УЛК 544.478.02:547.313.4:665.652.4

ИНТЕНСИФИКАЦИЯ ИОННОГО ОБМЕНА ЦЕОЛИТА ТИПА FAU ПРИ СИНТЕЗЕ АКТИВНОГО И СЕЛЕКТИВНОГО КАТАЛИЗАТОРА АЛКИЛИРОВАНИЯ ИЗОБУТАНА БУТИЛЕНАМИ

© 2018 г. И. М. Герзелиев^{1, *}, В. А. Остроумова¹, М. Н. Басханова¹

¹Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, Россия *E-mail: gerzeliev@ips.ac.ru
Поступила в редакцию 01.03.2018 г.

Изучено влияние ультразвукового воздействия на эффективность ионного обмена цеолита NaX (мольное соотношение Si/Al = 1.34), гранулированного без связующих, методами последовательных обработок растворами нитратов кальция, лантана и аммония при температуре $80^{\circ}C$ с использованием промежуточных прокалок после каждой стадии ионного обмена по сравнению с ионным обменом цеолита, проведенным в аналогичных условиях без применения ультразвука. Установлено, что ультразвуковая обработка (сила тока 2.6~A) при $80^{\circ}C$ в растворе позволяет достичь глубокого замещения катионов натрия в решетке цеолита (менее 0.3~amac. % остаточного оксида натрия). Сравнение физико-химических и каталитических свойств, полученных образцов катализаторов показывает существенное преимущество метода ионного обмена с ультразвуковой обработкой, ввиду практически полного замещения натрия многозарядными катионами.

Ключевые слова: ионный обмен, цеолит NaX, ультразвуковая обработка, алкилирование, изобутан, бутилены, пористая структура, кислотность, рентгенофазовый анализ.

DOI: 10.1134/S0028242118040068

В основе процесса получения бензиновых фракций, обладающих высокой стабильностью и детонационной стойкостью, лежит реакция алкилирования изобутана бутиленами. Одна из главных проблем такого процесса — использование в качестве катализаторов серной и фтористоводородной кислот, оказывающих негативное воздействие на окружающую среду и обладающих рядом эксплуатационных недостатков; поэтому переход на экологически безопасные цеолитсодержащие катализаторы является перспективным направлением для решения описанной проблемы [1].

Цеолитсодержащие катализаторы, проявляющие высокие каталитические показатели в реакции алкилирования изобутана бутиленами, должны содержать определенное количество встроенных в структуру катионов кальция и редкоземельных элементов при степени замещения катионов натрия не менее 98%. Для достижения такой степени замещения катионов натрия требуется применение высокоэффективных способов проведения ионного обмена в цеолитах [2, 3], среди которых можно отметить волновые воздействия на цеолит в растворе.

В настоящей работе ультразвуковая обработка (УЗО) предложена в качестве способа интенсификации ионного обмена в гранулированном без связующих цеолите типа NaX.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методики проведения ионного обмена

В табл. 1 представлены условия проведения ионного обмена цеолита NaX перемешиванием над гранулами и при ультразвуковом воздействии в растворе.

Для каждого ионного обмена использовали одинаковую по массе навеску цеолита NaX производства завода молекулярных сит "Реалсорб" (мольное соотношение Si/Al = 1.34) в расчете на абсолютно сухое вещество. Для образцов № 1 и № 2 после каждого ионного обмена температура сушки образцов цеолита составила 120° С, температура прокаливания — 1.5 ч при 300° С и 2.5 ч при 450° С, время обработки растворами солей — 2 ч. Для образца № 2 сила тока при ультразвуковой обработке составила 2.6 А.

Физико-химические методы исследования образцов катализаторов

Ультразвуковую обработку цеолита проводили с использованием ультразвукового диспергатора УЗД1-1.0/22 ООО "Ультразвуковые ванны и диспергаторы" (выходная мощность 1.0 ± 0.1 кВт, рабочая частота 22 ± 1.65 к Γ ц) при силе тока 2.6 А.

