УЛК 547.672:694-64-5

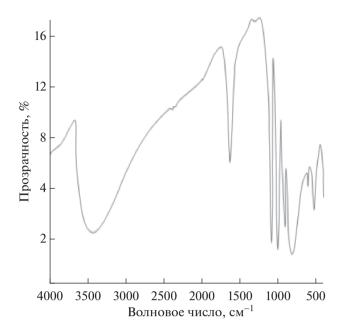
ВЛИЯНИЕ УГЛЕКИСЛОГО ГАЗА НА ОКИСЛЕНИЕ ЦИКЛОГЕКСЕНА ПЕРОКСИДОМ ВОДОРОДА НА КАТАЛИЗАТОРЕ CO_{1.5}PW₁₂O₄₀

© 2017 г. Р. Радман, А. Аюсси*, А. Аль Катани, В. Мехамер

Университет Короля Сауда, химический факультет, Эр-Риад, Саудовская Аравия *E-mail: aouissed@yahoo.fr
Поступила в редакцию 26.02.2016 г.

Окисление циклогексена с помощью дешевых и экологически безопасных окислителей H_2O_2 и CO_2 , проводили на катализаторе $Co_{1.5}PW_{12}O_{40}$. Обнаружено, что основные продукты окисления — циклогексен-2-он-1 (енон), циклогексен-2-ол-1 (енол) и циклогександиол-1,2; при этом превалирующим продуктом является енон. Совместное окисление с использованием CO_2 и H_2O_2 привело к значительному увеличению конверсии по сравнению с использованием оксилителей по отдельности. Это может быть связано с тем, что CO_2 приводит к увеличению образования ионов перкарбо-

ната HCO_4^- , обеспечивающих окисление путем переноса кислорода. Это показывает, что смесь CO_2/H_2O_2 является подходящей окислительной реакционной системой. Снижение селективности как по енону, так и по эпоксиду в пользу диола при более высоких степенях превращения показывает, что образование диола из эпоксида происходит в результате последовательных реакций и/или непосредственно из циклогексена.

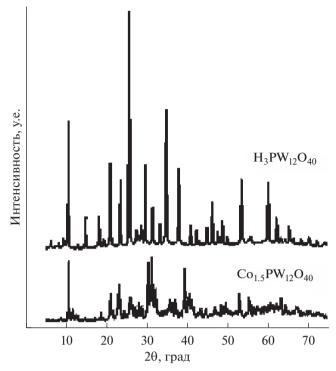

Ключевые слова: окисление циклогексена, диоксид углерода, пероксид водорода, полиоксаметалпаты.

DOI: 10.7868/S0028242117010105

Окисление олефинов в более дорогие кислородсодержащие соединения, такие как спирты, эпоксиды, кетоны, альдегиды и карбоновые кислоты является важным процессом химической промышленности. Среди процессов окисления олефинов окисление шиклогексена до сих пор является объектом интенсивных исследований, поскольку конечные продукты (т.е. циклогексен-2-он-1, циклогексен-2-ол-1, эпоксид и др.) используются в качестве потенциальных промежуточных продуктов в синтезе более дорогостоящих соединений [1-4], а также основных мономеров для получения различных полимерных материалов [5]. Циклогексен-2-он-1 (α , β -ненасыщенный кетон), который может быть получен в результате аллильного окисления циклогексена, привлекает наибольшее внимание, поскольку α,β-ненасыщенные кетоны расматриваются как важные промежуточные продукты в реакциях циклоприсоединения из-за наличия высоко реакционноспособной карбонильной группы [6, 7]. Вот почему поиск эффективного катализатора для их производства до сих пор является предметом ряда исследований [8—12].

Катализаторы на основе кобальта относятся к катализаторам, проявившим высокую активность в реакциях окисления. По данным Ю. Ли

и др. [13] добавление Со(ОАс)₂ в качестве сокатализатора значительно увеличивало окисление циклогексена. С. Сатокава и др. обнаружили, что комплекс пиразин-2-карбоновой кислоты с Co(II), инкапсулированый в Y-цеолит, позволял получить значительно большую конверсию циклогексена при окислении преимущественно по аллильной связи, что приводит к образованию циклогексен-2-она-1 (51%) и 1,2-эпоксициклогексана в качестве основного и побочного продуктов, соответственно [14]. Более того, промышленное производство смеси циклогексанона и циклогексанола, используемой при производстве нейлона, осуществляется путем окисления циклогексана с использованием кобальтовых солей нафтеновых кислот в качестве катализатора [15]. Другой тип катализаторов, также проявляющих высокую каталитическую активность в реакциях окисления, - гетерополиоксометаллаты. Потенциально они могут найти применение в синтезе различных химических соединений, особенно в реакциях мягкого окисления и окислении в кислой среде [16, 17] при подходящем выборе противоиона или заместителя [18, 19]. Таким образом, будет интересно исследовать преимущества производства катализатора НРА (гетерополикислоты) и Со.


