УДК 541.128+541.515+541.572.8;544.18+544.3

КВАНТОВО-ХИМИЧЕСКИЙ И ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ОСНОВНЫХ РЕАКЦИЙ И ИНИЦИАТОРА ПЕРОКСИДА ВОДОРОДА В ПРОЦЕССЕ ПРЕВРАЩЕНИЯ ЭТАНОЛА В ДИВИНИЛ НА ZNO/Al₂O₃-KATAЛИЗАТОРЕ

© 2017 г. В. Ф. Третьяков, А. М. Илолов, Р. М. Талышинский, А. М. Гюльмалиев*, С. Н. Хаджиев

Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, Россия *E-mail: gyulmaliev@ips.ac.ru
Поступила в редакцию 30.01.2017 г.

Квантово-химическим анализом оценены энергетические характеристики реакции дегидратации и дегидрирования этанола. Установлено, что энергетически выгодной реакцией, является дегидратация этанола. Анализом многомаршрутного разложения пероксида водорода определены энергетические характеристики отдельных реакций образования гидроксильных, пероксидных радикалов, атомов водорода и кислорода. Оценены энергии переходных состояний реакций разложения молекулы H_2O_2 на различные соединения, что позволило прогнозировать поведение сорбционных структур радикалов на поверхности катализатора ZnO/γ - Al_2O_3 , в котором ZnO отвечает, в основном, за процесс дегидрирования этанола в дивинил.

Ключевые слова: этанол, дивинил, катализ, термодинамика, квантово-химический анализ, пероксид водорода, ацетальдегид, этилен.

DOI: 10.7868/S0028242117040153

Реакция получения дивинила представляет важный научный и практический интерес из-за его стратегической значимости. В 1926—1928 гг. С.В. Лебедев на основании идеи В.Н. Ипатьева разработал ZnO/α - Al_2O_3 катализатор для синтеза дивинила из этилового спирта по реакции

$$2C_2H_5OH \rightarrow C_4H_6 + 2H_2O + H_2.$$
 (1)

Согласно механизму, предложенного Гориным—Нияме [1], эта реакция является многостадийной и состоит из этапов дегидрирования (1), дегидратации и конденсации (2–6):

$$C_2H_5OH \rightarrow CH_3CHO + H_2,$$
 (2)

$$2CH_3CHO \rightarrow CH_3-CH(OH)-CH_2-CHO$$
, (3)

$$CH_3-CH(OH)-CH_2-CHO \rightarrow CH_3-CH=CH-CHO + H_2O,$$
 (4)

$$CH3CH=CH-CHO + CH3CH2OH \rightarrow CH3-CH=CH-CH2OH + CH3CHO,$$
 (5)

$$CH3-CH=CH-CH2OH \rightarrow CH2=CH-CH=CH2 + H2O.$$
 (6)

Первым промышленным катализатором, предложенным Лебедевым для одностадийной технологии получения дивинила из этанола, являлась система на основе ZnO/α - Al_2O_3 , приготовленная из смеси глины и диатомита, в которой дегидрирующую функцию выполнял ZnO с добавлением позже оксида магния, повышающего селективность по дивинилу.

В 40-ых гг. был предложен катализатор MgO-SiO₂ [2], в котором, по мнению авторов MgO подавляет образование этилена и ускоряет образование ацетальдегида, ответственного за получение дивинила по классическому механизму Горина. Этот катализатор был усовершенство-

ван, а существующий в то время промышленный катализатор ZnO/α - Al_2O_3 , как менее селективный, заменен на промышленный катализатор K-64, прототипом которого была MgO— SiO_2 -композиция. В этом случае возможна также реализация механизма, предложенного Лебедевым [3], когда этилен взаимодействует с ацетальдегидом с образованием дивинила. Вклад образования дивинила по механизмам с участием этилена был оценен в работе [4] кинетическим методом, который не превышает 10-15% от теоретически возможной селективности образования дивинила.