							. ,		
	F	работки				Массовое			
	I	II	III	IV	T_{ofp} , °C	τ _{обр} , ч	отношение	Условия обработки	
Образец					î		раствор/		
•	Конце	растворо	в, г/л			гранулы			
	Ca(NO ₃) ₂	$La(NO_3)_3$		NH ₄ NO ₃				Перемешивание над гранулами	
№ 1	37.5	135	135	26.5	80	2	8:1	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
№ 2	31.3	133	133	20.3				Ультразвуковая обработка	

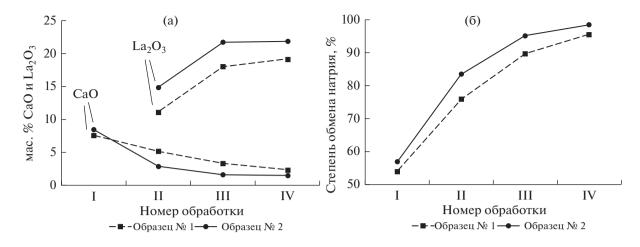
Таблица 1. Условия обработки цеолита NaX растворами нитратов кальция, лантана и аммония

Условные обозначения. $T_{\text{обр.}}$ — температура обработки, $\tau_{\text{обр}}$ — время обработки.

Анализ химического состава проводили с использованием волнового рентгенофлуоресцентного спектрометра ARL PERFORM'X 2500 (Thermo Fisher Scientific) с рентгеновской трубкой мощностью 2500 Вт. Перед анализом образцы массой 200 мг прессовали в таблетку с борной кислотой.

Фазовый состав определяли на рентгеновской установке Rigaku Rotaflex RU-200 с вращающимся медным анодом (Си $K\alpha$ -излучение, Ni-фильтр) в режиме 50 кВ—160 мА. Рентгеновскую съемку проводили с помощью горизонтального широко-углового гониометра по схеме Брэгга—Брентано в режиме θ —2 θ сканирования. В качестве детектора использовали сцинтилляционный счетчик.

Характеристики пористой структуры определяли на анализаторе Gemini VII 2390 (V1.02 t) фирмы Місготегітіся. Перед анализом образцы вакуумировали при 300°С в течение 12 ч до давления 3×10^{-3} атм. Изотерму адсорбции—десорбции азота снимали при температуре 77 К. Характеристики пористой структуры рассчитывали с использованием стандартного программного обеспечения. Удельная поверхность была рассчитана по модели ВЭТ (Брунауэра—Эммета—Тэллера) при относительном парциальном давлении $P/P_0 = 0.2$. Общий объем пор и распределение пор по радиусам рассчитаны по модели ВЈН (Баррета—Джойнера—Халенда) при относительном парциальном давлении $P/P_0 = 0.95$.


Кислотность определяли приборе ChemiSorb 2750 фирмы Micromeritics. Для этого образец в виде фракций 0.25-0.5 мм массой ~ 0.1 г помещали в кварцевый реактор и обрабатывали в токе гелия при 500°C в течение 1 ч. Насыщение проводили в токе осущенного аммиака, разбавленного азотом, при температуре 60°C в течение 15 мин. Удаление физически адсорбированного аммиака проводили при 100°C в токе сухого гелия в течение 1 ч со скоростью продувки гелия 30 см³/мин, далее образец охлаждали до 60°С. Для получения кривой термопрограммируемой десорбции аммиака (ТПД) образец нагревали в токе гелия (30 $cm^3/мин$) до $800^{\circ}C$ со скоростью 8 град/мин. Выделяющийся аммиак регистрировали детектором. Обработку данных проводили программой ChemiSoft TPx и Origin 60.

Исследования каталитических свойств приготовленных образцов катализаторов осуществляли на лабораторной установке со стационарным слоем катализатора с загрузкой до 10 см³ в режиме "АСР" [4]. В качестве сырья использовали промышленную бутан-бутиленовую фракцию каталитического крекинга после очистки от каталитических ядов (серы, влаги, диеновых) стандарт-Условия ными методами. испытаний: температура — 80° С, давление — 1.23 МПа, отношение изобутан: олефины в сырье — 10:1, объемная скорость подачи по олефинам -0.6 y^{-1} , длительность подачи сырья — 4 ч. Анализ сырья, газообразных и жидких продуктов реакции осуществлялся методом газовой хроматографии с пламенно-ионизационным детектором на капиллярных колонках с Al_2O_3 и SB-1 соответственно.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

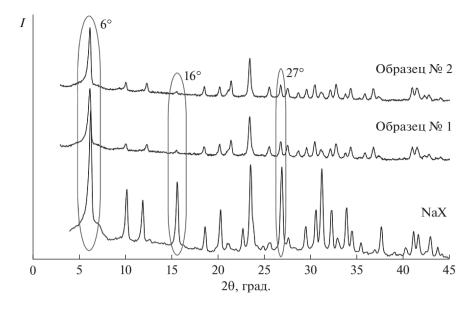
Известно [5-9], что высокой каталитической активности цеолитов в реакции алкилирования изобутана бутиленами можно достичь при максимально возможном замещении катионов натрия на катионы редкоземельных элементов и сохранении исходной кристаллической структуры цеолита. Для эффективного замешения в цеолитах однозарядных на многозарядные катионы необходимо создание специальных условий, в которых возможно разрушение объемных гидратных оболочек, окружающих многозарядные катионы в растворе и препятствующих катионному обмену. Предполагалось, что проведение ионного обмена в условиях ультразвука позволит усилить массоперенос катионов в системе "солевой раствор-цеолит" и тем самым осуществить глубокое замещение катионов.