Рис. 1. ИК-Фурье спектр $Co_{1.5}PW_{12}O_{40}$.

В настоящей работе мы рассматриваем окисление циклогексена смесью CO_2/H_2O_2 в ацетонитриле на катализаторе $Co_{1,5}PW_{12}O_{40}\cdot 13H_2O$ (сокращенно $Co_{1,5}PW_{12}O_{40}$). Было исследовано влияние на степень превращения и селективность таких параметров, как температура, время, масса катализатора и концентрация H_2O_2 .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление катализатора. Кислота $H_3PW_{12}O_{40}$ была получена в соответствии с методом, предложенным в работе Дэчеффа и др. [20]. Соль $Co_{1.5}PW_{12}O_{40}$ была приготовлена из $H_3PW_{12}O_{40}$ путем медленного добавления необходимого количества $Ba(OH)_2 \cdot 8H_2O$ (для нейтрализации трех протонов) к водному раствору гетерополикислоты, после чего было добавлено необходимое количество $CoSO_4 \cdot 7H_2O$. После удаления образовавшегося осадка $BaSO_4$ полученный раствор оставляли на несколько дней при $40^{\circ}C$. Соль $Co_{1.5}PW_{12}O_{40}$ была извлечена из раствора путем фильтрации.

Каталитические измерения. Реакции окисления проводили в автоклаве из нержавеющей стали, оборудованном магнитной мешалкой. Температуру автоклава регулировали при помощи нагревательной рубашки. Обычно смесь 10 мл циклогексена, 10 мл пероксида водорода (30% водный раствор), 5 мл ацетонитрила (растворитель) и 0.2 г катализатора перемешивали при помощи магнитной мешалки при необходимой температуре в атмосфере CO_2 . По истечении необходимого времени смесь охла-

Рис. 2. Результат РСА соли ${\rm Co_{1.5}PW_{12}O_{40}}$ и родительской кислоты ${\rm H_3PW_{12}O_{40}}$.

ждали, отбирали пробу и анализировали газовую фазу на хроматографе PYE UNICAM, оборудованного детектором по теплопроводности, пламенно-ионизационным детектором и капиллярной колонкой HP-PLOT Q (30 м × 0.53 мм). Идентификацию продуктов осуществляли с использованием ГХ—МС и газового хроматографа Thermo Trace GC Ultra, оборудованного системой AI 3000. Для разделения целевых соединений использовали капиллярную колонку MS-SQC (30 м × × 0.25 мм × 0.25 мм), газ-носитель — гелий, скорость потока 1 мл/мин.

РЕЗУЛЬТАТЫ ИХ ОБСУЖДЕНИЕ

Характеристика катализатора. ИК-Фурье спектр $Co_{1.5}PW_{12}O_{40}$ показан на рис. 1. Образец имел структуру Кеггина, подтвержденную присутствием зон 1080, 980, 895 и 791 см $^{-1}$, которые приписываются колебаниям $\upsilon_{as}(P-Od)$, $\upsilon_{as}(W-Od)$, $\upsilon_{as}(W-Ob-W)$ и $\upsilon_{as}(W-Oc-W)$, где Oa-атом кислорода, связанный с SW атомами и центральным атомом P, Ob и Oc- мостиковые атомы кислорода, Od- концевой кислород [20, 21].

