УДК 665.632:544.47:544.344:547.52

ВЛИЯНИЕ ТЕРМОПАРОВОЙ ОБРАБОТКИ ГАЛЛИЙСОДЕРЖАЩЕГО ЦЕОЛИТА НА ЕГО КИСЛОТНЫЕ И КАТАЛИТИЧЕСКИЕ СВОЙСТВА В ПРОЦЕССЕ АРОМАТИЗАЦИИ ПРОПАНА

© 2018 г. Л. Н. Восмерикова¹, И. Г. Данилова², А. А. Восмериков¹, Я. Е. Барбашин¹, А. В. Восмериков¹

¹Институт химии нефти СО РАН, Томск, Россия
²Институт катализа им. Г. К. Борескова СО РАН, Новосибирск, Россия
E-mail: pika@ipc.tsc.ru
Поступила в редакцию 18.09.2017 г.

Изучено превращение пропана в ароматические углеводороды (УВ) на галлоалюмосиликатном катализаторе, подвергнутом термопаровой обработке. Выявлена зависимость конверсии пропана, селективности образования продуктов его превращения и стабильности работы галлоалюмосиликата от температуры проведения термопаровой обработки. Установлено, что термопаровая обработка цеолита приводит к уменьшению концентрации различных по силе кислотных центров, что связано с частичным деалюминированием решетки цеолита. Установлены особенности протекания процесса коксообразования на поверхности галлоалюмосиликата, подвергнутого термопаровой обработке, в ходе превращения пропана в ароматические углеводороды и определены природа и концентрация образующихся продуктов уплотнения.

Ключевые слова: пропан, ароматические углеводороды, цеолит, кислотность, конверсия, активность, селективность, кокс, углеродные отложения.

DOI: 10.7868/S0028242118020119

Поиск путей квалифицированного использования природных углеводородных газов, в состав которых, наряду с метаном, входят его ближайшие гомологи — этан, пропан и бутан, является важной научной и практической задачей. Для ее решения необходимо создание новых эффективных технологий получения ценных химических продуктов из попутного нефтяного газа. Одним из таких процессов может стать превращение низших алканов в ароматические УВ на цеолитсодержащих катализаторах [1-4]. Для стабилизации структуры и направленного изменения каталитических свойств цеолитов широко применяют методы введения элементов-модификаторов и различных предварительных обработок цеолитных катализаторов, одним из которых является обработка водяным паром. При воздействии водяного пара происходит гидролиз тетраэдрического алюминия и его выход из решетки цеолита [5, 6]. Подвергая термопаровой обработке цеолитные катализаторы, можно влиять на их каталитическую активность и стабильность в ряде реакций. При этом для получения стабильного цеолита главным является соблюдение условий термопаровой обработки – подача балансового количества воды в виде 100%-ого пара в строгом температурном диапазоне.

Цель настоящей работы — исследование влияния условий проведения предварительной термопаровой обработки на кислотные и каталитические свойства галлоалюмосиликата (ГАС) структурного типа цеолита MFI в процессе превращения пропана в ароматические УВ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объекта исследования выступал галлийсодержащий цеолит структурного типа MFI $(SiO_2/Al_2O_3 + Ga_2O_3 = 40;$ содержание Ga_2O_3 в реакционной смеси составляло 1.85 мас.%, а Al_2O_3 —3.01 мас.%), полученный гидротермальной кристаллизацией алюмокремнегеля, в котором часть алюминия замещалась на галлий. Источниками ионов Al^{3+} и Ga^{3+} служили водные растворы соответствующих азотнокислых солей, источником кремния — жидкое стекло состава 9% Na_2O , 29% SiO_2 , 62% O_2 , а структурообразующим компонентом был выбран гексаметилендиамин.

Кристаллизацию реакционной смеси проводили в стальных автоклавах с тефлоновыми вставками емкостью 500 мл в течение 5 сут при температуре 170°C. После окончания кристаллизации твердую фазу отделяли от жидкой фильтрованием, промывали дистиллированной водой до рН промывных вод ≤ 9 , сушили в атмосфере воздуха при 110°C в течение 24 ч и прокаливали для удаления структурообразующей добавки при 550°C в течение 8 ч. Для перевода в активную Н-форму полученный образец обрабатывали 25%-ным водным раствором NH₄Cl при 90°C в течение 2 ч при расходе 10 г раствора на 1 г цеолита. После удаления катионов натрия цеолит в NH₄-форме сушили при 110°C и прокаливали в атмосфере воздуха при 540°C в течение 6 ч для получения Н-формы цеолита.

