УЛК 661.74+66.097

КАТАЛИТИЧЕСКИЕ СИСТЕМЫ НА ОСНОВЕ ГАЛОГЕНИДА МЕТАЛЛА И ЧЕТВЕРТИЧНОЙ АММОНИЕВОЙ СОЛИ В РЕАКЦИИ КАРБОКСИЛИРОВАНИЯ 1,2-ЭПОКСИЦИКЛОПЕНТАНА

© 2019 г. Г. Ю. Тараненко¹, Г. В. Рыбина^{1, *}, С. С. Среднев¹, А. Е. Мешечкина¹, А. В. Тарасов¹

1 Ярославский государственный технический университет, Ярославль, Россия

*E-mail: rybinagv@ystu.ru

Поступила в редакцию 18.01.2018 г. После доработки 18.03.2018 г. Принята к публикации 26.07.2018 г.

Представлены результаты исследования реакции карбоксилирования 1,2-эпоксициклопентана в циклопентенкарбонат (ЦПК) на различных каталитических системах. Установлено, что наиболее эффективно реакция протекает в присутствии кристаллогидрата хлорида (бромида) кобальта или никеля и четвертичной аммониевой соли — ТЭАБ, ТБАБ. Синтез ЦПК рекомендуется проводить под давлением ${\rm CO_2}$ не ниже 3.5 МПа и температуре $140-150^{\circ}{\rm C}$, без растворителя или в среде растворителя, в качестве которого можно использовать целевой ЦПК, ДМФА или N-МП, при массовой доле 1-эпоксициклопентана в исходной смеси не ниже 25%. Эти условия позволяют в течение 2—4 ч получить ЦПК с селективностью 97—99% при практически полной конверсии эпоксида. Показана возможность повторного использования найденной каталитической системы.

Ключевые слова: карбоксилирование, 1,2-эпоксициклопентпн, каталитические системы.

DOI: 10.1134/S0028242118050167

Циклические органические карбонаты (ЦК) являются перспективными продуктами промышленного органического синтеза. Несмотря на широкие области их практического использования, сейчас преимущественно производятся низкомолекулярные ЦК, такие как этилен- и пропиленкарбонат [1].

В последние десятилетия исследователи все большее внимание уделяют синтезу алициклических ЦК, в частности циклопентенкарбонату (ЦПК). Возрастающий интерес к ЦПК вызван возможностью его применения как в качестве высокоэффективного безхлорного растворителя [2], так и мономера в синтезе ряда уретансодержащих полимеров, обладающих повышенной прочностью, биоразлагаемостью и получаемых по экологически чистой безизоцианатной технологии [3].

Известные способы получения ЦПК на основе циклопентена [4] и 1,2-циклопентандиола [5, 6] имеют существенные недостатки: токсичность используемых реагентов, низкий выход ЦПК и образование значительного количества побочных продуктов. Поэтому возможность получения ЦПК карбоксилированием 1,2-эпоксициклопентана (ЭЦП) можно рассматривать как наиболее перспективный, конкурентоспособный и экологичный (так называемая технология "зеленой хими") метод его синтеза.

Реакция карбоксилирования ЭЦП может протекать в основном по двум направлениям:

Полициклопентенкарбонат

Образование ЦПК или полициклопентенкарбоната во многом определяется природой катализатора.

Рядом автором описано взаимодействие ЭЦП с CO₂ в присутствии четвертичных аммониевых солей (ЧАС) — ТЭАБ, ТМАБ, ТБАБ [7, 8], а также бинарной каталитической системы, состоящей из ТЭАБ и бромида (иодида) щелочного металла [9]. Несмотря на высокий выход ЦПК, достигающий 92%, катализатор теряет свою активность вследствие частичного разложения в условиях реакции.

Для карбоксилирования ЭЦП предложен ряд органометалличестких катализаторов на основе цинка [4, 6, 10], применение которых приводит к

образованию полициклопентенкарбоната с выходом 65—99%. При 25—70°С и давлении CO_2 0.1—5.0 МПа за 12—24 ч конверсия ЭЦП достигает не более 48%. Конверсия окисида циклопентена до 56% получена в этих же условиях за 3—6 ч при использовании бинарных саленовых катализаторов (salen)CoCl/PPNN $_3$ и (salen)CrCl/TБАХ, однако при этом образуется ЦПК с выходом 68—83% [10].

