УЛК 6265.637:66.09

ИЗМЕНЕНИЯ СТРУКТУРНО-ГРУППОВЫХ ХАРАКТЕРИСТИК СМОЛ И АСФАЛЬТЕНОВ ТЯЖЕЛЫХ НЕФТЕЙ В ПРОЦЕССЕ ПЕРВИЧНОЙ ПЕРЕРАБОТКИ

© 2017 г. М. А. Копытов*, А. К. Головко

Институт химии нефти СО РАН, Томск **E-mail: kma@ipc.tsc.ru* Поступила в редакцию 07.02.2016 г.

Исследованы превращения смол и асфальтенов различных по химическому составу тяжелых нефтей при первичной переработке на примере нефтей Усинского (Республика Коми, РФ) и Зуунбаянского (Монголия) месторождений. С использованием данных элементного состава, молекулярной массы, ПМР-спектроскопии определены структурно-групповые параметры молекул смол и асфальтенов исходных нефтей и нефтяных остатков (мазутов), полученных атмосферной перегонкой с отбором фракций НК-350°. Выявлены изменения усредненных структур молекул в процессе первичной переработки нефтей и установлено, что эти изменения зависят от химического состава исходных нефтей.

Ключевые слова: тяжелые нефти, процесс первичной переработки, смолы, асфальтены, структурногрупповые характеристики.

DOI: 10.7868/S0028242116060137

Постепенное снижение запасов легких нефтей во многих нефтедобывающих регионах мира, в том числе и в России, вызывает необходимость добычи тяжелых нефтей и битумов [1]. Для крупномасштабного вовлечения в переработку тяжелого углеводородного сырья требуется проведение глубоких исследований состава тяжелых нефтей различного типа и поведения ее компонентов в различных процессах нефтепереработки.

Одной из причин трудности переработки тяжелого нефтяного сырья является высокое содержание (суммарно до 45 мас. %) смол и асфальтенов, в молекулах которых концентрируется большая часть металлов и гетероатомов, присутствующих в исходном сырье [2, 3]. Эти соединения имеют высокую молекулярную массу, склонны к "уплотнению" и образованию кокса при переработке, дезактивируют катализаторы, что усложняет переработку тяжелого сырья. Показано [4], что уже при температурах 160—200°С начинаются процессы преобразования структур смол и асфальтенов, что создает трудности даже на первичных стадиях переработки тяжелых нефтей с высоким содержанием смол и асфальтенов.

Недостаточная изученность смолисто-асфальтеновых компонентов тяжелых нефтей различного типа затрудняет дальнейший поиск способов ее глубокой переработки. Целью работы являлось исследование структурно-групповых характеристик смол и асфальтенов как исходных тяжелых нефтей различного типа, так и полученных в остатках их первичной переработки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Определение физико-химических характеристик исходных нефтей и мазутов выполнены в аккредитованной лаборатории углеводородов и высокомолекулярных соединений нефти Института химии нефти СО РАН (Аттестат аккредитации № РОСС RU.0001.510476).

Первичные процессы нефтепереработки имитировали фракционированием на аппарате АРН-2 по ГОСТ 11011-85, отбирая фракции, выкипающие до 350°C. Максимальная температура куба аппарата APH-2 в процессе разгонки, достигала 280°C при отборе фракции 170-180°C и атмосферном давлении, последующие фракции (в соответствии с ГОСТ 11011) отбирали под вакуумом и более низких температурах куба. Фракции, выкипающие от 180 до 320°C, отбирали при остаточном давлении 1.6×10^3 Па, что соответствует фактической температуре 65-180°C и температуре куба 145-260°С. Фракции 320-350°С отбирали при остаточном давлении 2.7×10^2 Па, что соответствует фактической температуре 143-176°C и температуре куба 203–236°C соответственно.

Общее содержание n-алканов в исходных нефтях и мазуте определяли прямым газохроматографическим анализом (хроматограф Кристалл-2000, кварцевая капиллярная колонка 25 м × 0.22 мм, стационарная фаза SE-52, линейное повышение температуры в ходе анализа от 50 до 290°C со скоростью 3 град/мин, внутренний стандарт — n-гексадекан).

Содержание твердых парафинов исследовалось по ГОСТ 11851-85.

Содержание смол и асфальтенов в исходных нефтях и мазуте анализировали по стандартной методике [5]. Асфальтены выделяли разбавлением образца *н*-гексаном в объемном соотношении 1 : 40. После разбавления образца полученный раствор выдерживали в течение суток в темноте, выпавший осадок отфильтровывали. Полученный осадок помещали в бумажный патрон и в аппарате Сокслета промывали *н*-гексаном для удаления масел и смол (мальтенов), затем асфальтены из патрона вымывали хлороформом, отгоняли растворитель и сушили асфальтены до постоянного веса.