Термопаровую обработку галлоалюмосиликата проводили водяным паром (объемная скорость подачи воды 2 ч^{-1}) при варьировании температуры обработки от 360 до 480° С в течение 3 ч при каждой температуре. Объем загружаемого в реактор катализатора составлял 3 см^3 , а размер его частиц -0.5-1.0 мм.

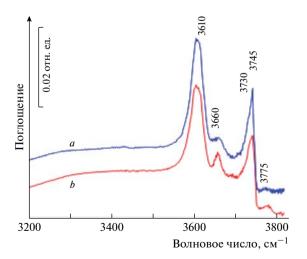
Кислотные свойства образцов изучали методом ИК-спектроскопии (ИКС) с использованием низкотемпературной адсорбции молекулы-зонда СО [7, 8]. ИК-спектры регистрировали на ИК-Фурье спектрометре FTIR-8300 фирмы Shimadzu в области 700-6000 см⁻¹ с разрешением 4 см⁻¹ и числом сканов, равным 500. Перед регистрацией спектров порошки образцов прессовали в таблетки без связующего $(0.007-0.012 \text{ г/см}^2)$, помещали в кварцевую ячейку и тренировали в вакууме при 400° C до остаточного давления $p < 10^{-3}$ мбар. Адсорбцию СО проводили при температуре жидкого азота при увеличении давления СО от 0.1 до 10 мбар. Концентрацию льюисовских кислотных центров (ЛКЦ) оценивали из интегральной интенсивности п.п. адсорбированного СО в области 2185-2235 см-1 (коэффициенты интегрального поглощения A_0 , см/мкмоль: 1.23 (2231—2220 см⁻¹), 1.1 (2216-2208 cм⁻¹) [8]. Концентрацию бренстедовских кислотных центров (БКЦ) оценивали из интегральной интенсивности п.п. ОН-групп, возмущенных водородной связью с адсорбированным СО в области 3190-3500 см⁻¹ [7, 8], используя коэффициент экстинкции $A_0 = 54$ см/мкмоль для п.п. $3300 \text{ cm}^{-1} [9].$

Изучение природы коксовых отложений, образующихся на поверхности исследуемого катализатора в процессе превращения пропана, проводили на дериватографе Q-1500 с обработкой результатов измерений с использованием программного продукта "Tanaliz", обеспечивающего контроль и измерение температуры (T) и скорости (V) нагрева образца, изменение массы образца $(T\Gamma)$, тепловых

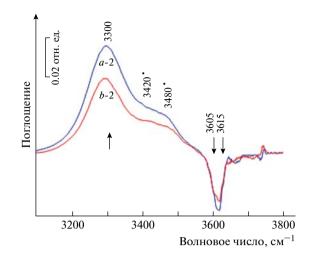
эффектов (ДТА). В опытах использовали скорость нагревания 10 град/мин; масса исследуемого образца составляла 400 мг, измерения проводили в атмосфере воздуха. В качестве образца сравнения использовали оксид алюминия (α -Al₂O₃).

Для изучения процесса превращения пропана в ароматические УВ (АрУ) и исследования свойств катализаторов использовали стендовую установку проточного типа. Каталитическую конверсию пропана (степень чистоты 99,95%) проводили при атмосферном давлении и объемной скорости подачи сырья 500 ч⁻¹, начальная температура процесса – 550°C, после падения активности катализатора до определенного уровня температуру в реакторе поднимали до 600°C. Образующиеся в ходе реакции газообразные и жидкие продукты превращения пропана вначале поступали в блок разделения, состоящий из прямоточного холодильника и сепаратора высокого давления. После разделения продуктов в сепараторе конденсат отбирали в специальный приемник с использованием запорного вентиля, а газообразные продукты проходили через газовый счетчик и сбрасывались в вытяжную вентиляцию или направлялись в систему аналитического контроля для проведения хроматографического анализа.

Продукты реакции анализировали методом ГЖХ с использованием хроматографа "Хроматэк-Кристалл 5000.2" с детектором по теплопроводности (катарометр) и пламенно-ионизационным детектором (ПИД). Для определения состава жидкой фазы использовали капиллярную колонку BP-1 PONA ($100~\text{m}\times0.25~\text{mm}\times0.5~\text{mkm}$, 100% полидиметилсилоксан), а для определения состава газовой фазы — капиллярную GS-Gas-Pro ($60~\text{m}\times0.32~\text{mm}$, мезопористый силикагель) и набивную Carbosieve S-II ($4~\text{m}\times2~\text{mm}$, 60/80~mem, угольное молекулярное сито) колонки.