В работе [4] была исследована кинетика инициированного пероксидом водорода процесса

Таблица 1. Материальный баланс процесса превращения этанола в дивинил. Загрузка катализатора 3 см³, объемная скорость (LHSV) 3 ч⁻¹, температура опыта 400° С, реакционная смесь: этанол + пероксид водорода (1.0 мас. %)

Материальный баланс							
Вещество	ВЗЯ	то:	получено:				
вещество	г/ч	мас. %	г/ч	мас. %			
СО	_	_	0.44	0.41			
CO_2	_	_	0.04	0.04			
CH_4	_	_	0.00	0.00			
C_2H_4	_	_	0.54	0.51			
C_4H_8	_	_	3.17	2.99			
C_4H_6	_	_	20.89	19.69			
C ₅₊	_	_	0.37	0.35			
C_2H_5OH	100.00	94.25	55.95	52.73			
CH ₃ CHO	_	_	1.15	1.08			
C_4H_8O	_	_	0.94	0.89			
C ₆₊	_	_	0.00	0.00			
H_2	_	_	0.39	0.37			
H_2O	5.00	4.71	22.22	20.94			
H_2O_2	1.1	1.04	_	_			
Сумма	106.10	100.00	106.10	100.00			

превращения этанола в дивинил на катализаторе ZnO/γ - Al_2O_3 , проявляющего максимальную активность из всех известных каталитических систем. Механизм превращения инициатора H_2O_2 на поверхности катализатора представлен формальными схемами, учитывающих его возможные функциональные действия, включающие наряду с инициированием пероксидными группами, динамическое модифицирование поверхности гидроксильными группами, и саморегенерирующую функцию.

Представляло интерес, с применением квантово-химических расчетов по энергетическим характеристикам оценить вероятность осуществления дегидрирования и дегидратации, которые составляют две основные каталитические функции катализатора превращения этанола в дивинил. В то же время для управления подобного рода каталитическими инициированными процессами необходимо знание основ разложения пероксида водорода на поверхности гетерогенных катализаторов. В этой связи нами была предпринята попытка изучить механизм разложения пероксида водорода с использованием квантово-химического и термодинамического анализа рассматриваемой каталитической системы.

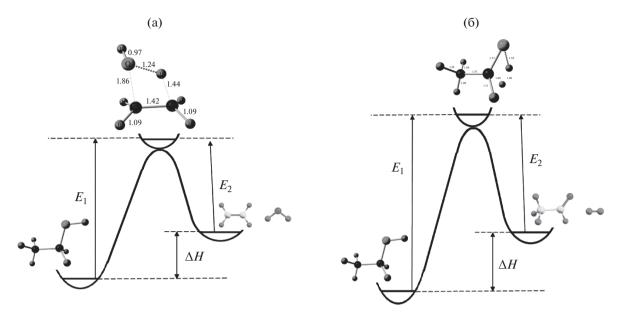
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Аппаратура и методика эксперимента. Реакцию превращения этанола, в том числе в присутствии инициатора — пероксида водорода (0.5—1.0 мас. %), проводили в проточном кварцевом реакторе в температурном интервале $380-420^{\circ}$ С. Загрузка катализатора ZnO/γ - Al_2O_3 в реакторе составляла 1-3 см³, при объемной скорости (LHSV) 2.5-3.5 ч $^{-1}$. Состав продуктов полученного газа и жидкого конденсата после реакции анализировали на приборах марки "Кристалл-2000 М" — хроматограф газовый и Finnigan MAT 95 XL — хромато-массспектрометр.

Материальный баланс реакции превращения этанола и состав получаемых продуктов, которые были использованы при квантово-химическом и термодинамическом анализах. при оптимальных параметрах приведены в табл. 1.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Термодинамический и квантово-химический анализ реакций дегидрирования и дегидратации этанола в дивинил. При анализе механизма реакции превращения этанола в дивинил необходимо было учитывать следующие моменты: максимальный мольный выход дивинила не может превышать 50% от исходного сырья; дальнейший механизм процесса будет зависеть от того, какая реакция является, с термодинамической точки зрения, первичной, дегидратации или дегидрирование этанола.