После отгонки растворителя из объединенного гексанового раствора (после осаждения и промывки асфальтенов) получали мальтены, которые наносили на слой активированного силикагеля АСК (соотношение 1:15), загружали полученную смесь силикагеля с адсорбированным материалом в аппарат Сокслета и последовательно вымывали масла *н*-гексаном, а затем смолы — смесью этанола и бензола (1:1) при температурах кипения данных растворителей. После удаления растворителей устанавливали содержание масел и смол в образце.

Структурно-групповой анализ (СГА) смол и асфальтенов, выделенных из исходной нефти и мазута, проводили по методике, разработанной в ИХН СО РАН и основанной на совместном использовании результатов определения элементного состава, средних молекулярных масс и данных ПМР-спектроскопии [5, 6].

Анализ содержания углерода, водорода, азота и кислорода проводили на элементном анализаторе Vario EL Cube (Германия). Количество серы определяли методом сожжения с последующим поглощением образовавшихся оксидов серы раствором углекислого натрия и титрованием соляной кислотой [7].

Молекулярные массы веществ измеряли метолом криоскопии в нафталине на разработанном в ИХН СО РАН приборе "Крион" с электротермическим измерением температурной депрессии. Ошибка в определяемых величинах молекулярных масс не превышает 2% для веществ с молекулярной массой 500-1000 а.е.м. и не более 5% для соединений с молекулярной массой 1000—1500 а.е.м. при концентрации исследуемых веществ не более 0.5 мас. %. Данный метод является достаточно точным и наиболее распространенным и доступным. Другие методы (вискозиметрия, осмометрия, ультрацентрифугирование, метод молекулярной пленки, эбуллиоскопия, светорассеяние и др.) дают завышенные значения молекулярных масс из-за протекающих процессов ассоциации смол и асфальтенов [8-10].

Спектры протонного магнитного резонанса снимали на ЯМР-Фурье-спектрометре AVANCE-AV-300 при 1 мас. % концентрации исследуемых веществ, используя в качестве растворителя дей-

терохлороформ, в качестве внутреннего стандарта — гексаметилдисилоксан.

Для представления данных СГА использованы такие же обозначения структурных параметров, какие применялись в прежних работах [5, 6], а именно:

 C_a, C_H, C_G, C_γ — количества атомов углерода в ароматических, нафтеновых и парафиновых структурах молекул, в α -положениях к гетерофункциям и ароматическим ядрам и в не связанных с последними терминальных метильных группах (C_γ) соответственно; f_a, f_H и f_H — доли углеродных атомов в соответствующих структурных фрагментах; K_o — общее число колец, K_a и K_H — количества ароматических и нафтеновых циклов в усредненной молекуле; m_a — среднее число структурных блоков в молекуле;

Средние параметры структурных блоков помечены надстрочными звездочками, где C^* — общее число атомов C в структурном блоке, остальные обозначения аналогичны выше указанным

$$(C_a^*, C_{\scriptscriptstyle H}^*, C_{\scriptscriptstyle \Pi}^*, C_{\scriptscriptstyle \alpha}^*, C_{\scriptscriptstyle \gamma}^*, K_{\scriptscriptstyle o}^*, K_{\scriptscriptstyle a}^*,$$
 и $K_{\scriptscriptstyle H}^*).$

Термический анализ выполняли на дериватографе "Q-1000". Навеску вещества брали в количестве 100 мг, испытания проводили в инертной атмосфере (гелий) со скоростью нагрева печи 10°С/мин от комнатной температуры до 800°С.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для выполнения исследований в качестве объектов взяты две тяжелые нефти с высоким содержанием смолисто-асфальтеновых компонентов, физико-химические характеристики исходных образцов и полученных из них мазутов представлены в табл. 1.

Выбор этих нефтей обусловлен тем, что они существенно отличаются по составу и ряду физико-химических характеристик. Условно их можно рассматривать как две крайние модели из ряда тяжелых нефтей. Нефти значительно различаются по содержанию смол, асфальтенов, твердых парафинов, гетероатомов, дистиллятных фракций и углеводородному составу. Существенные различия химического состава определяют и их физические характеристики, такие как плотность, вязкость, температура застывания и др.

Нефть месторождения Зуунбаян (3H) добывается на территории южной Монголии и залегает на глубине 1120-1130 м [11]. Нефть Усинского месторождения (УН) находится в Тимано-Печорской нефтегазоносной провинции (Республика Коми РФ), средняя глубина залегания 1406 м [12]. Объекты исследования относятся к тяжелым ($\rho^{20} > 0.887$), высоковязким ($\nu_{50} > 31$) нефтям и характеризуются низким содержанием фракций, выкипающих до 350° С. Образцы имеют близкие значения средней молекулярной массы, 3H-397 а.е.м. и YH-365 а.е.м.