Использование порфириновых комплексов Mg, Co, Ni, Cu, Zn и Al с со-катализатором (ЧАС) [11] или бифункционального катализатора 5,10,15,20-(порфирин)AlCl/N-метилимидазол [12, 13] позволяет получать ЦПК с выходом 54–90%. Реакция протекает в течение 60 ч при температуре 90–120°С и давлении 1–4.8 МПа в среде апротонного растворителя – ГМФА, ДМФА или целевого ЦПК.

Таким образом, взаимодействие ЭПЦ с диоксидом углерода в присутствии большинства из известных катализаторов протекает с невысоким выходом ЦПК или конверсией ЭЦП, характеризуется большой продолжительностью синтеза, необходимостью использования растворителя, сложностью синтеза катализатора и/или невозможностью его регенерации.

Цель данной работы — поиск и исследование эффективных каталитических систем для синтеза ЦПК на основе ЭЦП и CO_2 .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реакция карбоксилирования ЭЦП проводилась в титановом реакторе объемом 60 см³, снабженным рубашкой для подачи теплоносителя (глицерина). На крышке реактора имеются манометр, вентили для отбора проб и подачи СО2; в днище реактора - карман для датчика термопары. Исходные 1,2-эпоксициклопентан, растворитель (20 cm³) и компоненты катализатора загружали в продутый диоксидом углерода реактор при комнатной температуре. Постоянное давление СО2 поддерживали с помощью редуктора, установленного на линии подачи газа из баллона. Заданную температуру поддерживали с помощью термостата с точностью ± 1.0 °С. При достижении режимной температуры в реакторе включалась механическая качалка, обеспечивая интенсивность перемешивания не менее 140 об./мин. При проведении опыта в герметичные ампулы периодически отбирали на анализ пробы из реактора. Время включения качалки принималось за начало реакции.

Продукты реакции анализировали на газовом хроматографе "Хроматек-Кристалл 5000.2" с использованием пламенно-ионизационного детектора и капиллярной колонки (длиной 30 м, диаметром 0.32 мм), заполненной сорбентом CR-WAXms. Температуру колонки программировали

от 60 до 160°C со скоростью подъема 10°C в минуту, расход газа-носителя водорода 40 см³/мин. Объем вводимой пробы 0.2 мкл. Внутренний стандарт — ундеканол-1.

Растворители — ДМФА, ДМАА, N-МП, ацетонитрил, формамид марки "ч" перед синтезом подвергались ректификации, содержание основного вещества не менее 99.0% по данным ГЖХ.

ЭЦП получен окислением циклопентена водным раствором пероксида водорода известным методом [14] и выделен ректификацией с массовой долей 99.5%; остаточное содержание воды не более 0.3%, $T_{\text{кип}} = 102$ °C, $n_d^{20} = 1.4336$.

Газообразный диоксид углерода соответствовал ГОСТ 8050-85.

Тетраэтиламмоний бромид — марка "ч", ГОСТ, ТУ 71-91-0. Массовая доля основного вещества 99.0%.

 $CoCl_2 \cdot 6H_2O$ — марка "ч", ГОСТ 4525-77, KI — марка "х. ч.", ГОСТ 4232-74, AlCl₃ · $6H_2O$ — марка "ч", ГОСТ 3759-75, $CrCl_3 \cdot 6H_2O$ — марка "ч", ГОСТ 4473-78, $SnCl_2 \cdot 2H_2O$ — марка "ч", ГОСТ 36-78, NiCl₂ · $6H_2O$ — марка "ч", ГОСТ 4038-79.

Циклопентенкарбонат выделен методом ректификации с массовой долей 99.7%, $T_{\text{кип}} = 170^{\circ}\text{C}/2 \text{ мм рт. ст.}, T_{\text{пл}} = 32.5 - 35^{\circ}\text{P}.$

Структура ЦПК подтверждена методами ЯМР 1 Н-, ЯМР 13 С- и масс-спектроскопии. ЯМР 1 Н- и 13 С-спектры регистрировали на спектрометре "Bruker DRX400". Растворитель: ДМСО- d_{6} , внутренний стандарт — ТМС.

