γ} доля водорода CH_{3} -групп, удаленных не менее чем на три C-C-связи от ароматических колец, карбонильных групп или гетероатомов;
- H_{β} доля водорода групп -C H_2 и -CH<, β и более далеких по отношению к тем же структурным единицам;

- H_{α} доля водорода групп CH_{3} —, $-CH_{2}$ и -CH< в α -положении к ним же;
- $-H_{\rm ap}$ доля водорода в ароматических циклах с разбиением на два диапазона:
- Н_{ар,1} водород преимущественно в моноциклоароматических структурах,
- $-H_{ap,2+}$ водород преимущественно в би-+полициклоароматических структурах;
- $H_{\text{дв}}$ доля водорода в изолированных двойных связях.

Кроме того, рассчитаны величины $H_{ap,2+}/H_{ap,1}$ и H_{o}/H_{ap} [4].

В выборку добавлены данные о величинах H_{ap} , H_{α} , H_{β} , H_{γ} 11 проб (№№ 2, 7, 8, 16, 17, 19, 20, 24, 28, 29, 33 из опубликованной в [18] таблицы). В итоге для этих параметров и H_{α}/H_{ap} в выборке — 110 проб, для остальных — 99.

Для всех параметров вычислены средние характеристики распределений: среднее, медиана, среднеквадратичное отклонение (СКО) (табл. 2). Рассчитаны значения простейших критериев, позволяющих отличать распределения от нормального: отношение среднего значения модуля отклонения от среднего к СКО, коэффициенты эксцентриситета и эксцесса [19, 20]. Критические значения этих характеристик распределения, при достижении которых со статистической значимостью >0.99 и >0.95 следует отвергнуть гипотезу о том, что распределение нормальное, приведены в табл. 3. Из сравнения величин, приведенных в табл. 2 и 3, следует, что гипотезе о нормальности не противоречит только распределение параметра $H_{ap,2+}/H_{ap,1}$. Относительно невелико отклонение от нормального распределения у $H_{ap,2+}$, для H_{ар} наблюдается умеренная асимметрия. Следует отметить, что в обоих ранее изученных бассейнах распределения значений по этим параметрам были далеки от нормального [10, 21]. Очень большие отклонения от нормального имеют распределения параметров $H_{\text{\tiny IB}}$, H_{α} , H_{β} и H_{γ} . Так как в таком случае СКО не является однозначной мерой разброса точек относительно средних величин, определены в явном виде границы, в которые укладывается 50%, 80% и 90% значений (табл. 2). Для лучшего представления разброса относительно медианы там же приведены отношения и разности значений на границах 50-ти и 80% процентного диапазонов.

В целом из данных табл. 2 следует, что при статистической обработке данных о составе нефтей Лено-Тунгусского бассейна необходимо использовать методы непараметрической статистики и придерживаться рекомендаций, изложенных в [19, 20, 22].

Изучаемый набор включает образцы, сильно отличающиеся по составу основных компонентов. По величине $H_{\rm ap}$ разница на границах 80-ти процентного интервала значений более чем

Таблица 1. Месторождения, площади (пл.) и лицензионные участки (ЛУ) Лено-Тунгусского НГБ, представленные в выборке