Таблица 1. Физико-химические характеристики исходных нефтей и полученных из них мазутов

Показатели	Зуунбаянская нефть		Усинская нефть		Метод анализа	
Показатели	исходная	мазут	исходная	мазут	метод анализа	
Плотность, кг/м ³	887.5	895.2	966.7	976.5	ГОСТ 3900-85	
Кинематическая вязкость при	31.4	_ *	827.0	_ *	ГОСТ 33-2000	
50 °С, мм ² /с						
Температура застывания, °С	29.0	63.0	-14.0	82.0	ГОСТ 20287-91	
Средняя молекулярная масса,	397	550	365	620	CTO 1239-2011	
а.е.м.					ИХН СО РАН	
					ФР.1.31.2011.10351	
Элементный состав, мас. %:					Анализатор	
С	86.32	86.91	84.94	85.42	CHNOS VARIO	
Н	12.25	11.12	11.98	10.28	EL CUBE	
S	0.06	0.10	1.98	2.41		
N	0.47	0.72	0.63	0.71		
О	0.90	1.15	0.47	1.18		
H/C	1.69	1.52	1.68	1.43		
Содержание, мас. %:						
н-алканов	18.01	26.40	1.27	1.72	CTO 1247-2011	
					ИХН СО РАН	
					ФР.1.31.2011.10346	
твердых парафинов	11.12	15.71	1.24	1.62	ΓΟCT 11851-85	
Компонентный состав, мас. %:						
масел	85.1	74.1	73.9	54.5	CTO 1246-2011	
смол силикагелевых	14.7	25.5	18.0	37.0	ИХН СО РАН Ф.В. 1. 21. 2011, 102.52	
асфальтенов	0.2	0.4	8.1	8.5	ФР.1.31.2011.10353	
Начало кипения, °С	90	350	140	350	ГОСТ 11011-85	
Фракционный состав, мас. %:						
Нк-120°С	2.0	_	_	_		
120-150°C	4.0	_	1.0	_		
150-200°C	5.0	_	4.0	_		
<i>Hκ-200°C</i>	11.0		5.0			
200-250°C	6.0	_	5.0	_		
250-300°C	8.0	_	7.0	_		
300-350°C	13.0	_	16.0	_		
200-350°C	27.0		28.0			
Нк-350°С	38.0		33.0			

^{* —} вязкость не определяли, т.к. при данной температуре нет свободного истечения.

Вязкость УН ($\nu_{50}=827.0~{\rm km^2/c}$) существенно выше вязкости ЗН ($\nu_{50}=31.4~{\rm km^2/c}$), что объясняется более высоким содержанием в ней смол и асфальтенов. По содержанию асфальтенов — $8.1~{\rm kac}$. УН можно отнести к высокоасфальтенистой нефти. Асфальтены склонны образовывать коллоидную систему и при большой концентрации так же, как и смолы определяют вязкость нефти [13, 14].

ЗН относится к метановому углеводородному типу (т.к. в ней преобладают углеводороды метанового ряда) [11], а УН — к метано-нафтеновому [15].

Выбор образцов по углеводородному составу обусловлен тем, что многие добываемые нефти относятся к метановому типу, значительно реже встречаются нафтеновые и очень редко — ароматические [16], поэтому нефти ароматического типа в данной статье не рассматривались.

Особенность 3H — низкое содержание асфальтенов (0.2 мас. %) и серы (0.06 мас. %), но при этом в ней отмечается высокое содержание смол (14.7 мас. %) и твердых парафинов (11.12 мас. %). Высокое содержание твердых парафинов (μ -ала-

ны от C_{18} и выше) определяет высокую температуру застывания данной нефти — плюс 29.0° С.

УН — высокосернистая (содержание серы — 1.98 мас. %) с закономерным высоким содержанием смол (18.0 мас. %) и асфальтенов (8.1 мас. %), но с низким содержанием твердых парафинов (1.24 мас. %), что определяет высокую вязкость и низкую температуру застывания — минус 14.0°C.

Проведя фракционирование, установлено, что начало кипения исходной ЗН 90°С, содержание бензиновых фракций (НК-200°С) составляет 11.0 мас. %, а общее содержание фракций, выкипающих до 350°С, не превышает 38.0 мас. %. УН начинает кипеть при 140°С, бензиновых фракций содержится лишь 5.0 мас. %, общее содержание фракций НК-350°С составляет 33.0 мас. %.

Из табл. 1 видно, что в остатках вакуумной разгонки происходит закономерное увеличение доли гетероатомов и снижается соотношение Н/С, что обусловлено удалением светлых фракций с более высоким соотношением Н/С и более низким содержание серы, азота и кислорода. При этом происходит непропорциональное увеличение доли смол и асфальтенов в полученных мазутах. В мазуте ЗН доля асфальтенов увеличивается в 2 раза — с 0.2 до 0.4 мас. % (при удалении 38.0 мас. % дистиллятных фракций). В мазуте УН доля асфальтенов возрастает всего на 0.4% — с 8.1 до 8.5 мас. % (при выходе дистиллятных фракций 33.0 мас. %). Доля смол в мазуте ЗН увеличивается в 1.7 раза, в мазуте УН — в 2 раза (с 18.0 до 37.0 мас. %).