Процесс превращения пропана вели непрерывно в течение определенного времени, анализ образующихся продуктов осуществляли через равные для всех образцов промежутки времени. Для оценки каталитической активности образцов определяли степень превращения пропана, а также рассчитывали выход и селективность образования газообразных и жидких продуктов реакции.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ


По данным ИК-спектроскопии адсорбированных молекул в спектрах образцов исходного галлоалюмосиликата и ГАС после проведения термопаровой обработки при 400 °С в области валентных колебаний ОН-групп наблюдаются полосы поглощения нескольких типов гидроксильных групп (рис. 1). Широкая п.п. 3300—3500 см⁻¹ характеризует водородносвязанные ОН-группы. Интенсивную п.п.

 $3605-3615 \, \text{см}^{-1}$ можно отнести к мостиковым гидроксильным группам Si-O(H)-Al или Si-O(H)-Ga в каналах цеолита [10, 11]. Полосу поглощения $3660 \,\mathrm{cm}^{-1}$ можно отнести к мостиковым Al-O(H)-Al-группам, частично связанным с решеткой цеолита [12]; в данную п.п. могут вносить вклад внерешеточные GaO-OH-группы, поглощение которых обычно наблюдают около 3670-3772 см $^{-1}$ [11]. Полоса поглощения 3745 см⁻¹ относится к терминальным Si-OHгруппам, а п.п. 3775 см^{-1} — к внерешеточным терминальным Al-OH-группам. Плечо при 3730-3735 см $^{-1}$ может характеризовать кислотные Si-OH-группы на внешней поверхности кристаллитов цеолита, расположенные в непосредственной близости от льюисовских кислотных центров, образованных трехкоординированными атомами Al или Si [13]. В результате термопаровой обработки галлоалюмосиликата наблюдается небольшое уменьшение интенсивности п.п. мостиковых Si-O(H)-Al(Si-O(H)-Ga)-групп $(v_{OH} 3605 - 3615 \text{ cm}^{-1})$ и увеличение интенсивности п.п. ОН-групп, связанных с внерешеточными атомами Al или Ga (v_{OH} 3665 и 3775 см $^{-1}$). Можно предположить, что при термопаровой обработке как Al, так и Ga частично выходят из решетки цеолита.

Адсорбция СО сопровождается появлением в спектрах интенсивной п.п. с $v_{OH}^{OH..CO} \sim 3300~cm^{-1}$, вызванной возмущением п.п. $3605-3615~cm^{-1}$ (мостиковые Si–O(H)—Al группы) в связи с образованием водородной связи с СО (рис. 2). Сдвиг полосы поглощения Si–O(H)—Al-групп после адсорбции СО ($\Delta v_{OH}^{OH..CO}$) составляет $305-295~cm^{-1}$, что близко к наблюдаемой силе мостиковых групп типичных H–ZSM-5 ($\Delta v_{OH}^{OH..CO} = 290-320~cm^{-1}$ [12]) и несколько выше, чем наблюдали для Ga–ZSM-5 ($\Delta v_{OH}^{OH..CO} = 280~cm^{-1}$ [10]). Полученное значение сдвига полосы поглощения OH-групп

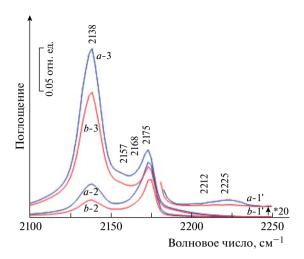

Рис. 1. ИК-спектры образцов в области колебаний поверхностных гидроксильных групп: a — исходный ГАС, b — ГАС после проведения ТПО при 400 °C.

Рис. 2. Разностные ИК-спектры после адсорбции СО (P_{CO} 1 мбар) при температуре жидкого азота на образцы: a — исходный ГАС, b — ГАС после проведения ТПО при 400 °C.