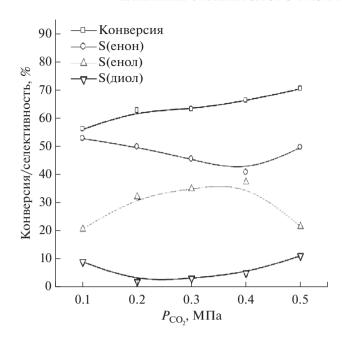
На рис. 2 показаны результаты РСА для $Co_{1.5}PW_{12}O_{40}$ и родительской кислоты $H_3PW_{12}O_{40}$. В каждом из четырех диапазонов величин $2\theta - (7-10^\circ)$, $(16-23^\circ)$, $(25-30^\circ)$ и $(31-38^\circ)$ оба приготовленных катализатора имели дифракционные пики,

характерные для структуры Кеггина [22–24]. Характеристические отражения соли $Co_{1.5}PW_{12}O_{40}$, которые наблюдались при 10.8, 21.0, 26.2 и 34.9°, слегка сдвинулись в область более высоких значений углов по сравнению с характеристическими отражениями родительской кислоты $H_3PW_{12}O_{40}$, которые наблюдались при $2\theta = 10.5, 20.8, 25.5$ и 34.7°. Этот результат согласуется с литературными данными, согласно которым положения пиков несколько отличны для гетерополивольфраматов, имеющих различные противоионы [25]. Сдвиги пиков наблюдались, когда протоны замещались на некоторые катионы, что было связано с уменьшением элементарной ячейки [26]. Детальный анализ дифрактограмм показал, что некоторые пики $H_3PW_{12}O_{40}$ наблюдались также и в результатах РСА Со соли. Характеристические

отражения $H_3PW_{12}O_{40}$ и $Co_{1.5}PW_{12}O_{40}$ могут представлять собой смесь $H_3PW_{12}O_{40}$ и $Co_{1.5}PW_{12}O_{40}$ по аналогии с солями цезия (смеси $H_3PW_{12}O_{40}$ и $Cs_3PW_{12}O_{40}$) [27—29].

Проверка каталитической активности при окислении циклогексена. Окисление циклогексена с помощью H_2O_2 (30% водный раствор) в присутствии и отсутствии CO_2 проводили при 70° С в течение 4 ч на катализаторе $Co_{1.5}PW_{12}O_{40}$. Анализ с использованием ΓX —MC показал, что окисление H_2O_2 приводило к смеси: циклогексен-2-он-1, циклогексен-2-ол-1 и циклогександиол-1,2 в качестве основных продуктов (см. схему 1). В побочных продуктах присутствовали циклогексен оксид, 2,3-эпоксициклогексанол, циклогександион-1,2,3-гидроксициклогексанон и циклогексантриол-1,2,3.

Схема 1. Основные продукты, образующиеся при окислении циклогексена с помощью H_2O_2 в присутствии CO_2 на катализаторе $Co_{1.5}PW_{12}O_{40}$.


Для того, чтобы исследовать влияние СО2 на степень конверсии и селективность, мы провели окисление циклогексена Н₂О₂ в отсутствие и в присутствии CO₂. Реакции проводили при 70°C в течение 4 ч при соотношении (об.) C_6H_{10}/H_2O_2 , равном 0.5, и давлении CO_2 , равном 0.5 МПа. Результаты показаны в таблице. Видно, что использование в качестве окислителя только Н₂О₂ привело к конверсии 52.9% и относительно высокой селективности по енону (64.8%). Диол был получен в следовых количествах (1.7%). Неожиданным оказался тот факт, что при использовании в качестве окислителя смеси H_2O_2/CO_2 степень превращения выросла до 70.5%, а селективность по енону снизилась до 49.6% с увеличением доли диола до 11.1%. Мы также провели реакцию с использованием исключительно СО2, но степень конверсии была очень мала (около 2.7%), а среди продуктов реакции присутствовали углеводороды. Таким образом, повышение конверсии с использованием в качестве окислителя смеси

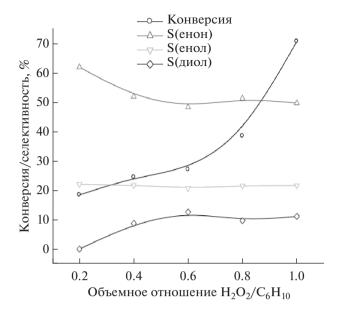
 ${
m H_2O_2/CO_2}$ по сравнению с использованием ${
m H_2O_2}$ и ${
m CO_2}$ по отдельности говорит о существовании некоего синергизма между ${
m H_2O_2}$ и ${
m CO_2}$. Поэтому их смесь была выбрана в качестве окисляющего агента и было решено изучить влияние давления ${
m CO_2}$, доли ${
m H_2O_2}$, температуры и продолжительности реакции на процесс окисления.