В табл. 2 приведены структурно-групповые характеристики смол и асфальтенов исходных нефтей и полученных мазутов. Смолы исходной ЗН имеют среднюю молекулярную массу 1360 а.е.м., среднее число структурных блоков в молекуле $m_a = 2.2$. В усредненной молекуле смол содержится 96 атомов углерода, из которых около 25 входят в ароматические фрагменты ($C_a = 24.7$), около 27 в насыщенные циклы ($C_{\rm H}$ =26.6) и 45 в алифатические фрагменты ($C_{\rm II}$ = 45.4). Из алифатических атомов углерода C_{γ} = 4.4 являются метильными заместителями при нафтеновых кольцах и в концевые метильных группах алифатических цепей, что указывает на наличие в структурных блоках усредненной молекулы довольно длинных слаборазветвленных алкильных заместителей до C_{21} $(C_{\pi}^* = 20.6)$. Из 17.7 колец (K_o) усредненной молекулы смол 10.8 приходятся на ароматические (Ка) и 6.9 на насыщенные (K_н).

Средняя молекулярная масса асфальтенов ЗН выше, чему у смол и составляет 2365 а.е.м., среднее число структурных блоков в молекуле $(m_a) = 3.9$. Из 24.2 колец (K_o) усредненной молекулы асфальтенов нефти 13.4 приходится на ароматические (K_a) и 10.8 — на насыщенные (K_μ) . Атомы углерода в усредненных молекулах асфальтенов исходной нефти распределены следующим образом: 33.0% — в

ароматических (f_a), 25.8% — в нафтеновых (f_H) и 41.2% — в алифатических структурах (f_H).

Смолы УН имеют среднюю молекулярную массу 830 а.е.м. (что ниже, чем у смол 3Н), при этом среднее число структурных блоков в молекуле (m_a) отличается незначительно и составляет 1.9. Смолы УН отличаются от смол 3Н меньшим содержанием парафиновых и нафтеновых фрагментов. В усредненной молекуле смол УН содержится 58 атомов углерода, из которых 21 находится в ароматических фрагментах ($C_a = 20.9$), 10 в насыщенных ($C_m = 10.3$) и 25 в алифатических ($C_m = 24.8$). Молекулы смол имеют алкильные заместители, содержащие до 13 атомов углерода ($C_m^* = 12.6$). Из 7.8 колец (K_o) усредненной молекулы 5.1 — ароматические (K_a) и 2.6 — насыщенные (K_h).

Молекулярная масса асфальтенов УН ниже, чем у асфальтенов ЗН и составляет 1405 а.е.м., среднее число структурных блоков в молекуле $m_{\rm a}=3.1.$ В отличие от асфальтенов ЗН в асфальтенах УН преобладают атомы С в ароматических структурах ($f_{\rm a}=45.6\%$), доля атомов в нафтеновых и парафиновых структурах ниже и составляет 22.2 и 32.2% соответственно. Основа структурного блока асфальтенов в УН представлена три- и четырехареновыми ядрами ($K_{\rm a}^*=3.5$), с этими ядрами сконденсировано по одному—два нафтеновых циклов ($K_{\rm h}^*=1.7$), их обрамляют алкильные заместители с длинной цепи до 10 углеродных атомов ($C_{\rm n}^*=9.7$).

В смолах, выделенных из мазута 3H, отмечается снижение средней молекулярной массы с 1360 (в исходных) до 850 а.е.м. Среднее число структурных блоков в молекуле (m_a) снижается с 2.2 до 1.6. Число атомов углерода в усредненной молекуле снижается с 96 (для исходных) до 60, кислорода — с 3.99 до 2.12, а число атомов азота возрастает с 0.87 до 1.12. Значительно меняется состав среднего структурного блока: уменьшается общее число колец (K_a^*) с 8.1 до 4.6, ароматических (K_a^*) — с 4.9 до 2.2, насыщенных (K_a^*) — с 3.1 до 2.4.

Молекулярная масса асфальтенов, выделенных из мазута ЗН, существенно меньше (1800 а.е.м.) по сравнению с асфальтенами нефти (2365 а.е.м.), среднее число структурных блоков в молекуле уменьшается с 3.9 до 3.2. Заметно падает число атомов углерода в усредненной молекуле асфальтенов с 172 (в исходной нефти) до 129 (в асфальтенах из мазута), атомов азота с 2.03 до 1.53, серы с 0.15 до 0.06, а количество атомов кислорода увеличивается с 1.48 до 2.72. При этом в средних структурных блоках молекул асфальтенов мазута общее число атомов углерода (С*) меняется не существенно с 44-45 (C* = 44.5 в асфальтенах 3H) до 40 (в асфальтенах мазута) за счет доли в насыщенных циклах ($C_{\rm H}^*$) с 11.4 до 8.1 и алкильных фрагментов (C_{π}^{*}) с 18.4 до 17.4, при этом количе-