№ п.п.	Месторождение, пл., ЛО	Число проб	Интервал глубин, м	Возраст1	Горизонты ²	Тектоническая структура ³
1	Алинское	1	1468-492			НБА
2	Аянское	2	2652-2663	V		НБА
3	Ванаварское	2	3104-3612	V		KC
4	Верхне-Вилючанское	4	1675-2301	V	Юряхский (1)	НБА
5	Верхне-Чонское	7	1550-1702	V, Cm ₁	Чонский (1), пл. ВЧ-2 (1), осинский (1)	НБА
6	Вилюйско-Джербинское	1	1470-1483			НБА
7	Даниловская пл.	4	1170-1500	V, Cm ₁	Усть-кутский (1), осин- ский (1), бельская св. (1)	НБА
8	Джелиндуконское	1	2587-2638			KC
9	Дулисьминское	5	2250-2650	V	Ярактинский (1), мотская св. (1)	НБА
10	Иреляхское	1	2022			НБА
11	Камовская пл.	1	2326-2334			БА
12	Криволукское	2	2525-2594	V	Парфеновский (2)	НБА
13	Куюмбинское	12	2220-2632	R, V		БА
14	Мало-Куюмбинское	1	2404-2451			БА
15	Марковская пл.	8	1464-2779	V, Cm ₁	Парфеновский (2), осин- ский (4), мотская св. (1)	НБА
16	Маччобийское	1	2117-2121	V		НБА
17	Междуреченское	1	2528-2531	V		НБА
18	Мирненская пл.	2	1843-2131	V, Cm ₁	Мархининская св. (1)	НБА
19	Могдинский ЛУ	1				НБА;
20	Оморинская пл.	2	2494-2593	V	Оскобинская св. (1), пл. БІІІ + БІV (1)	БА
21	Оморинское	1	2950	Cm ₁	Олекминская св. (1)	БА
22	Платоновская пл.	2	2378-2486	V	Катангсая св. (1), оскобинская св. (1)	НБА
23	Преображенская пл.	2		V	Верхмотская св. (1), усть- кутский (1)	НБА
24	Салаирская пл.	3	2309-2476	R, V		
25	Санарский ЛУ	1		-		НБА
26	СевМарковская пл.	1	2610			НБА
27	Собинская пл.	3	2647-2916	V	Ванаварская св. (2)	KC
28	Собинское	2	2603-2665			KC
29	Среднеботуобинское	4	1462-1957	V, Cm ₁	Ботуобинский (2), осинский (1)	НБА
30	Сухотунгусское	1	1354—1355			ТΠ
31	Талаканское	1	1505-1545			НБА
32	Тас-Юряхское	1	1991-1993	V	Ботуобинский	НБА
33	Терско-Камовское	5	2307-2587			БА
34	Хотого-Мурбайское	1	2020-2026			НБА
35	ЦентрТалаканское	1	1044-1077	Cm ₁	Осинский	НБА
36	Южно-Татейское	1	1993-2002			НБА
37	Юрубчено-Тохомское	3	2291-2474	R, V	Оскобинская св. (1)	БА
38	Юрубченское	1	2370-2376	R		БА
39	Ярактинское	6	2503-2730	V, Cm ₁	Ярактинский (4), мотская св. (1)	НБА

 $^{^{1}}$ R — рифей, V — венд, Cm — кембрий. 2 B скобках — число проб из данного горизонта, свиты (св.), пласта (пл.). 3 БА — Бай-китская антеклиза, KC — Катангская седловина, HБА — Непско-Ботуобинская антеклиза, TП — Туруханское поднятие.

Таблица 2. Численные характеристики распределения параметров состава нефтей Лено-Тунгусского НГБ

Численные характеристики		H_{ap}	Н _{дв}	H_{α}	H_{β}	H_{γ}	H _{ap,2+}	H _{ap} ,1	$H_{ap,2+}/$ $H_{ap,1}$	H _{\alpha} /H _{ap}
1		2	3	4	5	6	7	8	9	10
Среднее		2.11	13.31	5.06	63.51	29.18	1.04	1.01	1.00	2.40
Медиана		2.02	11.92	5.02	63.86	28.67	0.96	1.00	0.96	2.41
СКО		0.71	7.63	1.67	2.48	3.19	0.45	0.24	0.28	0.22
Эксцентриситет		0.53	1.36	0.97	-2.00	2.88	0.46	0.50	0.06	0.00
Эксцесс		0.62	2.87	3.90	6.41	11.01	-0.24	1.71	0.08	1.00
Ср. мод./СКО ^b		0.80	0.76	0.75	0.67	0.63	0.80	0.76	0.77	0.74
	от (а)	1.61	8.54	3.89	62.73	27.36	0.74	0.85	0.83	2.28
Границы 50%	до (b)	2.60	17.96	6.08	64.78	29.90	1.36	1.14	1.17	2.53
E 000	от (с)	1.38	5.21	3.53	61.35	26.27	0.58	0.76	0.71	2.15
Границы 80%	до (d)	3.00	22.50	6.91	66.18	32.13	1.70	1.30	1.40	2.67
E 000%	ОТ	1.21	3.83	2.89	60.06	25.97	0.41	0.68	0.53	2.03
Границы 90%	до	3.15	27.70	7.40	66.71	34.12	1.84	1.38	1.45	2.79
Наименьшее		0.53	1.24	1.14	52.33	24.81	0.13	0.39	0.30	1.71
Наибольшее		4.50	46.44	13.00	67.70	45.95	2.25	1.95	1.67	3.08
Отношения	b/a	1.61	2.10	1.56	1.03	1.09	1.84	1.35	1.41	1.11
Отношения	d/c	2.18	4.32	1.96	1.08	1.22	2.91	1.71	1.97	1.24
Разности	b-a	0.98	9.42	2.19	2.05	2.54	0.62	0.30	0.34	0.25
г азности	d-c	1.63	17.29	3.38	4.83	5.87	1.12	0.54	0.69	0.52