В этой связи, представляло интерес, с применением квантово-химических расчетов по энергетическим характеристикам оценить вероятность осуществления дегидратации и дегидрирования, которые составляют две основные каталитические функции катализатора превращения этанола в дивинил. Параметры кинетически медленной стадии реакции этанола в дивинил, по определению, играют решающую роль в формировании промежуточных стадий и общей скорости процесса, что в совокупности используется для целенаправленного поиска эффективных катализаторов. Целью подбора катализатора является, как известно ускорение лимитирующей стадии процесса [5].

Для выявления энергетических характеристик процесса методами квантовой химии исследовали следующие реакции:

$$C_2H_5OH \to C_2H_4 + H_2O,$$
 (7)

$$C_2H_5OH \rightarrow CH_3CHO + H_2.$$
 (8)

Результаты квантово-химических расчетов энергетических профилей потенциальной энергии вдоль координаты реакций (7), и (8) приведены на рис. 1. Расчеты проводились методом функционала плотности в валентно-расщепленном базисе B3LYP/6-31g(d,p).

Рис. 1. Энергетические профили потенциальной энергии вдоль координаты реакций (7) и (8): $a-E_1=64.3$ ккал/моль, $E_2=48.8$ ккал/моль, $\Delta H=20.5$ ккал/моль) и $\delta-E_1=89.5$ ккал/моль, $E_2=64.4$ ккал/моль, $\Delta H=32.4$ ккал/моль .

Квантово-химические расчеты показывают, что реакция (a) превращения этанола с образованием этилена и воды энергетически более предпочтительна ($E_{\rm ak}=64.3$ ккал/моль, $\Delta H=20.5$ ккал/моль), чем реакции образования ацетальдегида и водорода ($E_{\rm ak}=83.8$ ккал/моль, $\Delta H=32.4$ ккал/моль). Согласно этим данным, в реакциях превращения этанола количество этилена в продуктах реакции будет больше, чем ацетальдегида, что хорошо согласуются с данными термодинамических расчетов реакции превращения этанола (рис. 2):

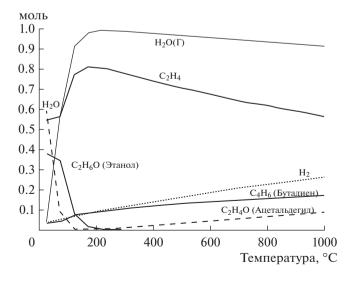
$$C_2H_5OH \rightarrow \{C_2H_4, C_4H_6, C_2H_4O, H_2O, H_2\}.$$
 (9)

Согласно полученным термодинамическим данным, доминирующим продуктом реакции превращения этанола является этилен. Ацетальдегид образуется незначительно. Следовательно, чтобы вести процесс синтеза дивинила из этилена и ацетальдегида по схеме Лебедева [3], эффективный катализатор должен ускорять стадию образования ацетальдегида, снижая ее энергию активации с усилением стадии взаимодействия образующегося этилена с ацетальдегидом.

Квантово-химический и термодинамический анализ реакции распада H_2O_2 — инициатора в процессе превращения этанола в дивинил. Реакции разложения пероксида водорода можно представит следующими схемами:

$$H_2O_2 \rightarrow 2^{\bullet}OH,$$
 (10)

$$H_2O_2 \rightarrow O + H_2O_2$$
 (11)


$$H_2O_2 \rightarrow H + HO_2',$$
 (12)

$$O + OH \rightarrow HO_2$$
. (13)

Для нахождения независимых уравнений систему реакций (10-13) представим в матричном виде:

$$\begin{pmatrix} H_2O_2 \\ H_2O \\ HO_2 \\ OH \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 1 \\ 1 & 2 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} H \\ O \end{pmatrix}. \tag{14}$$

Число двух независимых реакций равно 2, что соответствует рангу атомной матрицы. Для их на-

Рис. 2. Температурная зависимость равновесного образования (моль) компонентов реакции (9).