при адсорбции СО характерно для сильных БКЦ. Кроме того, после адсорбции СО наблюдается появление полос поглощения $v_{OH}^{OH..CO} \sim 3420$ и $3480~\text{cm}^{-1}$, вызванных, предположительно, возмущением п. п. $3665~\text{u}~3730~\text{cm}^{-1}$, отнесенных к частично связанным с решеткой Al—O(H)—Alгруппам, и кислотным Si—OH-группам, расположенным в непосредственной близости от ЛКЦ (Si—OH...Al³+). Согласно величине сдвига при адсорбции СО ($\Delta v_{OH}^{OH..CO} = 245-250~\text{cm}^{-1}$), данные OH-группы являются более слабыми, чем решеточные мостиковые Si—O(H)—Al (Si—O(H)—Ga) группы. Кроме того, при давлении СО, близком к равновесному, наблюдается появление п. п. $v_{OH}^{OH..CO} \sim 3660~\text{cm}^{-1}$, вызванной возмущением слабокислотных терминальных Si—OH-групп с v_{OH} 3745 см $^{-1}$ ($\Delta v_{O-H...CO} \sim 90~\text{cm}^{-1}$).

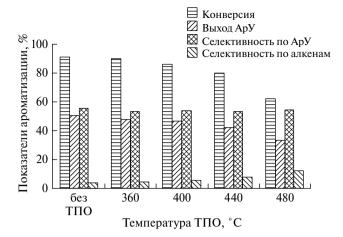
В области поглощения карбонильных групп водородносвязанным комплексам СО с сильными бренстедовскими кислотными центрами, представляющими собой мостиковые Si-O(H)-Al-группы, соответствует п.п. v_{CO} 2175-2174 см $^{-1}$, появляющаяся в спектре уже при низких давлениях адсорбата. При более высоких давлениях СО наблюдается уширение этой полосы, появление асимметричности и сдвиг до v_{CO} 2168 см $^{-1}$, что характерно для образования комплексов СО с внерешеточными Al-O(H)-Al-группами. При давлении СО, близком к равновесному, в спектрах наблюдается появление полосы поглощения v_{CO} 2157см $^{-1}$, соответствующей комплексу СО со слабокислыми силанольными группами с v_{O-H} = 3745 см $^{-1}$. Кроме того, в спектре наблюдается появление п.п. 2138 см $^{-1}$, что характерно для капиллярной конденсации СО в каналах цеолита (рис. 3).

Рис. 3. ИК-спектры в области колебаний карбонильных групп после адсорбции 0,1 (a-1', b-1'), 1 (a-2, b-2) и 5 мбар CO (a-3, b-3) при температуре жидкого азота на образцы: a — исходный ГАС, b — ГАС после проведения ТПО при 400 °C.

Согласно данным исследования в спектрах адсорбированного СО наблюдаются две полосы поглощения, которые соответствуют комплексам СО с льюисовскими кислотными центрами (рис. 3). Сильные центры характеризуются п.п. 2223—2231 см $^{-1}$ (ионы Al^{3+} в дефектном октаэдре, являющиеся типичными дефектами цеолитов [14]); центры средней силы характеризуются п.п. 2216—2206 см $^{-1}$ (изолированные ионы Ga^{3+} или малые кластеры Ga_2O_3 [10]).

Концентрации решеточных БКЦ и различных типов ЛКЦ приведены в табл. 1, из данных которой видно, что в результате термопаровой обработки концентрация сильных БКЦ ($\nu_{OH}=3605-3615~{\rm cm}^{-1}$) снижается от 136 до 87 мкмоль/г, а ЛКЦ почти полностью исчезают.

Таким образом, проведение термопаровой обработки приводит к уменьшению концентрации различных по силе кислотных центров,


небольшому увеличению концентрации терминальных некислых ОН-групп, связанных с внерешеточными атомами Al или/и Ga, что, в свою очередь, оказывает влияние на их каталитические свойства в превращении пропана.

На рис. 4 представлены данные по влиянию температуры ТПО на активность и селективность действия катализатора ГАС в процессе превращения пропана в ароматические углеводороды. Исходный галлоалюмосиликат характеризуется высокой активностью в процессе ароматизации пропана. При температуре реакции 550°C выход ароматических углеводородов на нем составляет 50,7% при конверсии пропана — 91%. Проведение ТПО образца ГАС при 360°C не приводит к существенным изменениям селективности образования продуктов ароматизации, дегидрирования и крекинга, а также степени превращения пропана. На образце ГАС, подвергнутом ТПО при 400°C, образуется меньше ароматических углеводородов и больше продуктов дегидрирования, при этом степень конверсии снижается незначительно. Термопаровая обработка галлоалюмосиликата при более высоких температурах приводит к существенному изменению его активности и селективности. Так, например, на образце ГАС после ТПО при 480°C выход ароматических углеводородов составляет всего 33,5%, что почти в 1,5 раза меньше, чем на исходном ГАС. В работе [15] предположили, что уменьшение активности в реакции ароматизации пропана может быть связано с частичным выходом Ga из решетки цеолита при термообработке цеолита. Следует отметить сохранение достаточно высокой селективности образования ароматических углеводородов на всех исследуемых образцах (более 53%), что свидетельствует о наличии в них после ТПО достаточного количества протонных кислотных центров для проведения реакции ароматизации пропана.