Таблица 2. Средние структурные параметры молекул смол и асфальтенов нефтей и мазутов

	редние структурные параметры молекул смол и ас Значение для зуунбаянской нефти				Значение для усинской нефти							
Параметры	смолы		асфальтены		смолы		асфальтены					
Ī	нефть	мазут	нефть	мазут	нефть	мазут	нефть	мазут				
Средняя молекулярная масса, а.е.м.												
	1360	850	2365	1800	830	585	1405	2280				
•		•	Число атом	ов в средней	і молекуле:		•	'				
C	95.77	59.65	172.05	129.45	58.09	41.57	92.48	162.28				
Н	129.52	80.19	241.66	178.39	76.58	49.91	109.14	189.77				
N	0.87	1.12	2.03	1.53	0.95	0.64	1.13	2.08				
S	0.13	0.12	0.15	0.06	0.75	0.51	1.73	2.44				
О	3.99	2.12	1.48	2.72	1.14	0.66	7.11	2.14				
H/C	1.35	1.34	1.40	1.38	1.32	1.20	1.18	1.17				
Кольцевой состав:												
K _o	17.7	7.5	24.2	17.4	7.8	11.4	15.7	31.7				
K _a	10.8	3.6	13.4	11.0	5.1	2.9	10.6	17.7				
K _H	6.9	3.9	10.8	6.4	2.6	8.5	5.2	14.0				
·			Распред	еление атом	ов С, %:	!	I	!				
$f_{\rm a}$	25.5	25.6	33.0	36.0	37.4	29.8	45.6	45.0				
$f_{\scriptscriptstyle H}$	27.5	29.1	25.8	20.4	18.3	63.9	22.2	38.8				
f_n	47.0	45.3	41.2	43.6	44.3	6.3	32.2	16.1				
•		Число угле	родных атом	ов разного т	ипа в средне	й молекуле:	•	'				
C_a	24.7	14.2	56.7	46.6	20.9	12.4	42.1	73.1				
Сн	26.6	16.2	44.5	26.4	10.3	26.6	20.5	63.0				
C_{π}	45.4	25.2	70.9	56.5	24.8	2.7	29.8	26.2				
C_{α}	13.6	6.2	20.8	13.8	8.0	6.3	13.6	21.9				
C_{γ}	4.4	4.3	11.9	8.3	5.4	2.6	5.6	8.0				
		I	Среднее ч	исло блоков:	в молекуле	l	I	I				
$m_{\rm a}$	2.2	1.6	3.9	3.2	1.9	1.5	3.1	4.9				
1		п	араметры ср	едних структ	урных блокс	в:	I	I				
K _o *	8.1	4.6	6.3	5.4	3.9	7.7	5.1	6.5				
K_a^*	4.9	2.2	3.5	3.4	2.6	1.9	3.5	3.6				
К* К*	3.1	2.4	2.8	2.0	1.3	5.8	1.7	2.9				
C*	43.9	33.9	44.5	39.9	28.5	28.3	30.1	33.1				
C*	11.2	8.7	14.5	14.4	10.7	8.2	13.7	14.9				
С* С*	12.1	9.9	11.4	8.1	5.2	17.2	6.7	12.9				
C*	20.6	15.4	18.4	17.4	12.6	1.8	9.7	5.3				
C*α	6.2	3.8	5.4	4.3	4.1	4.3	4.4	4.5				
C**	2.0	2.6	3.1	2.6	2.8	1.7	1.8	1.6				

ство ароматических атомов углерода (C_a^*) остается практически неизменным.

В процессе атмосферно-вакуумной перегонки УН также происходят изменения структуры

усредненных молекул смол. Молекулярная масса смол мазута УН снижается с 830 до 585 а.е.м., уменьшается среднее число структурных блоков с 1.9 до 1.5, число атомов углерода с 58 до 42, атомов

кислорода с 1.14 до 0.66. Более глубокие изменения по сравнению с 3H происходят в составе структурного блока: в отличие от смол мазута 3H в молекулах смол мазута УН общее число колец в блоке (K_0^*)увеличивается с 3.9 до 7.7 за счет насыщенных циклов (K_1^*) с 1.3 до 5.8, а число ароматических колец (K_1^*) снижается с 2.6 до 1.9, при этом общее число атомов углерода (C^*) меняется несущественно.