Влияние давления CO_2 . Окисление циклогексена с помощью H_2O_2 (объемное соотношение $H_2O_2/C_6H_{10}=0.5$) при различных давлениях CO_2 проводили при 70° С в течение 4 ч. Результаты показаны на рис. 3. Как видно на рисунке, увеличение давления CO_2 приводит к увеличению степени превращения. Что касается селективности, полученные результаты показывают, что при увеличении давления CO_2 от 0.1 МПа до 0.4 МПа селективность по енолу увеличивалась, в то время как по енону и диолу снижалась. При давлении CO_2 больше 0.4 МПа росла селективность по енону и диолу и снижалась по енолу. Этот результат можно объяснить тем, что при высоком давлении

Конверсия и величины селективности по различным продуктам для окисления циклогексена с помощью H_2O_2 и смеси H_2O_2/CO_2 . Реакция проводилась при температуре 70°C в течение 4 ч с катализатором $Co_{1.5}PW_{12}O_{40}$

Окислитель	Конверсия, %	S (енол), %	S (енон), %	S (диол), %
H_2O_2	52.9	17.3	64.8	1.7
H_2O_2/CO_2	70.5	21.6	49.6	11.1

Рис. 3. Влияние давления CO_2 на оксиление циклогексена на катализаторе $Co_{1.5}PW_{12}O_{40}$. Условия реакции: m (катализатора) 0.2 г, $T=70^{\circ}$ С, t=4 ч, объемное соотношение $H_2O_2/CO_2=0.5$.


СО₂ в большей степени происходило образование

ионов перкарбоната HCO_4^- , которые обеспечивают окисление за счет переноса кислорода, и, следовательно, увеличивалось количество енона (наиболее окисленной формы) и снижалась доля енола (менее окисленная форма). Действительно, Хансю и др. [30] при изучении эпоксидирования алкенов двухфазной водной смесью H_2O_2/CO_2 обнаружили,

что ионы HCO_4^- отвечают за перенос кислорода к алкенам. По мнению авторов, перкарбонат может образовываться в результате различных реакций между H_2O_2 , CO_2 и H_2O_2 или непосредственно между H_2O_2 и CO_2 . В работе Ричардсона и др. [31] указано, что H_2O_2 взаимодействует с ионом бикарбоната

 ${
m HCO_3^-}$ в водном растворе с образованием иона перкарбоната ${
m HCO_4^-}$, а также что эти частицы обеспечивают эпоксидирование алкенов и окисление сульфидов.

Влияние относительного количества пероксида водорода. Влияние H_2O_2 на окисление циклогексена было исследовано в диапазоне объемных отношений H_2O_2/C_6H_{10} от 0.2 до 1. Реакции проводили при 70° С и давлении CO_2 0.5 МПа. На рис. 4 показана конверсия циклогексена и селективность по продуктам реакции при различных объемных отношениях H_2O_2/C_6H_{10} . Полученные результаты показали, что увеличение этого отношения приводит к увеличению конверсии циклогексена. Действительно, увеличивая это отношение от 0.5

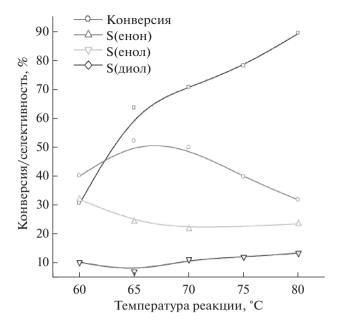


Рис. 4. Влияние доли H_2O_2 на конверсию циклогексена и селективность. Условия реакции: m (катализатора) $0.2 \, \Gamma$, $T = 70 \, ^{\circ}\text{C}$, $t = 4 \, ^{\circ}\text{q}$, $P(\text{CO}_2) = 0.5 \, \text{Mna}$.

до 1, мы получили увеличение конверсии с 18.4 до 70.5%. Что же касается селективности, из полученных данных видно, что при величинах объемного отношения от 0.2 до 0.6 селективность по енону уменьшилась в пользу диола. При дальнейшем увеличении объемного отношения H_2O_2/C_6H_{10} селективность по всем продуктам оставалась практически постоянной. Стоит упомянуть, что енон был получен как основной продукт вне зависимости от доли H_2O_2 .