Жидкими продуктами превращения пропана на галлоалюмосиликате являются ароматические УВ, основные из которых — бензол, толуол

Таблица 1. Концентрация ЛКЦ и БКЦ по данным ИКС адсорбированного СО

	Концентрация, мкмоль/г					
Образец	БКЦ	ЛКЦ				
	сильные	средние	сильные			
ν, cm ⁻¹	$\Delta v_{OH}^{OHCO} = 300 \text{ cm}^{-1}$	2205-2216	2225—2230			
Исходный ГАС	136	3	5			
ГАС (ТПО при 400°C)	87	~1	~1			

Рис. 4. Влияние температуры ТПО галлоалюмосиликата на основные показатели процесса ароматизации пропана ($T_{\text{реакции}} = 550 \, ^{\circ}\text{C}$).

и ксилол (БТК-фракция), в небольшом количестве также образуются алкилбензолы С₉₊, нафталин и алкилнафталины. Побочные продукты представлены газообразными УВ – метан и этан, в незначительном количестве присутствуют олефины $C_2 - C_4$ и бутаны, а также водород и непревращенный пропан. В табл. 2 и 3 приведены данные по влиянию температуры ТПО галлоалюмосиликата на выход целевого продукта и состав газообразных и жидких продуктов превращения пропана. Максимальное количество ароматических углеводородов образуется на исходном ГАС. С ростом температуры проведения термопаровой обработки галлоалюмосиликата, в составе образующихся на нем жидких продуктов увеличивается содержание БТК-фракции и уменьшается доля нафталиновых углеводородов, а концентрация алкилбензолов изменяется незначительно по сравнению с другими ароматическими углеводородами. В составе образующихся газообразных продуктов реакции с увеличением температуры термопаровой обработки галлоалюмосиликата наблюдается снижение концентрации продуктов крекинга (метана, этана) и увеличение содержания олефиновых УВ. Концентрация алканов C_3 — C_4 увеличивается, в основном, за счет роста количества непревращенного пропана (табл. 2).

Различия, проявившиеся в составе образующихся на исследуемых образцах газообразных и жидких продуктов реакции, обусловлены различной скоростью протекания на них отдельных стадий процесса, которые, в свою очередь, зависят от состава активных центров. Известно, что реакции крекинга и коксообразования протекают с участием сильнокислотных апротонных центров, содержащих атомы алюминия в катионных позициях [16], реакции ароматизации промежуточных олефинов – с участием сильнокислотных протонных центров [17]. В результате термопаровой обработки галлоалюмосиликата концентрация сильнокислотных апротонных центров снижается, что приводит к снижению скорости коксообразования.

В табл. 3 представлены результаты исследований по влиянию температуры ТПО галлоалюмосиликата и времени работы обработанных образцов на степень превращения пропана, выход и селективность образования продуктов реакции. Предварительные исследования по влиянию температуры процесса показали, что на Ga-содержащих цеолитах пропан превращается практически полностью при 550°C, поэтому продолжительность их стабильной работы в одном реакционном цикле начинали определять при этой температуре. Из приведенных данных видно, что с увеличением времени работы исходного галлоалюмосиликата при 550°C его активность в процессе ароматизации пропана постепенно снижается. Одновременно происходит увеличение

Таблица 2. Состав продуктов превращения пропана на ГАС, подвергнутом ТПО при разной температуре $(T_{\text{реакции}} = 550\,^{\circ}\text{C})$

		Состав жидких продуктов,%			Состав газообразных продуктов,%				
$T_{\rm TIIO}$, °C	Выход катализата,%	БТК	алкил- бензолы	нафталины	H_2	CH ₄	C_2H_6	алкены $C_2 - C_4$	алканы $C_3 - C_4$
_	50.7	81.8	3.0	15.2	9.1	47.4	18.0	7.6	17.9
360	47.9	83.3	2.5	14.2	8.1	46.5	17.8	7.8	19.8
400	46.4	83.2	3.2	13.6	7.5	40.8	15.7	9.1	26.9
440	42.3	85.4	3.2	11.4	6.6	33.4	12.8	11.0	36.2
480	33.5	90.7	3.7	5.6	5.7	17.3	6.8	11.5	58.7