Таблица 2. Энергии Хартри—Фока E_{XF} и Гиббса G_{XF} компонентов реакций (10—13)

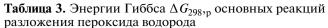
Компоненты реакции	$E_{\rm XF,}$ a.e.	G _{XF} , a.e.
H_2O_2	-151.5918527	-151.587729
H_2O	-76.4474479	-76.443769
HO_2	-150.9504077	-150.958458
ю	-75.7545274	-75.763015
$H(^2S)$	-0.5021559	-0.512810
O(³ P)	-75.0853856	-75.100338

хождения, определим стехиометрические коэффициенты α_i для реакции [6, 7]:

$$\alpha_1 H_2 O_2 + \alpha_2 H_2 O + \alpha_3 H O_2 + \alpha_4 O H = 0$$
 (15)

(16)

Принято, что параметры α_1 и α_2 независимы, а α_3 и α_4 линейно зависимы:

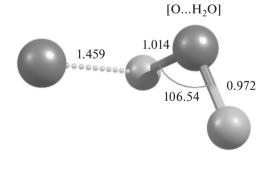

$$2\alpha_{1} + 2\alpha_{2} = -\alpha_{3} - \alpha_{4}, 2\alpha_{1} + \alpha_{2} = -2\alpha_{3} - \alpha_{4}.$$
(17)

В этом случае из разности уравнений (4) следует, что $\alpha_2 = \alpha_3$ и при допущении $\alpha_3 = 1$, $\alpha_4 = 0$ будем иметь $\alpha_1 = -3/2$. Полученные значения α_i для уравнения (2) дают первую независимую реакцию:

$$3H_2O_2 = 2H_2O + 2HO_2^{\bullet}$$
 (18)

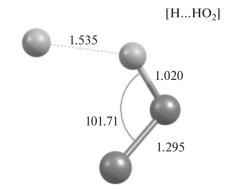
Аналогичным способом при значениях зависимых параметров $\alpha_3 = 0$, $\alpha_4 = 1$ $\alpha_2 = 0$, $\alpha_1 = -1/2$ из уравнение (2) находится вторая независимая реакция:

$$H_2O_2 = 2^{\bullet}OH.$$
 (19)


-		
№ п.п.	Реакции	$\Delta G_{298.15},_{ m p}$ ккал/моль
1	$H_2O_2 \rightarrow \frac{2}{3}H_2O + \frac{2}{3}HO_2^{\bullet}$	-8.63
2	$H_2O_2 \rightarrow 2 \cdot OH(^2\Pi)$	38.72
3	$H_2O_2 \rightarrow 2 \cdot OH(^2\Pi)$ $H_2O_2 \rightarrow O(^3P) + H_2O$	27.37
4	$H_2O_2 \rightarrow H(^2S) + HO_2^{\bullet}$	73.08
5	$O(^{3}P) + ^{\bullet}OH(^{2}\Pi) \rightarrow HO_{2}^{\bullet}$	-59.68
6	$\cdot \text{OH}(^{2}\Pi) + \text{H}_{2}\text{O}_{2} \rightarrow \text{HO}_{2}^{\bullet}(^{2}\Pi) + \text{H}_{2}\text{O}$	-32.31

Для оценки энергетических характеристик реакций (17—18) в единой системе, расчет электронной структуры всех компонентов провели квантово-химическим методом функционала плотности DFT UB3LYP/6-311g(d,p) [8]. Расчеты выполнены с оптимизацией всех геометрических параметров молекул. Чтобы идентифицировать стационарные точки минимума энергии, в каждой из них проводили анализ колебательных частот.