Влияние температуры реакции. Окисление циклогексена проводили при различных температурах и давлении CO_2 , равном 0.5 МПа. Из результатов, приведенных на рис. 5, следует, что протекание реакции при использовании смеси CO_2/H_2O_2 в качестве окислителя сильно зависит от температуры. При ее увеличении от 60 до 80°C конверсия быстро возрастала с 30.4% до 89.1%. Видно, что селективность по енону в диапазоне 60—65°C увеличивалась в противоположность селективности по енолу. Выше 65°C наоборот, селективность по енону падает, а по енолу растет. Температура 70°C была выбрана в качестве оптимальной температуры реакции для синтеза циклогексен-2-она-1.

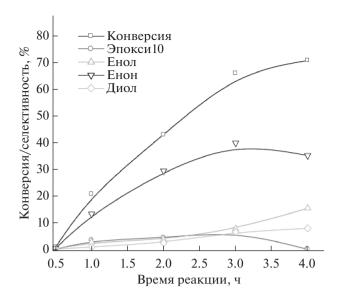

Влияние продолжительности реакции. На рис. 6 показано изменение конверсии и выходов продуктов реакции. Видно, что окисление с помощью системы H_2O_2/CO_2 является быстрой реакцией, для которой характерен быстрый рост конверсии после 0.5 ч с начала реакции. При увеличении времени реакции с 0.5 до 4 ч конверсия возросла с 0.8 до 70.5%. На рис. 6 видно, что при росте времени реакции с 0.5 до 3 ч выход ено-

Рис. 5. Окисление циклогексена при различных температурах и давлении CO₂ 0.5 Мпа.

на сначала увеличивается, а затем уменьшается. С другой стороны, выход енола и диола слегка возрос при увеличении времени реакции. На основании этих результатов можно предположить, что диол образуется из эпоксида в результате последовательной реакции и/или непосредственно из циклогексена (см. схему 2). Действительно, по литературным данным транс-циклогександиол мог образовываться путем катализируемого кислотами открытия эпоксидного цикла, в то время как цис-изомер может быть получен в результате радикальной реакции [2]. В итоге наилучшими рабочими параметрами для селективного окисления циклогексена до енона были выбраны следующие: время реакции 3 ч при температуре 70°C и объемном соотношении H_2O_2/C_6H_{10} 0.2.

Схема 2. Предполагаемые пути реакции окисления циклогексена смесью H_2O_2/CO_2 в присутствии катализатора $Co_{1.5}PW_{12}O_{40}$. Условия реакции: $70^{\circ}C$, объемное отношение $H_2O_2/C_6H_{10}=0.5$; $P_{CO_2}=0.5$ МПа.

Рис. 6. Влияние времени реакции на конверсию циклогексена и выход продуктов. Условия реакции: 70° C, объемное отношение циклогексен : $H_2O_2 = 0.5$; $P_{CO_2} = 0.5$ МПа.

Таким образом, при окислении циклогексена дешевыми и экологически безопасными окислителями Н₂О₂ и СО₂ в присутствии катализатора ${
m Co_{1.5}PW_{12}O_{40}}$ показано, что циклогексен-2-он-1 является основным продуктом реакции. Использование СО2 одновременно с Н2О2 в качестве окисляющего агента приводит к значительному увеличению конверсии по сравнению с их использованием по отдельности. Полученная высокая конверсия может быть связана с увеличением выхода иона перкарбоната НСО обеспечивающего окисление за счет переноса кислорода. Вероятно, Н₂О₂ взаимодействует с СО₂ с получением ионов перкарбоната, что подтверждает обоснованность использования смеси СО₂/H₂O₂ в качестве окисляющего агента.

Влияние CO_2 на эффективность H_2O_2 в качестве окислителя циклогексена показало, что CO_2 может выполнять роль своеобразного промотора в аллильном окислении циклогексена. Оптимальные условия синтеза циклогексен-2-она-1 (важного промышленного промежуточного продукта) — температура 70° C, объемное отношение $H_2O_2/C_6H_{10}=0.2$.

БЛАГОДАРНОСТЬ

Авторы благодарят Отделение научных исследований Университета Короля Сауда за финансовую поддержку работы (проект RGP-VPP-116).

