УДК 665.613:665.3.033:(28+52+53+54)

СОСТАВ И СТРОЕНИЕ СМОЛИСТЫХ КОМПОНЕНТОВ ТЯЖЕЛОЙ НЕФТИ МЕСТОРОЖДЕНИЯ УСИНСКОЕ

© 2017 г. Т. В. Чешкова, Е. Ю. Коваленко, Н. Н. Герасимова, Т. А. Сагаченко*, Р. С. Мин

Институт химии нефти СО РАН, Томск *E-mail: dissovet@ipc.tsc.ru, azot@ipc.tsc.ru
Поступила в редакцию 31.05.2016 г.

С применением комплекса физико-химических методов изучены смолистые компоненты тяжелой нефти месторождения Усинское. Приведена характеристика средних молекул смол и их высоко- и низкомолекулярных азотистых оснований. Установлено, что в структуре смолистых компонентов присутствуют фрагменты, связанные через эфирные и сульфидные мостики. Они представлены алканами нормального и разветвленного строения, алкилциклопентанами, алкилциклогексанами, моно- и полициклическими ароматическими углеводородами, бензо- и дибензотиофенами и их гомологами, алифатическими спиртами и кислотами. Показано, что азотистые основания не являются периферийными фрагментами молекул смол, а являются их структурными единицами.

Ключевые слова: смолы, азотистые основания, фрагменты, связанные сульфидными и эфирными мостиками, структурно-групповой и индивидуальный состав.

DOI: 10.7868/S0028242117010051

Смолы составляют значительную долю добываемого и перерабатываемого нефтяного сырья и поэтому накопление экспериментальных данных об особенностях структуры смолистых веществ различных нефтяных дисперсных систем имеет значение для выбора эффективных технологий их химической переработки и повышения степени квалифицированного использования. Настоящая работа является продолжением исследований [1—4], направленных на уточнение и углубление представлений о химической природе высокомолекулярных компонентов нетрадиционных источников углеводородного сырья, и посвящена изучению состава и строения смолистых веществ тяжелой нефти Усинского месторождения.

К смолам традиционно относят компоненты деасфальтенизатов, вымываемые с поверхности адсорбентов спиртобензольной смесью после удаления масляных фракций [5]. Они представляют собой соединения с развитыми углеводородными скелетами и гетероатомами в виде разнообразных функциональных групп. Атомы азота встречаются в молекулах смол, главным образом, в составе гетероароматических фрагментов основного (пиридин и его бензологи) и нейтрального характера (пиррол и его бензологи). Согласно [6], преобладающая часть азота, определяемого в составе смол, входит в качестве структурных элементов в молекулы высокомолекулярных соединений, объединяясь с ними через σ-связи. Меньшая часть азота смолистых веществ - составная

часть сравнительно низкомолекулярных соединений, которые либо сорбируются на макромолекулярных образованиях смол за счет донорно-акцепторных взаимодействий, либо захватываются полыми ячейками их структур. Кислород представлен в нефтяных смолах гидроксильными (спиртовыми и фенольными), карбоксильными, карбонильными, эфирными и сложноэфирными функциями. Атомы серы содержатся в молекулах смолистых веществ в гетероциклических фрагментах (тиофеновых, тиациклановых), тиольных и сульфидных группах [5, 7-9]. Функциональные группы простых и сложных эфиров и алифатических сульфидов могут выступать в качестве мостиков, сшивающих отдельные фрагменты молекул смол между собой или с поликонденсированным ядром их молекул [10].

В предлагаемой работе изучен состав азотистых оснований смол усинской нефти и структурных фрагментов, связанных в их молекулах эфирными и сульфидными группами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Смолы выделяли из деасфальтенизированной нефти по стандартной методике [11].

Азотистые основания (АО) концентрировали по схеме, предусматривающей стадии осаждения высокомолекулярных оснований (ВМ АО) газообразным хлористым водородом и экстракцию

33

низкомолекулярных оснований (HM AO) уксуснокислым раствором серной кислоты [12].