ИК-спектры регистрировали на спектрометре "Фурье RX-1 Perkin Elmer" с длиной волны 700–4000 см $^{-1}$. Образец анализировали в виде суспензии в вазелиновом масле, пластины из КВг. Массспектры регистрировали на ВЭЖХ/МС спектрометре "Shimadzu Prominence LCMS-2020", оснащенным хроматографической колонкой ($T=40^{\circ}\text{P}$, элюент — ацетонитрил) и масс-спектрометром (LCMS-2020, m/z диапазон 0—2000, режимы ионизации: ESI/ACPI)

ИК-спектр, v/см $^{-1}$: 1780 (P=O), 1172, 1112, 1047 (P-O-P). Спектр ЯМР 1 Н (400 МГц, δ , м.д.): 1.45 $^{-1}$.62 м (1H, H 5), 1.62 $^{-1}$.77 м (3H, H 5 , H 4 , H 6), 1.88 $^{-2}$.00 м (2H, H 4 , H 6), 5.12 $^{-5}$.20 м (2H, H 3a , H 6a). Спектр ЯМР 13 С (75 МГц, δ , м.д.): 21.38 (1С, С 5), 32.44 (2С, С 4 , С 6), 81.89 (2С, С 3a , С 6a), 155.07 (1С, P=O). Масс-спектр (ESI), m/z ($I_{\rm отн}$ (%)): 127 [М] $^{+}$. Установлено, что в присутствии каталитической системы СоСІ $_{2}$ · 6H $_{2}$ O $^{-1}$ ЭАБ образуется 4 и 6 сизомер ЦПК.

-	- '		•	
№	Катализатор	Растворитель	Конверсия ЭЦП, %	Селективность по ЦПК, %
1	отс.	ДМФА	5.55	35.11
2	$CoCl_2 \cdot 6H_2O$	ДМФА	86.03	48.07
3		отс.	12.53	2.33
4	ТЭАБ	ДМФА	90.12	91.34
5		отс.	66.46	89.53
6	KI	ДМФА	22.55	8.71
7		OTC	3 14	3 35

Таблица 1. Влияние растворителя и природы катализатора на показатели синтеза циклопентенкарбоната. Температура 150°С, давление углекислого газа 2 МПа, массовая доля ЭЦП в исходной смеси 2.9 моль/дм³, концентрация катализатора 0.0345 моль/моль ЭЦП, продолжительность реакции 180 мин

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Ранее нами была предложена каталитическая система, состоящая из галогенида кобальта или никеля и ДМФА, которая показала высокую эффективность для синтеза циклических карбонатов на основе моноалкилзамещенных оксидов этилена C_5 — C_{16} , моноэпоксидов диенов C_4 , C_8 , эпихлоргидрина и оксида стирола [15]. Поэтому представляло интерес использовать ее в реакции карбоксилирования ЭЦП. Для сравнения ее активности поставлены опыты в присутствии катализаторов ТЭАБ и КІ (табл. 1, строка 2), которые наиболее часто используют в промышленных синтезах низших ЦК [4]. Реакцию карбоксилирования ЭЦП проводили в среде ДМФА и в его отсутствие.

Образование ЦПК протекает с высокой селективностью 89.5% в отсутствие растворителя только при катализе ТЭАБ (табл. 1, строка 5). В этих же условиях КІ и $CoCl_2 \cdot 6H_2O$ практически не катализируют превращение ЭЦП в ЦПК: селективность процесса крайне низкая — 2 и 3% при конверсии эпоксида 3 и 12% соответственно (табл. 1, строки 3, 7). Вероятно, это связано с низкой растворимостью галогенидов металлов в окиси циклопентена.

Оказалось, что ДМФА способен катализировать взаимодействие CO_2 с ЭЦП. За 3 ч конверсия эпоксида составляет 5.5% при селективности по ЦПК 35% (табл. 1, строка 1). Ранее каталитическую активность ДМФА в реакциях карбоксилирования алифатических эпоксидов отметили авторы работы [16].