Значения энергии Хартри—Фока E_{XF} и энергии Гиббса G_{XF} при T=298.15К компонентов реакций (10—13) приведены в табл. 2.


По данным табл. 2 вычислены энергии Гиббса ряда реакций. Результаты расчета приведены в табл. 3.

Как следует из данных табл. 3, разложение пероксида водорода по первой реакции составляет $\Delta G = -8.63$ ккал/моль, с образованием радикала HO_2^2 , при этом наиболее благоприятны так же пя-

 $E_0 = -151.484729$ a. e.

 $\Delta E = 50.6$ ккал/моль

 $E_0 = -151.365116$ a. e.

 $\Delta E = 125.7$ ккал/моль

Рис. 3. Энергии и геометрические параметры — межатомные расстояния (Å) и валентные углы переходных состояний реакций разложения (3) и (4).

Таблица 4. Температурная зависимость термодинамических функций молекул H_2O_2 , H_2O и HO_2^{\bullet}

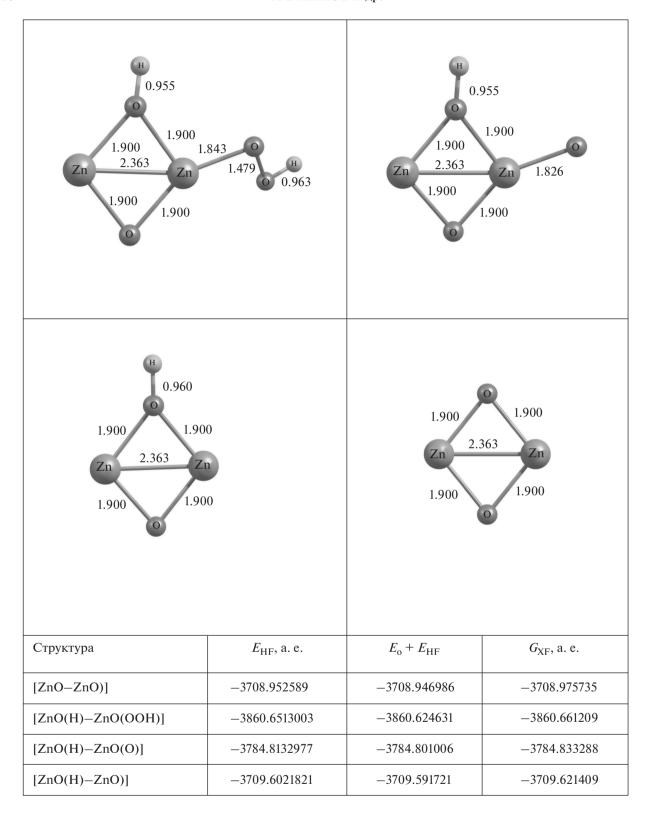
$\mathrm{H_2O_2}$									
	U	G	Н	Ср		S		$(G-H_{298})/T$	
<i>T</i> , K		ккал/моль				кал/м	юль К		
	расч.	расч.	расч.	расч.	[10]	расч.	[10]	расч.	[10]
298	18.65	3.00	19.24	10.22	10.31	54.49	55.66	-54.50	-55.66
300	18.67	2.90	19.27	10.23	10.33	54.56	55.73	-54.47	-55.67
400	19.54	-2.73	20.33	11.23	11.58	57.64	58.88	-54.92	-56.09
500	20.51	-8.62	21.51	12.14	12.56	60.26	61.57	-55.72	-56.92
600	21.57	-14.76	22.76	12.90	13.31	62.54	63.93	-56.67	-57.90
700	22.70	-21.11	24.08	13.54	13.86	64.56	66.03	-57.64	-58.91
800	23.88	-27.68	25.46	14.07	14.30	66.42	67.91	-58.65	-59.92
900	25.11	-34.39	26.90	14.58	14.69	68.10	69.61	-59.59	-60.90
1000	26.39	-41.29	28.38	15.02	15.02	69.67	71.18	-60.53	-61.85
	ı			Н	₂ O	1	ı		
298	15.16	2.31	15.75	8.00	8.03	45.10	45.11	-45.10	-45.11
300	15.16	2.22	15.75	8.00	8.03	45.10	45.16	-45.10	-45.12
400	15.17	-2.41	15.77	8.00	8.19	45.15	47.49	-45.10	-45.43
500	15.78	-7.26	16.57	8.14	8.42	47.47	49.35	-45.42	-46.04
600	16.41	-12.27	17.40	8.36	8.68	49.31	50.90	-46.02	-46.72
700	17.06	-17.42	18.25	8.61	8.95	50.86	52.26	-46.70	-47.42
800	17.73	-22.70	19.12	8.87	9.25	52.20	53.48	-47.39	-48.10
900	18.43	-28.10	20.02	9.15	9.55	53.41	54.58	-48.07	-48.76
1000	19.16	-33.6	20.95	9.42	9.85	54.50	55.61	-48.72	-49.39
				Н	O_2^{\bullet}				
298	10.66	-4.64	11.25	8.27		53.31		-53.31	
300	10.67	-4.74	11.27	8.28		53.36		-53.31	
400	11.32	-10.21	12.12	8.81		55.81		-53.64	
500	12.03	-15.89	13.03	9.37		57.84		-54.28	
600	12.80	-21.76	13.99	9.86		59.59		-55.02	
700	13.61	-27.80	15.00	10.29		61.14		-55.79	
800	14.46	-33.99	16.05	10.65		62.54		-56.55	
900	15.34	-40.31	17.13	10.97		63.82		-57.28	
1000	16.25	-46.75	18.24	1	1.25	64.99		-58.00	