На рис. 1а представлены зависимости содержания оксидов лантана и кальция от номера обработки ионных обменов для образцов № 1 и № 2. Из представленных рисунков следует, что воздействие ультразвука на цеолит в растворе позволяет более эффективно заместить катионы натрия на

Рис. 1. Зависимость содержания оксидов лантана и кальция и степень обмена натрия в цеолите NaX гранулированного без связующего от последовательных ионных обменов: а — содержание оксидов кальция и лантана; б — степень обмена натрия.

катионы кальция и затем на катионы лантана. Так, для образца № 1 содержание кальция и лантана на последней стадии ионного обмена составило 2.36 и 19.12 мас. %, в то время как для образца № 2 — 1.51 и 21.81 мас. % соответственно. Более глубокое замещение катионов натрия в цеолите при ультразвуковой обработке (образец № 2) происходит на каждой стадии ионного обмена (рис. 16). Остаточное содержание оксида натрия в образце № 1 составило 0.68 мас. %, в образце № 2-0.22 мас. %.

На рис. 2 представлены дифрактограммы исходного цеолита NaX и катионзамещенных образцов № 1 и № 2. Анализ дифрактограмм показывает, что в процессе ионных обменов происходит частичное разрушение кристаллической структуры цеолита. Так, интенсивность рефлексов при 6° , 16° и 27° , наиболее характерных для цеолита NaX, снижается для обоих образцов. Дифрактограммы модифицированных образцов практически идентичны как по наличию характерных пиков, так и по их интенсивности, что указывает на то, что искажение исходной кристаллической структуры цеолита происходит для обоих образцов примерно в равной степени. Сравнение физико-химических характеристик, полученных методом низкотемпературной ад-


сорбции-десорбции азота (табл. 2) исходного цеолита NaX и катионзамещенных образцов № 1 и № 2, также свидетельствует об изменении исходной кристаллической структуры цеолита. При этом для образца № 2 такие изменения происходят в меньшей степени, чем для образца № 1. Так, для образца № 2 удельная площадь поверхности составляет 426 м 2 /г, а для образца № 1 — 410 м 2 /г по сравнению с 479 м²/г для исходного цеолита NaX. Также для образца № 2 несколько выше удельная площадь поверхности микропор $(369 \text{ м}^2/\Gamma)$ и доля микро/мезопор (3.0) (для образца № 1 эти характеристики составляют 359 м²/г и 2.8 соответственно).

Проведенный анализ ТПД-NH $_3$ показал, что суммарная кислотность модифицированных образцов близка, однако доля сильных кислотных центров для образца № 2 больше в три раза, чем для образца № 1.

Сравнительное испытание образцов № 1 и № 2 в реакции алкилирования изобутана олефинами было проведено на лабораторной установке. Критериями для сравнительной оценки катализа служат достижение следующих показателей: активность: конверсия бутиленов — максимум 100% и выход алкилата от бутиленов в сырье — теоретический максимум 204%; селективность — содержа-

Таблица 2. Физико-химические характеристики цеолита NaX и его катионзамещенных форм

Образец	$S_{\rm yg}({ m B}{ m \Im}{ m T}),$ ${ m M}^2/\Gamma$	$S_{ ext{mukponop}},$ $ ext{M}^2/\Gamma$	$S_{ ext{внеш}},$ $ ext{м}^2/ ext{г}$	$V_{p(m o 6m)},$ см $^3/\Gamma$	Доля микропор	Доля мезопор	Отношение микропоры /мезопоры
NaX	479	447	32	0.276	0.833	0.167	5.0
№ 1	410	359	51	0.249	0.739	0.261	2.8
№ 2	426	369	57	0.252	0.750	0.250	3.0

Рис. 2. Дифрактограммы цеолита NaX и катионзамещенных образцов № 1 и № 2.

ние в алкилате — триметилпентаны — максимум 100%; диметилгексаны — минимум 0%; C_8 -олефиновые — минимум 0%; суммарное содержание углеводородов, выкипающих выше изооктановой фракции — минимум 0%.