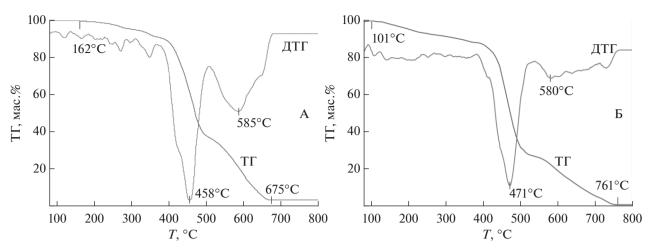
Следует отметить, что в процессе термического воздействия при фракционировании ЗН происходит снижение молекулярной массы как асфальтенов, так и смол, выделенных из мазута, а молекулярная масса асфальтенов, выделенных из мазута УН, увеличивается с 1405 (в исходной УН) до 2280 а.е.м. Число атомов углерода в усредненной молекуле асфальтенов возрастает с 92 (для исходной нефти) до 162 (для асфальтенов из мазута), число атомов серы - с 1.73 до 2.44, азота - с 1.13 до 2.08. Число атомов кислорода, наоборот, снижается в 3.3 раза с 7.11 до 2.14, среднее количество блоков увеличивается с 3.1 до 4.9, при этом число ароматических колец в структурном блоке остается фактически прежним ($K_a^* = 3.5$), а насыщенных циклов (K_H^*) увеличивается с 1.7 до 2.9. Доля парафиновых фрагментов (C_{π}^{*}) в структурном блоке снижается с 9.7 до 5.3.

Непропорциональное увеличение доли смол и асфальтенов в мазутах (в сравнении с долей отогнанных дистиллятных фракций из нефтей) и изменение структурно-групповых характеристик объясняется протеканием двух процессов — дополнительным образованием их количества из гетероатомных компонентов масел и преобразованием самих смол и асфальтенов в ходе термического воздействия при фракционировании.

В работах [17—20] было показано, что компоненты масел и смолисто-асфальтеновых веществ усинской и других тяжелых нефтей и битумов могут содержать структурные фрагменты, связанные эфирными и сульфидными мостиками. Эти компоненты могут деструктировать уже при температуре 160°С, а образовавшиеся радикалы в дальнейшем могут вступать в реакции рекомбинации или радикального замещения с образованием новых соединений [4, 21]. Данное предположение подтверждается увеличением суммарного количества гетероатомов в смолисто-асфальтеновых веществах (табл. 2), при этом само содержание смол в объектах возрастает (табл. 1).

О включении в состав смол и асфальтенов структурных фрагментов масляных компонентов свидетельствует увеличение числа атомов в нафтеновых структурах молекул смол и асфальтенов мазута УН, что является следствием преобладания нафтеновых структур в маслах исходной нефти [15]. Доля атомов углерода, включенных в нафтеновые фрагменты ($f_{\rm H}$) молекул смол, увеличива-

ется более чем в 3 раза — с 18.3 (в смолах исходной нефти) до 63.9% (в смолах мазута), а доля в парафиновых фрагментах ($f_{\rm n}$) снижается в 7 раз — с 44.3 до 6.3%. В молекулах асфальтенов доля атомов в нафтеновых фрагментах ($f_{\rm h}$) увеличивается с 22.2 до 38.8%, а доля в парафиновых ($f_{\rm n}$) снижается в 2 раза — с 32.2 до 16.1%.


Кроме включения в состав структурных фрагментов молекул гетероатомных соединений масел происходит преобразование исходных молекул смол и асфальтенов. Мостиковые серосодержащие фрагменты молекул смол могут разрушаться при температуре разгонки нефти [21], что приводит к снижению доли алкильных атомов углерода (C_{π}), концевых метильных групп C_{γ} и числа атомов серы в усредненной молекуле смол (табл. 2).

Для смол сернистой (содержание серы 1.98 мас. %) УН метано-нафтенового типа и полученного из него мазута эти параметры меняются более заметно, чем для малосернистой (содержание серы 0.06 мас. %) ЗН метанового типа. В смолах ЗН число атомов серы в усредненной молекуле составляет 0.13, а в смолах мазута 0.12 (снижается лишь на 7.7%), для УН нефти и мазута -0.75и 0.51 соответственно (снижается на 32.0%). Число атомов углерода в алифатических фрагментах (C_{Π}) в усредненной молекуле смол 3H составляет 45.4, а в смолах мазута 25.2 (снижается на 44.5%), для УН и мазута — 24.8 и 2.6 соответственно (снижается на 89.5%). Число концевых метильных групп (C_{γ}) в усредненной молекуле смол 3H (4.4) и смол мазута из нее (4.3) остается практически неизменным, в то время как для смол УН и мазута их количество падает почти на 52% с 5.4 до 2.6.

Таким образом, в ходе термического воздействия при первичной переработке происходит увеличение доли нафтеновых структур в усредненной молекуле смол и асфальтенов УН. При этом в смолах УН в процессе термического воздействия снижается количество длинных линейных и слаборазветвленных алкильных заместителей с длинной цепочки от C_{11} до C_{22} (табл. 2, см.