пероксида водорода с образованием атомарного кислорода и HO_2^{\bullet} термодинамически затруднена ($\Delta G = 27.37$ ккал/моль), так же как и реакция (4), связанная с отрывом водорода ($\Delta G = 73.08$ ккал/моль). Для детального анализа реакций (3, 4) методом QST3 вычислили энергию и геометрические параметры — межатомные расстояния (Å) и валентных углов их переходных

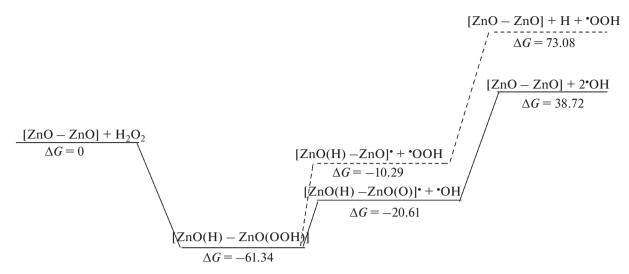
тая и шестая реакции. Реакция (3), разложения

$$H_2O_2 \rightarrow [O \cdots H_2O] \rightarrow O + H_2O$$
,

молекулы H_2O_2 энергия $E_0 = -151.565394$ а.е. При этом энергия активации реакции разложения пероксида водорода с отрывом кислорода составляет $\Delta E = 50.6$ ккал/моль, с отрывом водорода $\Delta E = 125.7$ ккал/моль. Следовательно, обе эти реак-


 $H_2O_2 \rightarrow [H \cdots HO_2] \rightarrow H + HO_2$.

Представляло интерес исследовать взаимодействие пероксида водорода с поверхностью оксидного катализатора ZnO. Так как, ZnO имеет кубическую кристаллическую решетку, то для расчета


Результаты расчетов представлены на рис. 3. Для молекулы H_2O_2 энергия $E_0 = -151.565394$ а.е. При

ции при мягких условиях затруднены.

комплексов:

Рис. 4. Результаты квантово-химических расчетов взаимодействия молекулы H_2O_2 и частиц ее разложения с кластером Zn_2O_2 .

Рис. 5. Энергетическая схема стадий превращения молекулы H_2O_2 на поверхности катализатора ZnO.