Таблица 3. Изменение каталитических свойств ГАС, подвергнутого ТПО, в процессе ароматизации пропана со временем его работы (t)

		_					
$T_{\scriptscriptstyle ext{TITO}}$	<i>t</i> , ч	$T_{\text{реакции}}$, °С	<i>X</i> ,%	A,%	$S_{ m ap},\!\%$	$S_{_{ m KP}},\!\%$	$S_{ m ger}, \%$
	1	550	91	50.7	55.5	35.3	4.1
	2	550	88	47.9	54.4	35.8	4.9
Без ТПО	6 7	550	76	38.2	50.2	36.0	8.4
	7	600	89	42.4	47.7	36.5	10.5
	8	600	77	36.9	47.7	31.9	15.4
	12	600	39	14.6	38.0	20.9	36.4
	1	550	90	47.9	53.2	37.2	4.5
	2	550	89	45.4	51.0	38.9	5.1
360	2 6	550	83	40.5	49.1	38.1	7.3
300	7	600	97	49.5	51.0	39.4	5.1
	8	600	95	43.9	46.1	41.5	7.5
	12	600	64	26.2	40.9	31.2	22.6
	1	550	86	46.4	54.1	35.2	5.7
	2	550	84	45.8	54.4	34.6	6.0
400	2 6	550	79	40.4	51.1	35.6	7.9
400	7	600	97	51.3	52.9	37.5	5.2
	8	600	95	49.3	51.7	37.2	6.6
	12	600	79	36.4	46.2	33.7	15.2
	1	550	80	42.3	53.1	33.5	8.0
	2 6 7	550	76	39.2	51.4	34.1	8.7
440	6	550	71	34.7	48.9	34.7	10.4
440	7	600	94	48.5	51.5	36.4	7.6
	8	600	93	44.3	47.5	38.7	9.0
	12	600	83	37.6	45.3	35.4	14.4
	1	550	62	33.5	54.3	26.0	12.4
	2	550	61	32.9	53.9	26.2	12.9
480	2 3	600	88	47.4	54.1	28.8	11.8
	4	600	86	45.5	52.8	29.2	12.8
	6	600	84	41.8	50.1	29.9	14.5
	12	600	74	34.5	46.6	28.2	19.4

Примечание. X — конверсия, A — выход ароматических УВ; $S_{\rm ap}$, $S_{\rm kp}$ и $S_{\rm дer}$ — селективности образования ароматических УВ, алканов и алкенов соответственно.

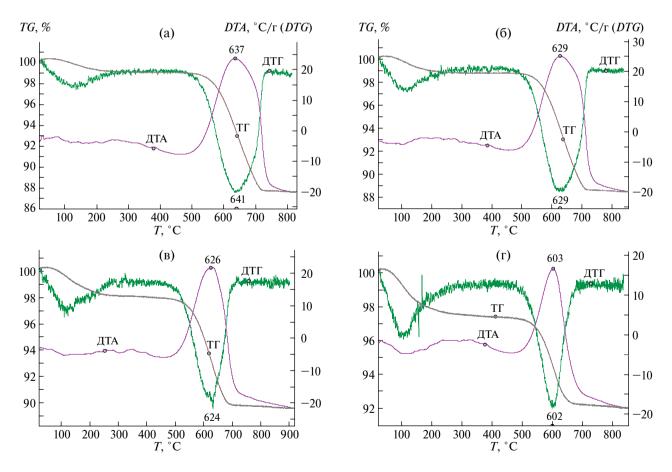
селективности образования низших олефинов, а селективность образования алканов изменяется незначительно. Повышение температуры реакции до 600°C не приводит к достижению первоначальной активности и селективности катализатора. В течение 6 часов работы катализатора при данной температуре выход образующихся на нем ароматических углеводородов снижается до 14,6%, а конверсия пропана до 39%. Проведение ТПО галлоалюмосиликата при 360°C приводит к некоторому повышению его стабильности работы в процессе ароматизации пропана. За 6 часов непрерывной работы при 550°C степень превращения и селективность образования ароматических углеводородов на данном катализаторе снижаются на 7 и 4,1% соответственно.