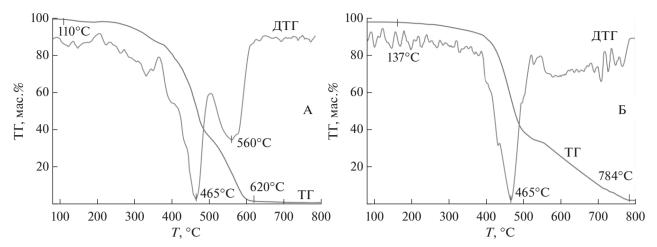
 C_{Π}^* и C_{Π} соответственно). Полученные данные согласуются с данными, приведенными в работе [20], где на основе селективных химических реакций показано, что часть алкильных заместителей в молекулах смол УН связаны сульфидными и эфирными мостиками, представлены, в основном, фрагментами от C_{10} до C_{30} для линейных и от C_{12} до C_{23} для изоалкановых. Основная часть изоалкановых заместителей содержит от C_{15} до C_{18} и представлена 2,6,10-триметилалканами [20]. Особенностью смол и асфальтенов ЗН в сравнении с УН, является снижение доли нафтеновых фрагментов в среднем структурном блоке $(C_{\rm H}^*)$.

В отличие от серы, число атомов которой в молекулах смол мазутов УН и ЗН снижается, содержание атомов кислорода и азота в средней моле-

Рис. 1. Данные термогравиметрического анализа нефтяных смол. A – смолы нефти месторождения Усинское. B – смолы нефти месторождения Зуунбаян

куле меняется не столь линейно. Содержание кислорода в смолах ЗН составляет 3.99 атома на усредненную молекулу (или примерно 1.81 на один структурный блок), а в мазуте 2.12 (1.33 на один блок). В смолах УН в усредненной молекуле атомов кислорода содержится 1.14 (0.60 на один блок), а в мазуте -0.66 (0.44 на один блок). Таким образом, в молекулах смол УН и ЗН в процессе разгонки число атомов кислорода снижается. Также происходит и с асфальтенами мазута УН – наблюдается снижение количества атомов кислорода в усредненной молекуле с 7.11 в исходной нефти до 2.14 (с 2.29 до 0.44 атомов на один структурный блок), а в асфальтенах ЗН, наоборот, происходит увеличение с 1.48 до 2.72 атомов (с 0.38 до 0.85 атомов на один структурный блок). Наиболее заметно содержание атомов азота увеличивается в смолах ЗН с 0.87 в исходной нефти до 1.12 (с 0.40 до 0.70 на структурный блок) и в асфальтенах УН с 1.13 до 2.08 (с 0.36 до 0.57 атомов на один блок).

Кроме смол и асфальтенов изменения могут претерпевать и масляные компоненты, часть кислородсодержащих соединений из масляной части в первичном термическом процессе могут преобразовываться в компоненты смол, а часть, например содержащие кислотные группы, могут подвергаться декарбоксилированию.


Также для смол, выделенных из нефти и мазута, был проведен термогравиметрический анализ, данные представлены на рис. 1 и 2 соответственно. Из представленных данных видно, что смолы ЗН и УН обладают разными характеристиками. Смолы УН (рис. 1а) имеют максимальную скорость разложения в интервале температур 378 — 509°С и 509—650°С. Процессы деструкции начинаются при температуре 162°С, полное разложение завершается при 675°С (поведение смол в исходных объектах в термических процессах может несколько отличаться).

Смолы ЗН (рис. 16) в отличие от смол УН начинают разрушаться при более низкой температуре — 101°С, а полное разложение завершается при температуре 761°С. Максимальная скорость термической деструкции смол ЗН лежит в интервале 381—536°С, на диаграмме ДТГ максимум кривой приходится на 471°С.

Термодеструкция смол, выделенных из мазутов, отличается от термодеструкции смол исходных нефтей. Температура начала разложения смол, выделенных из мазута УН (рис. 2а), ниже, чем у исходной нефти, и составляет 110°С, полное разложение завершается при 620°С, что на 55°С ниже, чем у исходных смол нефти. Максимальная скорость разложения находится в интервале температур 363—505°С, максимум кривой ДТГ приходится на 465°С.

Начало разложения смол, выделенных из мазута ЗН (рис. 26), на 36°С выше, чем смол мазута УН — 137°С, полностью смолы разлагаются при 784°С. Температурные интервалы максимальной скорости деструкции в сравнении со смолами исходной нефти фактически не меняются и составляют 377—534°С, на диаграмме максимум кривой ДТГ приходится на 465°С.

Из полученных по данным ТГ результатов можно сделать вывод, что термическая деструкция смол, выделенных из нефти и их остатков, наиболее активно протекает при температурах от 458 до 465°С. При температуре до 280°С (равной максимальной температуре куба, достигнутой при атмосферно-вакуумной перегонке нефти на APH-2) потеря массы образцов смол составляет не более 5—10 мас. % (рис. 1 и 2). Незначительная потеря массы при данных условиях и снижение молекулярной массы этих смол (табл. 2) дополнительно указывают на то, что основной вклад в увеличении их количества объясняется участием гетероатомных компонентов масел.