Показано, что эффективность действия катализаторов при проведении реакции в среде ДМФА возрастает. Так, в присутствии ТЭАБ при температуре 150°С и давлении CO_2 2 МПа за 3 ч конверсия ЭЦП составила 90.1% при селективности по ЦПК 91.3% (табл. 1, строка 4). При катализе хлоридом кобальта степень превращения ЭЦП достигла 87%, но селективность остается низкой,

не более 48% (табл. 1, строка 2). Использование в качестве катализатора синтеза ЦПК KI, даже в среде ДМФА, крайне не эффективно (табл. 1, строка 6).

Таким образом, применение $CoCl_2 \cdot 6H_2O$ в среде ДМФА для синтеза ЦПК из ЭЦП и CO_2 не позволило достичь столь же высоких показателей, как в реакции карбоксилирования ациклических эпоксидов C_5 — C_{16} [15]. Это, по-видимому, связано с более низкой реакционной способностью окисей циклоолефинов в этой реакции по сравнению с алифатическими эпоксидами, что было отмечено в ряде работ [10, 17].

Известно, что бинарные каталитические системы рассматриваются в литературе как наиболее эффективные в реакциях карбоксилирования эпоксидов различного строения [4]. Они включают кислоту Льюиса (галогенид металла) и нуклеофильный компонент (обычно ЧАС). Поэтому нами были опробованы бинарные каталитические системы на основе галогенидов хрома, алюминия, кобальта и никеля в сочетании с четвертичными солями аммония (табл. 2). Органометаллические катализаторы на основе этих металлов предложены рядом авторов [18, 17, 16] для реакции карбоксилирования алициклических C_6-C_{12} -эпоксидов.

Анализ полученных результатов (табл. 2) показал, что для направленного синтеза ЦПК наиболее активны каталитические системы на основе галогенида кобальта (или никеля) и ТЭАБ (или ТБАБ) как в среде растворителя: ДМФА, N-МП, так и в его отсутствии (табл. 2, строки 4-7, 12, 13). Такая бинарная каталитическая система позволила при температуре 150°C и давлении 2 МПа достичь конверсии ЭПП свыше 99% при селективности по ЦПК до 97%. Данные по влиянию природы растворителя на показатели реакции карбоксилирования (табл. 2, строки 6-11), (табл. 1) показывает его существенное воздействие на скорость реакции циклоприсоединения, что неоднократно отмечали и другие авторы [10]. По-видимому, растворитель не только изменяет физико-

Таблица 2. Влияние природы галогенида металла и растворителя на показатели синтеза циклопентенкарбоната в присутствии бинарной каталитической системы с ТЭАБ. Температура 150° С, давление CO_2 2.0 МПа, начальная концентрация ЭЦП 2.9 моль/дм³, концентрация катализатора MeX 0.0041 моль/моль ЭЦП, мольное соотношение катализаторов MeX : ТЭАБ 1:4, продолжительность реакции 240 мин

No	Галогенид металла	Растворитель	Конверсия ЭЦП, %	Селективность, %			
				цпк	ЦПДол	прочие	
1	AlCl ₃ · 6H ₂ O	ДМФА	73.78	22.55	14.10	63.35	
2	$CrCl_3 \cdot 6H_2O$	ДМФА	96.36	87.18	12.80	0.02	
3	$SnCl_2 \cdot 2H_2O$	ДМФА	96.41	83.29	16.45	0.26	
4	$NiCl_2 \cdot 6H_2O$	ДМФА	97.16	96.88	2.77	0.35	
5	$NiBr_2 \cdot 3H_2O$	ДМФА	98.80	96.28	2.43	1.29	
6	$CoCl_2 \cdot 6H_2O$	ДМФА	99.71	97.15	2.81	0.04	
7		Ν-МП	99.41	96.01	2.17	1.82	
8		ДМАА	87.54	96.26	0.72	1.57	
9		Формамид	69.00	94.47	1.27	4.26	
10		Ацетонитрил	31.49	96.80	2.47	0.73	
11		ЦПК	99.63	97.84	2.11	0.05	
12		отс.1)	98.30	98.11	0.81	1.08	
13		ДМФА ²⁾	99.12	96.84	3.03	0.13	

¹⁾ Начальная концентрация ЭЦП 8.93 моль/дм³; ²⁾ четвертичная аммониевая соль ТБАБ.