Разрыв эфирных и сульфидных связей в молекулах смол осуществляли с помощью трибромида бора и борида никеля, соответственно. Условия проведения селективных реакций описаны в [13, 14].

Смолы, ВМ АО и НМ АО охарактеризованы комплексом методов, включающим: анализ элементного состава с использованием CHNS-анализатора "Vario EL Cube", определение молекулярных масс криоскопией в бензоле, функциональный анализ азотистых соединений [15], ИК-, ЯМР-Фурье спектроскопию, структурно-групповой анализ (СГА).

ИК-спектры регистрировали в области 4000— 400 см^{-1} на FT-IR-спектрометре "NICOLET 5700" в виде тонкой пленки из растворов в хлороформе.

Спектры ЯМР ¹Н снимали на спектрометре ЯМР-Фурье "AVANCE AV 300" фирмы "Bruker" при 300 МГц в растворах CDCl₃. В качестве стандарта использовали тетраметилсилан. По спектрам ЯМР ¹Н проводили расчет относительного содержания протонов в различных структурных фрагментах, исходя из площадей пиков в соответствующих областях спектра: $H_{\rm ar}$ (доля протонов, содержащихся в ароматических структурах) — 6.6—8.5 м.д.; H_{α} (доля протонов у атома углерода в α -положении алифатических заместителей ароматических структур) — 2.2...4.0 м.д.; H_{β} и H_{γ} (доля протонов в метиленовых и в концевых метильных группах алифатических фрагментов молекул, соответственно) — 1.1...2.1 м.д. и 0.3...1.1 м.д.

Методика СГА [16-18] основана на совместном использовании данных о молекулярной массе, элементном составе и распределении протонов между различными фрагментами молекул высокомолекулярных соединений, установленном с помощью ЯМР ¹Н-спектроскопии. Используемый подход позволяет рассчитать средние структурные характеристики молекул исследуемых компонентов. В ходе расчетов определены следующие параметры: число атомов углерода в ароматических (C_a) , парафиновых (C_n) и нафтеновых (С_н) структурных фрагментах в средней молекуле смол, в α-положении к ароматическим ядрам (C_a) и в не связанных с ароматическими ядрами терминальных метильных группах (C_{γ}); f_{a} , f_{H} , f_{Π} — доли атомов углерода в ароматических, нафтеновых и парафиновых структурных фрагментах; общее число (K_0), число ароматических (K_a) и нафтеновых ($K_{\rm H}$) циклов в средней молекуле; $m_{\rm a}$ число ароматических блоков в средней молекуле.

Состав жидких продуктов хемолиза, а также состав НМ АО исследовали методом хроматомасс-спектрометрии (ГХ-МС) на DFS приборе "Thermo Scientific" при энергии ионизирующих электронов — 70 эВ, температуре ионизационной

камеры — 270° С, температуре интерфейса — 270° С, температуре инжектора — 250° С, на колонке длиной 30 м, диаметром 0.25 мм, с толщиной фазы DB-5MS — 0.25 мкм. Газ-носитель — гелий, при постоянном расходе — 0.8 мл/мин. Программа термостата 80° С — 3 мин — 4° С/мин — 300° С — 30 мин. Сканирование масс-спектров осуществлялось каждую секунду в диапазоне масс до 500 а.е.м.

Обработку полученных результатов проводили с помощью программы Xcalibur. Идентификацию соединений выполняли с использованием литературных данных и компьютерной библиотеки масс-спектров NIST 02. Относительную распространенность каждого гомолога внутри определенного класса соединений оценивали как отношение его содержания к суммарному содержанию всех гомологов этого класса.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