приняли кластер минимального размера Zn_2O_2 . Структуру кластера оптимизировали отдельно и фиксировали ее в дальнейших расчетах. Результаты расчетов приведены на рис. 4.

На рис. 5, по данным табл. 2—3 и рис. 4, относительно энергии Гиббса ΔG исходных соединений [ZnO—ZnO] + H_2O_2 , составлена энергетическая схема отдельных стадий превращения пероксида водорода на поверхности катализатора. Из рис. 5 видно, что образование радикала *OH ($\Delta G = -20.61$ ккал/моль) предпочтительнее, чем радикала *OOH ($\Delta G = -10.29$ ккал/моль).

Для установления температурной области благоприятного протекания реакции (6), нами рассчитаны термодинамические функции ее компонентов методом статистической термодинамики с использованием результатов квантово-химического расчета электронной структуры молекул [9, 10].

В табл. 5 приведена температурная зависимость энергии Гиббса для реакции

$$H_2O_2 \rightarrow \frac{2}{3}H_2O + \frac{2}{3}HO_2^{\bullet},$$

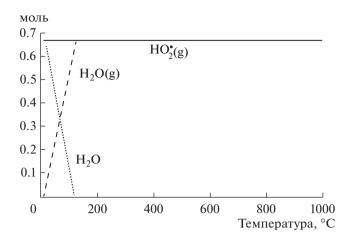
вычисленная по данным табл. 2 и 4. Из приведенных данных видно, что величина ΔG_p с ростом температуры уменьшается.

Методом термодинамического анализа нами оценена температурная зависимость равновесного состава реакции термического разложения пероксида водорода в системе:

$$H_2O_2 \rightarrow \{H_2O_2, OH, O, H, H_2O, HO_2^2\}.$$

Из результатов расчета, представленных на рис. 6, видно, что выше 120° С равновесный состав состоит из H_2 О в газовой фазе и радикала HO_2^{\bullet} .

Поскольку результаты квантово-химических и термодинамических расчетов показывают, что при разложении пероксида водорода образуется устойчивый радикал HO_2^{\bullet} , то представляло интерес установить его влияние на подавление отложения кокса. С этой целью рассмотрели температурную зависимость равновесного состава реакции взаимодействия радикала HO_2^{\bullet} с углеродом, в твердой фазе:

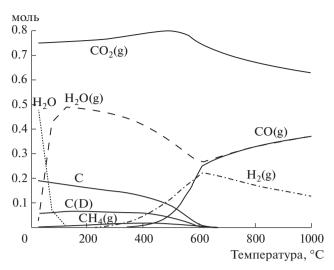

$$\begin{split} &HO_2^{\raisebox{.3ex}{\prime}}(r) \ + \ C(r) \ \to \ [C(r), \ C_2(r), \ C_3(r), \ C_4(r), \\ &C_{60}(r), \ CH_2(r), \ CH_3(r), \ CH_4(r), \ C_2H(r), \ C_2H_2(r), \\ &C_2H_3(r), \ C_2H_4(r), \ C_2H_5(r), \ C_2H_6(r), \ CO(r), \ CO_2(r), \\ &C_2O(r), \ C_3O_2(r), \ COOH(r), \ H(r), \ H_2(r), \ HCO(r), \\ &HCOOH(r), \ HO_2^{\raisebox{.3ex}{\prime}}(r), \ H_2O(r), \ H_2O_2(r), \ O(r), \ O_2(r), \\ &O_3(r), O_3(r), \ OH(r)]. \end{split}$$

Результаты расчетов представлены на рис. 7. Как видно из рисунка с ростом температуры концентрация углерода уменьшается и доходит до нуля при $T=600^{\circ}\mathrm{C}$, что подтверждает регенерирующие свойства радикала $\mathrm{HO_2^{\circ}}$ в процессе конверсии этанола в дивинил в присутствии инициатора — пероксида водорода.