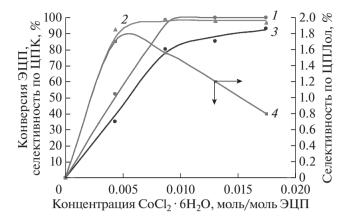
химические свойства реакционной среды, но и является частью каталитической системы.

Как и ожидалось, при использовании кристаллогидратов солей металлов побочной реакцией, при карбоксилировании, является гидролиз ЭЦП с образованием 1,2-циклопентадиола (ЦПДол, табл. 2), который затрудняет выделение ЦПК из реакционной массы. Кроме этого, в продуктах

Рис. 1. Влияние начальной концентрации ЭЦП на ее конверсию и селективность по ЦПК. Температура 150°С; давление CO_2 2.0 МПа; мольное соотношение $CoCl_2 \cdot 6H_2O$: ТЭАБ = 1:1; концентрация $CoCl_2 \cdot 6H_2O$ 0.0345 моль/моль ЭЦП; растворитель ДМФА, время реакции 240 мин. I — Селективность по ЦПК, %; 2 — конверсия ЭЦП, %

синтеза ЦПК отмечено наличие циклопентанона, образующегося при изомеризации ЭЦП в присутствии кислот Льюиса [19], и галогенгидринов, образование которых мы также наблюдали при карбоксилировании оксида дивинила [15]. Полициклопентенкарбонат в реакционной смеси не обнаружен.

При исследовании влияния начальной концентрации ЭПП на показатели синтеза ППК в присутствии каталитической системы из CoCl₂ · 6H₂O и ТЭАБ в среде ДМФА (рис. 1) установлено, что с увеличением содержания ЭЦП в исходной смеси до 2 моль/дм³ происходит быстрое возрастание конверсии эпоксида и селективности по ЦПК, за 240 мин они достигают 93.2 и 97.1%, соответственно. Дальнейшее повышение начальной концентрации ЭЦП приводит лишь к медленному росту конверсии ЭЦП, и при значении $C_0(ЭЦП)$, равном 8.93 моль/дм³ (синтез без растворителя), конверсия эпоксида составила 98.3% при селективности по ЦПК 98.1%. По-видимому, образующийся в ходе реакции ЦПК, способствует активации взаимодействия ЭЦП с СО2. На это указывают также высокие показатели синтеза циклокарбоната в среде целевого ЦПК и в отсутствии растворителя (табл. 2, строки 11, 12). Дальнейшее исследование осуществляли при проведении реакции карбоксилирования ЭЦП в отсутствии растворителя.


Исследовано влияние концентрации компонентов каталитической системы на показатели

синтеза ЦПК (рис. 2), при постоянном начальном мольном соотношении $CoCl_2 \cdot 6H_2O : TЭАБ = 1 : 1$. Установлено, что с увеличением концентрации каталитической системы CoCl₂ · 6H₂O-ТЭАБ от 0.0044 до 0.0087 моль/моль ЭШП, при мольном соотношении компонентов 1/1, конверсия ЭЦП и селективность по ЦПК возрастают, достигая за 240 мин максимальной величины 98.5-99.2%. При дальнейшем повышении содержания катализатора в реакционной смеси до 0.0348 моль/моль ЭЦП эти показатели процесса практически не изменяются (кривые 1, 2), однако наблюдается снижение выхода циклопентандиола (кривая 4) и возрастает доля продуктов изомеризации эпоксида и др. Необходимо отметить, что продолжительность реакции (240 или 120 мин) оказывает влияние только на конверсию эпоксила (кривые 1 и 3), селективность по ЦПК в течение всей реакции не изменяется (кривая 2, линия и точки).

Полагая, что исходные компоненты системы первоначально образуют каталитический комплекс(ы), активирующий реакцию карбоксилирования было исследовано влияние мольного соотношения $CoCl_2 \cdot 6H_2O$ и ТЭАБ (табл. 3). При этом варьировали как избыток, так и недостаток компонентов каталитической системы друг к другу.