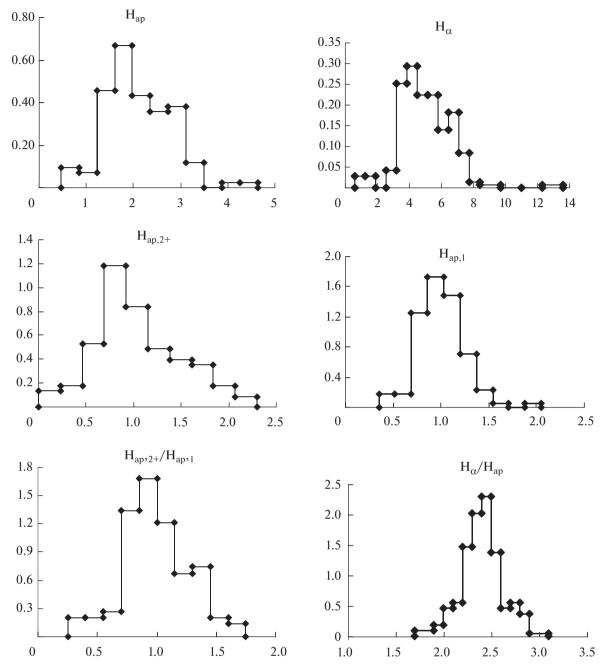
^а Все выражаемые в процентах величины (среднее, медиана, СКО и т.д.) – от общего водорода образца; $H_{дв}$ – они же ×100. ^b Отношение среднего значения модуля отклонения от среднего к СКО [9, 10].

Таблица 3. Критические значения характеристик распределения при значимости 0.95 и 0.99 для выборок из 110ти и 99-ти проб

	110 проб				99 проб				
Характеристика	0.95		0.99		0.95		0.99		
	B.K.*	H.K.*	B.K.*	H.K.*	B.K.*	H.K.*	B.K.*	H.K.*	
Эксцентриситет	0.3	373	0.5	543	0.3	389	0.5	67	
Эксцесс	0.75	-0.63	1.35	-0.80	0.77	-0.65	1.4	-0.82	
Ср. мод/СКО**	0.833	0.765	0.845	0.750	0.835	0.765	0.846	0.749	

^{*} В.К. – верхнее критическое значение, Н.К. – нижнее критическое значение.

двухкратная (в Волго-Урале — полуторократная), наибольшее значение превышает наименьшее в 9 раз. Содержание непредельных соединений варьирует в очень широких пределах (семикратная разница на границах 90-процентного интервала). Более чем в 5 раз отличаются крайние величины отношения $H_{ap,2+}/H_{ap,1}$. Наименьшие различия между нефтями, как и в других НГБ [10, 21], наблюдаются по параметру H_{β} , несколько большие — по H_{γ} .


Для детального представления вида распределений вместо обычных гистограмм использованы графики, показывающие так называемую плотность распределения вероятности p_{μ} [20, 22] (подробнее см. [21]):

$$\boldsymbol{p}_{\scriptscriptstyle \mathrm{H}} = n_{\scriptscriptstyle \mathrm{H}} / (d_{\scriptscriptstyle \mathrm{H}} N), \tag{1}$$

где $n_{\rm u}$ — число образцов со значениями параметра в пределах рассматриваемого интервала, $d_{\rm u}$ — ширина интервала, N — общее число образцов в наборе. Результаты приведены на рис. 1, 2.

В отличие от нефтей ранее изученных бассейнов [10, 21], в целом распределения, как правило, унимодальные. Даже $H_{\rm дв}$ имеет распределение с четким максимумом, в общих чертах похожее на распределение Пуассона, тогда как в нефтях Волго-Урала и Западной Сибири оно было скорее экспоненциальным. Лишь для $H_{\rm ap}$ и $H_{\rm c}$ можно предполагать наличие второго максимума. Далеко отстоящие от основного массива "крылья" либо вообще

^{**} Отношение среднего значения модуля отклонения от среднего к СКО [9, 10].