Повышение температуры ТПО катализатора до 400 °С приводит к увеличению не только стабильности его работы, но и селективности катализатора в отношении образования ароматических

углеводородов при температуре реакции $600\,^{\circ}$ С. За $12\,^{\circ}$ ч работы количество образующихся на нем ароматических углеводородов уменьшается на 10%, тогда как на необработанном катализаторе снижение составило 36,1%.

Галлоалюмосиликат, подвергнутый ТПО при 440 °C, характеризуется близкой активностью и селективностью по ароматическим УВ с образцом после ТПО при 400 °C. Термопаровая обработка цеолита при 480 °C приводит к значительному снижению его активности, поэтому продолжительность стабильной работы этого катализатора определяли при 600 °C, когда конверсия пропана превышала 80%. В то же время можно отметить, что даже в этом случае полученный образец проявляет более высокую ароматизирующую активность при 600 °C по сравнению с необработанным катализатором.

Для установления оптимальной продолжительности реакционного цикла катализатора, после


проведения которого, не возникало бы затруднений с восстановлением его каталитической активности путем окислительной регенерации, важно изучить процесс коксообразования и установить природу и количество коксовых отложений, образующихся на поверхности катализатора в ходе реакции.

На рис. 5 приведены результаты дифференциально-термического анализа образцов ГАС, подвергнутого ТПО при разной температуре, проработавших в процессе ароматизации пропана 12 ч. На дериватограммах показано изменение массы образца по отношению к массе навески закоксованного катализатора. Для количественного сопоставления результатов удобнее оперировать величиной, отнесенной к массе "чистого" (после выжигания кокса) катализатора. Пересчитанные соответствующим образом значения приведены в табл. 4.

Эндотермические эффекты в области 100—160°С и соответствующие им максимумы на кривых ДТГ обусловлены удалением адсорбированной и слабосвязанной воды. Наблюдаемые выше 400°С экзотермические эффекты и пики

на кривых ДТГ соответствуют выгоранию коксовых отложений. По данным термического анализа обшая масса коксовых отложений для исходного галлоалюмосиликата после 12 ч его работы в процессе превращения пропана составляет 11,45% (табл. 4). Это ловольно высокое солержание, так как все остальные исследуемые образцы содержат значительно меньше кокса. Температура начала и максимум выгорания кокса для этого катализатора смещены в область более высоких температур по сравнению с другими образцами, что свидетельствует об образовании на нем более плотных (конденсированных) углеродных отложений. Высокотемпературное плечо при ~680−700 °C на кривой ДТГ близко к температуре выгорания сибунита (715°C) и свидетельствует о формировании углеподобных отложений [18].

На образцах галлоалюмосиликата, подвергнутого термопаровой обработке, содержится существенно меньше кокса, а образующиеся продукты уплотнения менее конденсированы, что подтверждается более низкой температурой конца горения кокса. С ростом температуры ТПО катализатора количество образующегося на нем кокса

Рис. 5. Термограммы исходного ГАС (*a*) и ГАС после ТПО при $360~(\delta)$, 400~(B) и $440~(\epsilon)$ °C, обработанных пропаном в течение $12~\rm y$.

Таблица 4. Изменение массы образцов ГАС, проработавших в процессе ароматизации пропана в течение 12 ч

T °C	Изменения массы,%				
$T_{\rm TIIO}$, °C	вода	кокс			
Без ТПО	−1.31 (120°C)	-11.45 (641 °C)			
360	−1.47 (110°C)	-10.29 (629°C)			
400	−2.25 (117°C)	-8.34 (624°C)			
440	−2.87 (105°C)	−5.27 (602°C)			
480	−3.11 (109°C)	−4.97 (600°C)			

Примечание. В таблице приведены изменения масс по отношению к массе "чистых" (после выжигания кокса до 900°С) катализаторов. В скобках приведены соответствующие температуры максимумов пиков на кривых ДТГ.

и температура максимума выгорания кокса снижаются. Так, для образца галлоалюмосиликата, подвергнутого ТПО при 440°С, количество содержащегося на нем кокса составляет всего 5,27%, что почти в 2 раза меньше, чем для необработанного катализатора. Для данного образца наблюдаются узкие пики ДТГ и ДТА (с экзоэффектом при 602°С), что свидетельствует об однородности содержащихся углеродных отложений. Отсутствие явно выраженных низко- и высокотемпературных плеч на кривых ДТГ и ДТА образцов, подвергнутых термопаровой обработке при 400 и 440°С, указывает на то, что образующийся на них кокс сравнительно однороден, и присутствует, преимущественно, в виде одной формы.