При изменении содержание хлорида кобальта в реакционной смеси от 0.0006 до 0.0088 моль/моль ЭЦП (табл. 3, строки 1-5) и постоянной концентрации ТЭАБ 0.0044 моль/моль ЭЦП, видно, что конверсия ЭЦП не превышает 84% во всем интервале концентраций CoCl₂ · 6H₂O за время реакции 120 мин при селективности по ЦПК около 98%. Конверсии ЭЦП не ниже 97% удается достичь за 4 ч при мольном соотношении CoCl₂ · · 6H₂O: ТЭАБ равном (0.25-0.5): 1 (табл. 3, строки 2, 3) или за 3 ч при их соотношении 1:1 (табл. 3. строка 4). Образование ЦПК при этом протекает с селективностью 97.5-98%. Однако, уже при концентрации хлорида кобальта 0.0088 моль/моль ЭЦП (табл. 3, строка 5) наблюдается снижение селективности по ЦПК до 96% при увеличении времени реакции. Выход ЦПДол на прореагировавший ЭЦП с ростом концентрации CoCl₂ · 6H₂O несколько увеличивается, составляя $0.8 \pm 0.2\%$. Это происходит, по-видимому, за счет внесения с катализатором большего количества кристаллизационной воды. В тоже время выход по другим побочным продуктам, в основном циклопентанону, имеет минимум при эквимолярном соотношении хлорида кобальта и ТЭАБ (табл. 3, строка 4). Следует отметить, что селективность по ЦПДол и "Прочим" мало изменяется при увеличении продолжительности реакции от 1 до 3 ч.

Умеренное содержание ТЭАБ в реакционной смеси (0.0022 моль/моль ЭЦП) в 2 раза большее по отношению к гексагидрату хлорида кобальта (табл. 3, строка 7) приводит к значительному сни-

Рис. 2. Влияние концентрации компонентов каталитической системы на конверсию ЭЦП; селективность по ЦПК и ЦПДол. Температура 150°С; давление CO_2 2.0 МПа; начальная концентрация ЭЦП 8.93 моль/дм³, мольное соотношение $CoCl_2 \cdot 6H_2O$: : ТЭАБ = 1: 1, без растворителя. Обозначения: конверсия ЭЦП, %: I — за 240 мин; J — за 120 мин; селективность, %: J — по ЦПК — линия — за 240 мин, точки — за 120 мин, J — по ЦПДол за 240 мин.

жению скорости карбоксилирования, хотя селективность по ЦПК остается достаточно высокой — 96%. При возрастании количества ТЭАБ до 0.0044 моль/моль ЭЦП и выше удается повысить скорость реакции. Это позволило достичь конверсии ЭЦП свыше 99% за 3 ч реакции при селективности по ЦПК около 99% (табл. 3, строка 6). Следует отметить, что мольный избыток $CoCl_2 \cdot 6H_2O$ к ТЭАБ приводит к увеличению доли продуктов изомеризации ЭЦП в реакционной смеси (табл. 3, строки 5, 7).

Кроме этого, данные табл. 2, 3 указывают на то, что для достижения высоких показателей в синтезе ЦПК важно выдержать не только определенное молярное соотношение компонентов бинарной системы, но и их суммарное содержание относительно начальной концентрации ЭЦП.

Исследовано влияние давления диоксида углерода и температура реакции в значительной степени влияют только на конверсию ЭЦП (табл. 4).

Оказалось, что почти полного исчерпывания эпоксида удается достичь за 4 ч при давлении CO_2 от 3.5 МПа и выше. При этом селективность образования ЦПК составляет не менее 98% (табл. 4, строки 3, 4). Выход ЦПДол с ростом давления практически не изменяется, составляя 0.4-0.5%, а образование "Прочих" продуктов уменьшается до $1\pm0.2\%$ при давлении 4.5 МПа. При температурах 110, 130° C (табл. 4, строки 5, 6) реакция протекает очень медленно, конверсия ЭЦП за 240 мин при 130° C не превышает 20%. Снижение скорости процесса при 160° C (строка 7) объясняется, по-видимому, частичным термическим разложением TЭАБ [20]. В реакционной смеси происхо-