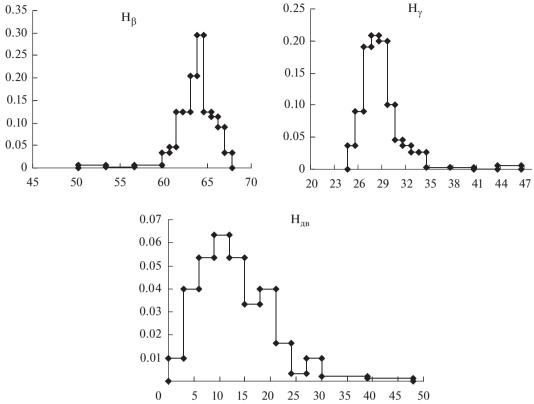


Рис. 1. Графики плотности распределения параметров, характеризующих содержание и состав ароматических компонентов нефтей Лено-Тунгусского НГБ.

отсутствуют ($H_{ap,2+}$, $H_{ap,2+}/H_{ap,1}$, H_{α}/H_{ap}), либо включают малую долю проб. То есть "уникальные" по составу нефти в этом бассейне — большая редкость. Например, по параметрам, определяющим содержание ароматики, выделяется фактически один образец — Среднеботуобинского месторождения, скв. 13, 1928—1957 м (ботуобинский горизонт), где ароматических компонентов намного больше чем в прочих пробах. Он же выделяется крайне низким для нефтей бассейна содержанием непредельных. Подобный вид распре-

делений указывает на то, что на обобщенном уровне описания состав нефтей бассейна, в отличие от Волго-Урала и Западной Сибири, формировался относительно единообразно под воздействием одного основного фактора, а множество иных факторов оказывали малое разнонаправленное влияние.

Сопоставление ранее опубликованных данных [10, 21] с приведенными в табл. 2 и на рисунках показывает, что нефти Лено-Тунгусского НГБ сильно отличаются по составу как от нефтей Вол-

Рис. 2. Графики плотности распределения параметров H_{β} , H_{γ} и $H_{\text{лв}}$ нефтей Лено-Тунгусского НГБ.

го-Урала, так и Западной Сибири. Содержание непредельных углеводородов в нефтях Лено-Тунгусского НГБ намного больше: максимум распределения (рис. 2) лежит в области наибольших значений, зафиксированных для нефтей Волго-Урала и вдвое превышает максимальные концентрации для Западной Сибири. Все непредельные имеют радиогенную природу [23]. Повышенные концентрации непредельных углеводородов в нефтях Восточной Сибири отмечались и ранее [24, 25]. Максимум распределения параметра H_{ар} лежит в области значений (<2%), практически не встречающихся в нефтях Волго-Урала и Западной Сибири, для которых характерны величины в интервале ~3-5%. Соответственно, в область меньших значений сдвинуты и распределения $H_{ap,1}$, $H_{ap,2+}$ и H_{α} . При этом типичные величины отношения $H_{ap,2+}/H_{ap,1}$ те же, что в двух ранее изученных бассейнах, из чего следует, что пониженное содержание ароматических компонентов в нефтях Лено-Тунгусского НГБ не связано непосредственно с их более легким (в среднем) фракционным составом. Отношение Η_α/H_{ар}, характеризующее среднюю степень замещения ароматических циклов, в целом существенно больше, чем в нефтях Западной Сибири, где это отношение, как правило, не превышает 2.0, тогда как в Лено-Тунгусском бассейне нефти с $H_{\alpha}/H_{ap} \le 2,0$ встречаются редко. Область чаще всего встречающихся значений попадает между максимумами распределения этого параметра для нефтей Волго-Урала. По всем перечисленным параметрам различия настолько велики, что нет нужды прибегать к формальным расчетам (например, по критерию Манна–Уитни).