Таким образом, данные дифференциально-термического анализа показывают, что проведение термопаровой обработки галлоалюмосиликата приводит к снижению интенсивности процесса коксообразования и формированию менее конденсированных коксовых отложений. Полученные данные хорошо согласуются с результатами каталитических испытаний галлоалюмосиликатных образцов. Так, с повышением температуры ТПО галлоалюмосиликата в составе образующихся на образцах ароматических углеводородов значительно снижается количество ароматических углеводородов С₉₊, предшественников кокса. Следовательно, термопаровая обработка цеолитного катализатора позволяет уменьшить скорость протекания коксообразования.

Таким образом, проведение термопаровой обработки изменяет кислотные свойства галлоалюмосиликата, и тем самым приводит к изменению его активности и селективности в процессе превращения пропана в ароматические углеводороды,

а также стабильности его работы, что связано с частичным деалюминированием цеолитного каркаса. Для получения наиболее эффективного катализатора ароматизации низших алканов его термопаровую обработку следует проводить в интервале температур $400-440\,^{\circ}\mathrm{C}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лапидус А.Л., Дергачев А.А. // Газохимия. 2008. С. 16.
- 2. *Ечевский Г.В.* // Oil & Gas J. 2012. № 3. С. 83.
- 3. *Восмерикова Л.Н., Волынкина А.Н., Восмериков А.В., Зайковский В.И.* // Нефтегазохимия. 2015. № 1. С. 37.
- 4. *Tian M., Zhao T.Q., Chin P.L., Liu B.S., A.S.-C.* // Chem. Physics Letters 592. 2014. P. 36.
- 5. Топчиева К.В. Активность и физико-химические свойства высококремнистых цеолитов и цеолитсо-держащих катализаторов / К.В. Топчиева, Тхоанг хо Ши // М.: изд-во МГУ, 1976. 167 с.
- Lutza W, Toufara H., Heidemannb D. // Microporous and Mesoporous Materials. 2007. V. 104. Issues 1–3. P. 171.
- 7. *Паукштис Е.А., Юрченко Э.Н.* // Успехи химии. 1983. Т. 52. В. 3. С. 426 [Russian Chemical Reviews. 1983. V. 52. № 3. P. 242].
- Солтанов Р.И., Паукштис Е.А., Юрченко Э.Н. // Кинетика и катализ. 1982. Т. 23.№ 1.С. 164.
- 9. Токтарев А.В., Малышева Л.В., Паукштис Е.А. // Кинетика и катализ. 2010. № 2. Т. 51. С. 336.
- Arean C.O., Palomino G.T., Geobaldo F., Zecchina A. // J. Phys. Chem. 1996. V. 100. P. 6678.
- 11. Arean C.O., Bonelli B., Palomino G.T., Safont A.M.C., Garrone E. // Phys. Chem. Chem. Phys. 2001. V. 3. P. 1223.
- 12. *Hadjiivanov K.* // Adv. Catal. 2014. V. 57. P. 99.
- 13. Gabrienko A.A., Danilova I.G., Arzumanov S.S., Toktarev A.V., Freude D., Stepanov A.G. // Microporous and Mesoporous Materials. 2010. V. 131. P. 210.
- 14. *Паукштис Е.А.* Инфракрасная спектроскопия в гетерогенном кислотно-основном катализе. Новосибирск: Наука, 1992. 255 с.
- 15. *Choudhary T.V., Kinage A., Banerjee S., Choudhary V.R.* // Energy Fuels. 2006. V. 20. № 3. P. 919.
- 16. *Степанов В.Г., Мастихин В.М., Ионе К.Г.* // Известия AH СССР. Сер. химическая. 1982. № 3. С. 619.
- 17. *Степанов В.Г., Ечевский Г.В., Шубин А.А., Паукштис Е.А., Ионе К.Г.* // Известия АН СССР. Сер. химическая. 1986. № 5. С. 1002.
- 18. Данилова И.Г., Паукштис Е.А., Калинкин А.В., Чувилин А.Л., Литвак Г.С., Алтынников А.А., Ануфриенко В.Ф. // Кинетика и катализ. 2002. Т. 43. № 5. С. 747 [Kinetics and Catalysis. 2002. V. 43. № 5. P. 698].