Таблица 3. Влияние мольного соотношения компонентов каталитической системы $CoCl_2 \cdot 6H_2O-T9AБ$ на показатели синтеза ЦПК. Температура 150°C; давление CO_2 2.0 МПа; начальная концентрация ЭЦП 8.93 моль/дм³; без растворителя

No	Мольное соотношение $CoCl_2 \cdot 6H_2O$: ТЭАБ	Время, мин	Конверсия	Селективность, %				
1.45		время, мин	ЭЦП, %	ЦПК	ЦПДол	прочие*		
Концентрация ТЭАБ 0.0044 моль/моль ЭЦП								
1	0.125:1	120	61.1	98.6	1.1	0.3		
		180	74.8	98.0	1.2	0.8		
		240	83.1	97.9	1.1	1.0		
2	0.25:1	120	74.3	98.1	0.4	1.5		
		180	90.9	97.8	0.4	1.8		
		240	97.0	97.8	0.4	1.8		
3	0.5:1	120	84.1	98.0	0.7	1.3		
		180	96.0	97.5	0.7	1.8		
		240	98.3	97.5	0.7	1.8		
4	1:1	120	83.0	98.3	0.8	0.9		
		180	97.3	98.5	0.7	0.8		
		240	98.1	98.6	0.7	0.7		
5	2:1	120	80.5	97.3	1.0	1.7		
		180	93.1	96.2	1.0	2.8		
		240	98.0	96.5	1.0	2.5		
	' 1	Концентрация С	oCl ₂ · 6H ₂ O 0.00	і 44 моль/моль ЭЦ	ļΠ			
6	1:2	120	97.9	98.7	0.7	0.6		
		180	99.3	98.8	0.7	0.5		
		240	99.6	99.1	0.7	0.2		
7	1:0.5	120	38.6	96.2	1.5	2.3		
		180	52.0	96.3	1.5	2.2		
		240	65.3	96.2	1.4	2.4		

^{*}Циклопентанон и 2-хлорциклопентанол-1.

дит возрастание количества ЦПДол и образование других высококипящих соединений (табл. 4, строка 7).

Таким образом, в результате проведенных исследований синтеза ЦПК карбоксилированием ЭЦП выбрана каталитическая система из доступных компонентов: кристаллогидрат хлорида (бромида) кобальта или никеля и четвертичной аммониевой соли — ТЭАБ. ТБАБ. Синтез ЦПК рекомендуется проводить под давлением углекислого газа 3.5–4.5 МПа и температуре 140–150°C, без растворителя или в среде растворителя. В качестве растворителя можно использовать ЦПК, ДМФА или N-МП, при массовой доле ЭЦП в исходной смеси не ниже 25%. При загрузке компонентов реакционной смеси концентрация CoCl₂ составляет от 0.0043 до 0.0357 моль/моль ЭЦП, при мольном соотношении CoCl₂ · 6H₂O : ТЭАБ от 1:4 до 1:1. Эти условия позволяют в течение 2— 4 ч получить ЦПК с селективностью от 97 до 99% при практически полной конверсии эпоксила.

В вышеприведенных параметрах синтеза проведена серия укрупненных наработок ЦПК в присутствии каталитической системы $CoCl_2 \cdot 6H_2O - TЭАБ$ в среде ДМФА и без растворителя. При использовании реактора объемом 1 дм³ конверсия ЭЦП за 240 мин составила 99.1—99.6%, селективность по ЦПК — 97.5—99%. ЦПК выделен из реакционной массы ректификацией под вакуумом с последующей отмывкой водой от примесей при 80° С. ЦПК-сырец сушили под вакуумом при 20° С и 20 мм рт. ст. Содержание основного вещества ЦПК составляет не ниже 99.5%.