Рис. 2. Данные термогравиметрического анализа смол нефтяного остатка. А – смолы мазута, полученного из нефти месторождения Усинское; Б – смолы мазута, полученного из нефти месторождения Зуунбаян

выводы

Показано, что в процессе первичной переработки тяжелых нефтей происходят, как количественные, так и качественные изменения структурных характеристик смол и асфальтенов, зависящие от природы исходного объекта. Непропорциональное увеличение доли смол и асфальтенов в мазутах обоих нефтей (в сравнении с долей отогнанных дистиллятных фракций) и изменения их структурно-групповых характеристик объясняется протеканием двух процессов — дополнительным образованием их количества из гетероатомных компонентов масел и преобразованием самих смол и асфальтенов. Наиболее заметные качественные и количественные изменения претерпевают смолы.

Изменение характеристик и свойств смолисто-асфальтеновых веществ зависит от состава и типа исходных нефтей. Для смол сернистой усинской нефти метано-нафтенового типа и полученного из него мазута структурно-групповые параметры смол и асфальтенов меняются более заметно, чем для малосернистой зуунбаянской нефти метанового типа.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Брагинский О.Б.* Мировой нефтегазовый комплекс. М.: Наука, 2004.
- 2. *Сергиенко С.Р., Таимова Б.А., Талалаев Е.И.* Высокомолекулярные неуглеводородные соединения нефти. М.: Наука, 1979.
- 3. *Поконова Ю.В.* Химия высокомолекулярных соединений нефти. Изд-во Ленингр. ун-та, 1980. 172 с.
- 4. Гринько А.А. Серусодержащие структурные фрагменты смолисто-асфальтеновых компонентов тяжелой нефти: дис. ... канд. хим. наук / Учреждение Российской академии наук ИХН СО РАН. Томск, 2011. 177 с.
- 5. Камьянов В.Ф., Филимонова Т.А., Горбунова Л.В., Лебедев А.К., Сивирилов П.П. и др. Химический со-

- став нефтей Западной Сибири. Новосибирск: Нау-ка, 1988. 288 с.
- 6. *Камьянов В.Ф.*, *Большаков Г.Ф.* // Нефтехимия. 1984. Т. 24. № 4. С. 443.
- 7. *Климова В.А.* Основные микрометоды анализа органических соединений. М.: Химия, 1975. 288 с.
- 8. *Камьянов В.Ф., Аксенов В.С., Титов В.И.* Гетероатомные компоненты нефтей. Новосибирск: Наука, 1983. 240 с.
- 9. *Посадов И.А., Поконова Ю.В.* Структура нефтяных асфальтенов. Л.: Ленинградский технол. Ин-т им. Ленсовета, 1977. 75 с.
- Поконова Ю.В. Химия высокомолекулярных соединений нефти. Л.: Изд-во Ленингр. ун-та, 1980.
 172 с.
- 11. *Хонгорзул Б., Горбунова Л.В., Головко А.К., Камья- нов В.Ф., Пурэвсурэн Б. //* Нефтегазовое дело. Электронный научный журнал. 2007. http://www.ogbus.ru/authors/Khongorzul/Khongorzul_1.pdf 10 c.
- 12. Головко А.К., Камьянов В.Ф., Огородников В.Д. // Геология и геофизика. 2012. Т. 53. № 12. С. 1786.
- 13. Тетельмин В.В. Реология нефти. Учебное пособие. ИД Интеллект, 2015. 248 с.
- 14. *Ghanavati M., Shojaei M.J., Ramazani S.A.* // Energy Fuels. 2013. V. 27. № 12. P. 7217.
- Головко А.К., Камьянов В.Ф., Огородников В.Д. // Геология и геофизика. 2012. Т. 53. № 11. С. 1580.
- Петров А.А. Углеводороды нефти. М.: Наука, 1984. 264 с.
- 17. Sergun V. P., Cheshkova T.V., Sagachenko T.A., Min R.S. // Petrol. Chemistry. 2016. V. 56. № 1. P. 10.
- 18. Сагаченко Т.А., Сергун В.П., Чешкова Т.В., Коваленко Е.Ю., Мин Р.С // Химия твердого топлива. 2015. № 6. С. 12.
- 19. *Чешкова Т.В., Сагаченко Т.А., Мин Р.С.* // Технологии нефти и газа. 2015. Т. 97. № 2 . С. 18.
- 20. *Антипенко В.Р., Чешкова Т.В.* // Известия Томского политехн. ун-та. 2014. Т. 324. № 3. С. 16.
- 21. *Гринько А.А.*, *Мин Р.С.*, *Сагаченко Т.А.*, *Головко А.К.* // Нефтепереработка и нефтехимия. 2012. № 4. С. 24.