ЗАКЛЮЧЕНИЕ

Таким образом, результаты квантово-химических расчетов позволяют сделать вывод о том, что эффективный катализатор реакции превращения этанола в дивинил должен ингибировать реакции дегидратации, ускоряя реакции дегидрирования и взаимодействия этилена с ацетальдегидом.

Исследование методами квантовой химии и химической термодинамики реакция термического разложения пероксида водорода показало, что в продуктах реакции всегда присутствует


Рис. 6. Температурная зависимость равновесного состава реакции превращения 1 мол H_2O_2 .

устойчивый радикал HO_2 , который может являться инициатором в радикальных реакциях, обеспечивая ускорение медленных стадий образования дивинила и усиливая саморегенерацию коксующихся центров.

Квантово-химическим методом функционала плотности DFT B3LYP/6-311g(d,p) изучено взаимодействие пероксида водорода с поверхностью катализатора ZnO и установлено, что образование радикала 'ОН, участвующего в модифициро-

Таблица 5. Температурная зависимость энергии Гиббса, реакции разложения перекиси водорода.

са, реакции разложения перекией водорода.								
<i>T</i> , K	$G_{XF}(H_2O_2)$	$G_{XF}(H_2O)$	$G_{XF}(HO_2^{\bullet})$	ΔG_p				
1,11	ккал/моль							
298	-95122.3	-47969.2	-94727.5	-8.8				
300	-95122.4	-47969.3	-94727.6	-8.7				
400	-95128.1	-47973.9	-94733.0	-9.8				
500	-95134.0	-47978.8	-94738.7	-11.0				
600	-95140.1	-47983.8	-94744.6	-12.2				
700	-95146.4	-47988.9	-94750.6	-13.3				
800	-95153.0	-47994.2	-94756.8	-14.3				
900	-95159.7	-47999.6	-94763.1	-15.4				
1000	-95166.6	-48005.1	-94769.6	-16.5				

Рис. 7. Температурная зависимость равновесного состава реакции взаимодействия радикала HO_2^{\bullet} с углеродом в твердой фазе.

вании поверхности катализатора, энергетически более выгодно в этом взаимодействии, чем радикала $\mathrm{HO}_{2}^{\bullet}$.

На основе расчетов методами химической термодинамики температурной зависимости равновесного состава реакции взаимодействии радикала $\mathrm{HO}_2^{\boldsymbol{\cdot}}$ с твердым углеродом сделано предположение о возможном его роли в снижении образования кокса.

СПИСОК ЛИТЕРАТУРЫ

- 1. Смирнов Н.И. Синтетические каучуки. М., 1954.
- 2. Butterbaugh J. Darrel, U., Spence Le Roy // U.S. Patent 2423681.1947.
- 3. Лебедев С.В. Журн. орг. химии. 1931. Т. 3. С. 698.
- 4. *Tretjakov V.F., Talyshinsky R.M., Ilolov A.M., Maksimov A.L., Khadzhiev S.N.*// Petrol. Chemistry. 2014. V. 54. № 2. P. 195.
- 5. *Крылов О.В.* Гетерогенный катализ. М.: "Академкнига", 2004. 577 с.
- 6. *Цирельсон В.Г.* Квантовая химия. Молекулы, молекулярные системы и твердые тела. М.: Бином, 2010. 496 с.
- 7. *Степанов Н.Ф., Ерлыкина М.Е., Филиппов Г.Г.* Методы линейной алгебры в физической химии. М.: МГУ, 1976. 360 с.
- 8. *Granovsky A.A.* http://classic.chem.msu.su/gran/gamess/index.html.GAMESS v.7.1
- Гюльмалиев А.М., Малолетнев А.С., Магомедов Э.Э., Кадиев Х.М.// Химия твердого топлива. 2012. № 4. С. 3.
- Сталл Д., Вестрам Э., Зинке Г. Химическая термодинамика органических соединений. М.: Мир, 1971. 807 с.