Полученные данные позволяют провести сравнение состава нефтей двух крупнейших тектонических структур бассейна, в пределах которых сосредоточены основное число известных месторождений — Байкитской антеклизы и Непско-Ботуобинской антеклизы. Для сравнения распределений каждого определявшегося параметра использован критерий Манна-Уитни [20, 22]. Критические значения критерия Манна-Уитни при вероятности P того, что наблюдаемая разница распределений случайна равны: при P == 0.2-655, P = 0.05-580, P = 0.01-511, P = 0.001-428. P = 0.0001 - 356. Результаты расчетов по этому критерию вместе с величинами медиан распределений для нефтей каждой структуры приведены в табл. 4. Из них следует, что нефти Байкитской антеклизы содержат заметно меньше ароматических соединений. Причем меньшие концентрации фиксируются как по моно-, так и по би-+полициклиароматическим компонентам, но разница по содержанию последних больше (в нефтях Байкитской антеклизы достоверно в меньшую сторону сдвинуто отношение $H_{ap,2+}/H_{ap,1}$). По степени же замещения ароматических циклов нефти примерно одинаковы. Несмотря на большую разницу

Таблица 4. Сопоставление распределений параметров состава нефтей двух основных тектонических структур Лено-Тунгусского НГБ по критерию Манна–Уитни (КМН) и медианам (сокращения — см. примечание к табл. 1).

Параметр	KMH	Медианы*			
Параметр	БА-НБА	БА	НБА		
$\overline{H_{ap}}$	132	1.54	2.27		
$H_{_{ m JB}}$	556	9.70	13.60		
H_{α}	156	3.71	5.63		
H_{β}	437	65.06	63.57		
$\dot{H_{\gamma}}$	474	29.44	28.28		
$\dot{H}_{ap,2+}$	142	0.70	1.15		
H_{ap} ,	201	0.84	1.11		
$H_{ap,2+}/H_{ap,1}$	245	0.83	1.04		
H_{α}/H_{ap}	659	2.35	2.43		

^{*} В % от H_{o6} , для $H_{лв}$ — умножено на 100.

значений медиан содержания непредельных углеводородов достоверность различия распределений не особенно велика. Разница по величинам H_{β} и H_{γ} в данном случае не представляет интереса, поскольку их сумма с H_{ap} и H_{α} фактически нормирована к 100%, так что при меньшем содержании ароматики без изменения состава прочих компонентов очевидно следует их увеличение.

ЗАКЛЮЧЕНИЕ

Получено распределение измеряемых методом ЯМР ¹Н характеристик структурно-группового состава нефтей Лено-Тунгусского бассейна. Показано, что одни распределения достаточно близки к нормальному, другие же сильно от него отличаются и асимметричны. Нефти бассейна отличаются от нефтей Волго-Урала и Западной Сибири существенно меньшим содержанием ароматических соединений и большим – радиогенных непредельных углеводородов. Средняя степень замещения ароматики в них выше, чем в Западной Сибири, максимум распределения по характеризующему эту величину параметру попадает в область между двумя максимумами распределения для нефтей Волго-Урала. Отношение $H_{ap,2+}/H_{ap,1}$ распределено примерно так же, как в нефтях Волго-Урала и Западной Сибири. Установлена достоверная разница в составе нефтей Байкитской антеклизы и Непско-Ботуобинской антеклизы.

Работа выполнена в ИНХС РАН (№ 79) в рамках Госзадания ФАНО России (в рамках проекта Программы фундаментальных исследований РАН, тема № 2, шифр 44, госрегистрация АААА-А18-118011990148-7). Выражаем благодарность Е.А. Бакай (геофак МГУ) за помощь при выполнении работы.

СПИСОК ЛИТЕРАТУРЫ

 Пунанова С.А., Виноградова Т.Л. // Нефтехимия. 2016. Т. 56. № 4. С. 326 [Petrol. Chemistry. 2016. V. 56. № 7. P. 565].