СПИСОК ЛИТЕРАТУРЫ

- 1. Bohstrom Z., Rico-Lattes I., Holmberg K. // Green Chem. 2010. V. 12. P. 1861.
- Lee S.O., Raja R., Harris K.D.M, Thomas J.M., Johnson B.F.G., Sankar G. // Angew. Chem. Int. Ed. 2003. V. 42. P. 1520.
- Punniyamurthy T., Rout L. // Coord. Chem. Rev. V. 252. P. 134.
- Jiang D., Mallat T., Meier D.M., Urakawa A., Baiker A. // J. Catal. 2010. V. 270. P. 26.
- Son Y.C., Makawana V.D., Howell A.R., Suib S.L. // Angew. Chem. Int. Ed. 2010. V. 40. P. 4280.
- Zhenghong Z., Yilong T., Lixin W., Guofeng Z, Qilin Z., Chuchi T. // Synth. Commun. 2004. P. 1359.
- Smith A.B., Konopelski J.P. // J. Org. Chem. 1984. V. 49. P. 4094.
- 8. Cai Y., Zhu M.Q., Dai H., Liu Y., Mao J.X, Chen X.Z., He C.H. // Adv. Chem. Eng. Sci. 2011. V. 1. P. 15.
- Ghiaci M., Dorostkar N., Martínez-Huerta M.V., Fierro J.L.G., Moshiri P. // J. Mol. Catal.: A. 2013. V. 379. P. 340.
- Cai X., Wang H., Zhang Q., Tonga J., Lei Z. // J. Mol. Catal.: A. 2014. V. 217. P. 383.
- Ghiaci M., Aghabarari B., Botelho do Rego A.M., Ferraria A.M., Habibollahi S. // Appl. Catal. A. 2011. V. 393. P. 225.
- 12. Cai Z.Y., Zhu J., Chen M.Q., Shen Y.Y., Zhao J., Tang Y., Chen X.Z. // Catal. Commun. 2010. V. 12. P. 197.
- Li Y. X.T., Zhou Ji. H.B. // Catal. Commun. 2012 . V. 27. P. 169.
- Chutia P., Kato S., Kojima T., Satokawa S. // Polyhedron. 2009. V. 28. P. 370.
- Musser T.M. // Industrial Organic Chemicals: Starting Materials and Intermediates. Ullmann's encyclopedia

- Cyclohexanol and Cyclohexanone.Wiley-VCH: Weinheim. 2003. V. 10. P. 10.
- Okuhara T., Mizuno N., Misono M. // Adv. Catal. 1996.
 V. 41. P. 113.
- Kozhevnikov I.V. // Catal. Rev. Sci. Eng. 1995. V. 37. P. 311.
- Bagno A., Bonchio M. // Angew. Chem. Int. Engl. Ed. 2005. V. 44. P. 2023.
- 19. Bonchio M., Carraro M., Scorrano G., Bagno A. // Adv. Synth. Catal. 2004. V. 346. P. 648.
- 20. Rocchiccioli-Deltcheff C., Fournier M., Franck R., Thouvenot R. // Inorg. Chem. 1983. V. 22. P. 207.
- 21. Rocchiccioli-Deltcheff C., Fournier M. // J. Chem. Soc. Faraday Trans. 1991. V. 87. P. 3913.
- 22. Fournier M., Feumi-Jantou C., Rabia C., Herve G., Launay S. // J. Mater. Chem. 1992. V. 2. P. 971.
- 23. Gao R., Chen H., Le Y., Dai W.L., Fan K. // Appl. Catal. A. 2009. V. 352. P. 61.
- Fuchs V.M., Pizzio L.R., Blanco M.N. // Eur. Polym. J. 2008. V. 44. P. 801.
- 25. Yoshimune M., Yoshinaga Y., Okuhara T. // Microporous Mesoporous Mater. 2002. V. 51. P. 165.
- Santos Joicy S., Dias José A., Dias Sílvia C.L., Garcia Fillipe A.C., Macedo J.L., Sousa Flávia S.G., Almeida Liana S. // Appl. Catal. A. 2011. V. 394. P. 138.
- Narasimharao K., Brown D.R., Lee A.F., Newman A.D., Siril P.F., Tavener S.J., Wilson K.K. // J. Catal. 2007. V. 248. P. 226.
- 28. *Mizuno N., Misono M.* // Chem. Rev. 1889. V. 98. P. 199.
- Dias A., Caliman J., Dias S.C.L. // Microporous Mesoporous Mater. 2004. V. 76. P. 221.
- Hâncu D, Green J., Beckman J.E. // Ind. Eng. Chem. Res. 2002. V. 41. P. 4466.
- Yao H.R., Richardson D.E. // J. Am. Chem. Soc. 2000.
 V. 122. P. 3220.