Кубовый остаток, полученный после ректификации продуктов реакции, представляющий собой раствор катализатора в ЦПК и содержащий

Таблица 4. Влияние давления CO_2 и температуры на реакцию карбоксилирования ЭЦП. Начальная концентрация ЭЦП 8.93 моль/дм³; концентрация $CoCl_2$ 0.0010 моль/моль ЭЦП, мольное соотношение $CoCl_2 \cdot 6H_2O : TЭАБ 1 : 4$

№	Температура, °С	Давление СО ₂ , МПа	Время, мин	Конверсия ЭЦП, %	Селективность, %		
					ЦПК	ЦПДол	прочие
1	150	1.0	120	65.9	97.4	0.5	2.1
			180	81.5	97.1	0.5	2.4
			240	91.1	97.1	0.5	2.4
2	150	2.0	120	74.3	98.1	0.4	1.5
			180	90.9	97.8	0.4	1.8
			240	97.0	97.8	0.4	1.8
3	150	3.5	120	91.2	98.5	0.4	1.1
			180	98.8	98.7	0.4	0.9
			240	99.9	98.0	0.4	1.6
4	150	4.5	120	88.2	98.4	0.4	1.2
			180	98.1	98.6	0.4	1.0
			240	99.5	98.4	0.4	1.2
5	110	2.0	240	2.4	90.9	2.5	6.6
6	130	2.0	240	15.7	96.4	2.3	1.3
7	160	2.0	120	52.5	95.7	2.0	2.3*
			180	77.6	95.5	1.9	2.6*
			240	89.4	95.7	1.8	2.5*

^{*}В основном высококипящие соединения.

4.39% кобальта, возвращается в рецикл. Показана возможность его многократно использования в качестве катализатора реакции на протяжении 4 циклов работы без снижения показателей синтеза ЦПК.

СПИСОК ЛИТЕРАТУРЫ

- Sakakura. T., Kohno. K. // Chem. Commun. 2009.
 № 11. P. 1312.
- 2. Aresta M., Dibenedetto A., Quaranta E. // Springer-Verlag Berlin Heidelberg. 2016. P. 409.
- 3. *Михеев В.В.* Неизцианатные полиуретаны, Монография. Казань: КНИТУ, 2011. 292 с.
- 4. *Carmen M.*, *Giulia F.*, *Arjan W.*, *Kleij J.* // ACS Catal. 2015. № 5(2). P. 1353.
- 5. Taisuke I., Takehiko I., Itaru N., Masashi O. // Chem. Pharm.Bull. 2002. № 50(1). P. 83.
- 6. Bartolo G., Raffaella M., Giuseppe S., Lucia V., Mirco P., Angela D. // ChemSusChem. 2011. V. 4. P. 1778.
- 7. *Cooper J.F., Lichtenwalter M.* // Patent US № 2773070. 1956.
- Crosby G.W., Millikan A.F. // Patent US № 2994705.

- Okamoto H., Someya K. // Patent US № 7199253B2. 2007.
- 10. *Darensbourg D.J.*, *Chung W.P.*, *Wilson S.J.* // ACS Catal. 2013. № 3(12). P. 3050.
- 11. Bhalchandra M., Bhanage, ?Masahiko A. // Springer-Verlag Berlin Heidelberg. 2014. P. 245.
- 12. Cannarsa M.J., Hsiang-Ning, Sun Haven S., Kesling Jr. // Patent Evro № 0321207. 1989.
- 13. *William J.*, *Kruper J.* // Patent US № 4663467. 1987.
- Мельник Л.В., Мешечкина А.Е., Рыбина Г.В., Среднев С.С., Москвичев Ю.А., Козлова О.С. // Нефтехимия. 2012. Т. 52. № 5. С. 348.
- 15. *Рыбина Г.В., Бобылева Л.И., Среднев С.С.* // Журн. прикл. химии. 2003. Т. 76. № 5. С. 870.
- 16. *Rui L., Xin T., Xiaofang L., Changwen H.* // Pure Appl. Chem. 2012. T. 84. № 3. P. 621.
- 17. Darensbourg D.J., Matthew W. // Coordination Chem. Reviews. 1996. № 153. P. 155.
- 18. *Richard G., Austin R.P., Michaelson R.M.* // Patent US № 4824969. 1989.
- Рыбина Г.В., Мельник Л.В., Среднев С.С., Москвичев Ю.А., Медведев В.Г., Козлова О.С., Мешечкина А.Е. // Патент РФ № 2448945. 2012.
- Демлов Э., Демлов З. Межфазный катализ. М.: Мир, 1987. 482 с.