- 2. Якубов М.Р., Милордов Д.В., Якубова С.Г., Борисов Д.Н., Иванов В.Т., Синяшин К.О. // Нефтехимия. 2016. Т. 56. № 1. С. 19 [Petrol. Chemistry. 2016. V. 56. № 1. Р. 16].
- 3. Коваленко Е.Ю., Голушкова Е.Б., Сагаченко Т.А. // Нефтехимия. 2016. Т. 56. № 2. С. 120 [Petrol. Chemistry. 2016. V. 56. № 2. Р. 101].
- 4. *Гордадзе Г.Н., Гируц М.В., Пошибаева А.Р.* // Нефтехимия. 2017. Т. 57. №5. С. 503—514 [Petrol. Chemistry. 2017. V. 57. № 10. P. 826].
- 5. Duan Y., Wang C.Y., Zheng C.Y., Wu B.X., Zheng G.D. // J. of Asian Earth Sciences 2008. V. 31 P. 341.
- 6. *Бушнев А.Д., Бурдельная Н.С., Валяева О.В., Деревесни-кова А.А.* // Геология и геофизика. 2017. № 3—4. С. 410.
- 7. *Киселева Ю.А., Жеглова Т.П., Дахнова М.В., Може-гова С.В., Назарова Е.С., Нечитайло Г.С.* // Геология и геофизика. 2017. № 3–4. С. 384.
- 8. Huang S.-Y., Li M.-J., Zhang K., Wang T.-G., Xiao Z.-Y., Fang R.-H., Zhang B.-S., Wang D.-W., Zhao O., Yang F.-L. // Pet. Sci. 2016. V. 13. P. 183.
- 9. Чиркова Д.Ю., Красноярова Н.А., Серебренникова О.В., Оленев Я.В. Нефтехимия. 2017. Т. 57. № 1. С. 56 [Petrol. Chemistry. 2017. V. 57. № 1. P. 54].
- 10. *Смирнов М.Б.*, *Ванюкова Н.А.* // Нефтехимия. 2014. T. 54. № 1. С. 17 [Petrol. Chemistry. 2014. V. 54. № 1. Р. 16].
- 11. *Смирнов М.Б., Ванюкова Н.А.* // Нефтехимия. 2014. Т. 54. № 5. С. 360 [Petrol. Chemistry. 2014. V. 54. № 5. Р. 355].
- 12. *Смирнов М.Б., Полудеткина Е.Н., Ванюкова Н.А., Паренаго О.П.* // Нефтехимия. 2011. Т. 51. № 2. С. 118 [Petrol. Chemistry. 2011. V. 51. № 2. P. 107].
- 13. *Marshall A. G., Rodgers R. P* // PNAS 2008 V. 105. № 47. P. 18090.
- 14. Headley J.V., Kumar P., Dalai A., Peru K.M., Bailey J., McMartin D.W., Rowland S.M., Rodgers R.P., Marshall A.G. // Energy&Fuel. 2015. V. 29. № 5. P. 2768.
- 15. Ruddy R.M., Huettel M., Kostka J.E., Lobodin V.V., Bythell B.J., McKenna A.M., Aeppli C., Reddy C.M., Nelson R.K., Marshall A.G., Rodgers R.P. // Energy&Fuel. 2014. V. 28. № 6. P. 4043.
- 16. *McKenna A.M., Purcell J.M., Rodger R.P., Marshall A.G.* // Energy&Fuel. 2010. V. 24. № 5. P. 2929.
- 17. Нефтяные и газовые месторождения СССР. Справочник. Под ред. Максимова С.П. В 2-х т. М.: "Недра", 1987. Т. 1. Европейская часть СССР. 358 с. Т. 2. Азиатская часть СССР. 303 с.
- 18. *Кушнарев Д.Ф., Афонина Т.В., Калабин Г.А., Преснова Р.Н., Богданова Н.И.* // Нефтехимия. 1989. Т. 29. № 4. С. 435.
- 19. *Большев Л.Н., Смирнов Н.В.* Таблицы математической статистики. М.: Наука, 1983. 416 с.
- Смирнов М.Б. Основы обработки экспериментальных данных. Курс лекций. Учебное пособие для химиков и геохимиков. М.: ИНХС РАН, 2013. 162 c. www.ips.ac.ru.
- 21. *Смирнов М.Б., Ванюкова Н.А.* // Нефтехимия. 2015. T. 55. № 6. C. 473 [Petrol. Chemistry. 2015. V. 55. № 5. P. 618].
- 22. Орлов А.И. Прикладная статистика. Учебник для вузов. М.: Издательство "Экзамен", 2007. 672 с.
- 23. *Smirnov M.B.*, *Vanuykova N.A.*, *Parenago O.P.* // Petroleum&Coal. 2012. V. 54. № 4. P. 348.
- 24. *Frolov E.B., Smirnov M.B.* // Org. Geochem. 1994. V. 21, № 2. P. 189.
- 25. Frolov E.B., Smirnov M.B., Melikhov V.A., Vanyukova N.A. // Org. Geochem. 1998. V. 29. № 1/3. P. 409.