По указанным критериям лучшие каталитические показатели достигнуты для образца № 2 (табл. 3), где в довольно жестких условиях эксперимента (объемная скорость подачи по олефинам — 0.6 ч⁻¹) выход алкилата составил 229 мас. % при конверсии бутиленов 99 мас. % и выходе триметилпентанов 76.9 мас. %. Величина выхода алкилата 229% выше теоретически достижимого (204%). Такой факт в практике алкилирования известен [3] и обусловлен тем, что дополнительный выход алкилата формируется за счет протекания реакции самоалкилирования изобутана.

Из полученных результатов следует, что ультразвуковое воздействие на цеолит в растворе со-

лей способствует эффективному замещению катионов натрия на катионы кальция и лантана (для образца № 2 степень замещения натрия составляет 98.6% по сравнению с 95.8% для образца № 1), тем самым создавая как оптимальную кислотность за счет образования гидроксильных групп в цеолите, так и оптимальное напряжение электростатических полей, достаточное для поляризации связи С—Н и образования карбониевых ионов [10].

Таким образом, УЗО цеолита в растворе солей, проведенная при определенных условиях, способствует достижению как высокой степени декатионирования цеолита, так и высокой каталитической активности в реакции алкилирования изобутана бутиленами.

Работа проведена при финансовой поддержке Министерства образования и науки Российской Федерации (Соглашение № 14.607.21.0170, уни-

Таблица 3. Каталитические и кислотные свойства образцов №1 и № 2

	Показатели		Состав алкилата, мас. %						Кислотные свойства, мкмоль NH ₃ /г				
Обра-				ΣC_8 , в том числе:					Kuchotible ebouciba, mkmohb 14113/1				
зец	X	Y	$\Sigma C_5 - C_7$	ТМП	ДМГ	прочие С ₈	С ₈ - олефины	∑C ₉₊	слабые КЦ	средние КЦ	сильные КЦ	ΣКЦ	
№ 1	83	132	7.9	87.2			4.9	213	177	42	432		
№ 2	99	229	6.5	47.3 76.9	9.2	15.6 87.2 0.5	0.6	6.3	125	177	134	436	

Условные обозначения: X — конверсия бутиленов, мас. %; Y — выход алкилата, мас%; $TM\Pi$ — триметилпентаны; $ДM\Gamma$ — диметилгексаны.

кальный идентификатор прикладных научных исследований RFMEFI60717X0170).

СПИСОК ЛИТЕРАТУРЫ

- 1. Хаджиев С.Н., Герзелиев И.М., Ведерников О.С., Клейменов А.В., Кондрашов В.О., Окнина Н.В., Кузнецов С.Е., Саитов З.А., Басханова М.Н. // Катализ в промышленности. 2016. № 6. С. 40.
- 2. Химия и ультразвук. // Под ред. Мейсона Т. Пер. с англ. М.: Мир, 1993. С. 191.
- Zhuang Y., Ng F.T.T. //Appl. Catal. A: Gen. 2000.
 V. 190. P. 137–147.
- 4. *Герзелиев И.М.*, *Цодиков М.В.*, *Хаджиев С.Н.* // Нефтехимия. 2009. Т. 49. №1. С. 1 [Petrol. Chemistry. 2009. V. 49. № 1. P. 59].
- 5. Несмеянова Т.С., Мирский Я.В., Калико М.А., Чередниченко В.Т. //В сб.: Технология нефти. Катализ

- и адсорбция на цеолитах. Труды ГрозНИИ. 1975. В. 29. С. 77.
- 6. Несмеянова Т.С., Мирский Я.В., Варшавер В.Е., Вотлохин Ю.З. //В сб.: Технология нефти. Катализ и адсорбция на цеолитах. Труды ГрозНИИ. 1975. В. 29. С. 98.
- 7. Хаджиев С.Н., Шабазова Л.Х., Брещенко Е.М., Раскин Б.В. //В сб.: Технология нефти. Катализ и адсорбция на цеолитах. Труды ГрозНИИ. 1975. В. 29. С. 161.
- Ковальская Л.В., Александрова И.Л., Байбурский В.Л. // В сб.: Алкилирование изопарафиновых углеводородов. Труды ГрозНИИ. 1980. С. 103.
- Huang J., Jiang Y., Marthala V.R.R., Ooi T.S., Weitkamp J., Hunger M. //Micropor. Mesopor. Mater. 2007. V. 104. P. 129.
- Рабо Дж. Химия цеолитов и катализ на цеолитах. // М.: Мир, 1980. Т. 2. С. 39.