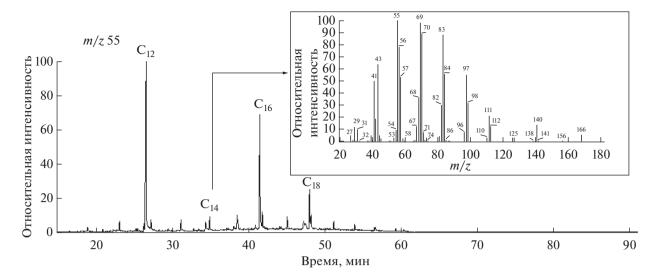
Общая характеристика смол. Исследуемые смолы, содержание которых в усинской нефти составляет 19.1 мас. %, характеризуются повышенными концентрациями гетероатомов (таблица). Содержание азота и серы в них в 1.7 и 1.5 раза выше, чем в сырой нефти (0.63 и 1.98 мас. % соответственно). Следовательно, в смолах аккумулируется 33% атомов азота и 29% атомов серы, присутствующих в нефти. Соединения, содержащие атом азота, на 51% представлены азоторганическими основаниями ($N_{\text{осн}}$).

Согласно данным таблицы, средние молекулы смол усинской нефти содержат 59 углеродных атомов (С), образующих систему, состоящую из ароматических (C_a), нафтеновых (C_н) и парафиновых (С_п) структурных фрагментов. Большая часть общего числа углеродных атомов (71%) приходится на насыщенные фрагменты $(f_{\rm H} + f_{\rm II})$, доля углерода ароматического характера (f_a) составляет 29%. Молекулы смол состоят из двух ароматических структурных блоков ($m_a = 1.79$), построенных из двух или трех бензольных и гетероциклических колец ($K_a^* = 2.36$) с преобладанием (64%) бициклических фрагментов. На каждое ареновое ядро приходится по $K_{\rm H}^*=3.10$ насыщенных колец, и общее число циклов в структурной единице составляет $K_o^* = 5.46$. На долю парафиновых фрагментов в структурных блоках смол приходится 10.84 углеродных атомов (C_n^*). Большая часть парафиновых атомов углерода входит в состав алкильных заместителей, находящихся на периферии ароматических ядер ($C_{\alpha}^*=4.56$), при этом только 24% ($C_{\gamma}^*/C_{\pi}^* \times 100$) в виде терминальных метильных групп.

Из распределения гетероатомов в структурных блоках смол следует, что в смолистых веществах

Структурные параметры компонентов нефти Усинского месторождения

П.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Компоненты		
Параметры	смолы	BM AO	HM AO
Средняя молекулярная масса, а.е.м.	877	1278	365
	Элементный состав,	мас. %	
	81.14	79.81	81.13
I	9.45	8.81	10.70
I .	1.08	1.36	1.30
осн	0.55	1.17	1.22
	2.96	3.16	2.69
	5.37	6.86	4.18
	ло атомов в средней		
	59.30	85.00	24.68
	82.22	111.70	38.75
	0.68	1.24	0.34
	0.81	1.26	0.31
	2.94 1.39	5.48	0.95 1.57
/C	1.39 Количество коле	1.31	1.57
0	9.75	11.31	3.46
o a	4.21	8.70	1.12
н	5.54	2.61	
l l		1	2.34
racii	гределение атомов уг 29.12	лерода, <i>%</i>	21.19
	38.21	12.18	39.47
Имала мулапания	32.67	47.05	39.34
	ых атомов разного ти 17.27	па в средней молекуле	5.23
a		10.35	9.74
н	22.66		
п	19.37	39.99	9.71
α	8.15	12.08	3.21
γ	4.62	6.72	2.80
Í	Число блоков в моле		1.02
a	1.79	2.72	1.03
1	етры средних структу	1	
*	5.46	4.16	3.35
* a	2.36	3.20	1.08
*	3.10	0.96	2.27
* ^H *	33.19	31.26	23.92
* a	9.67	12.74	5.07
а * ′н	12.68	3.81	9.45
'H			
*	10.84	14.71	9.41
* α * γ	4.56	4.44	3.12
**	2.59	2.47	2.72


усинской нефти наиболее широко распространены молекулы, в которых 78% структурных блоков содержат 2 атома кислорода ($O^* = 1.64$). Азот присутствует в 24%, а сера — в 13% структурных блоков ($N^* = 0.38$, $S^* = 0.45$). Принимая во внимание литературные данные [9], можно полагать, что сера и кислород находятся в структуре молекул смол усинской нефти, как в полициклической конденсированной структуре, так и в периферийных заместителях в виде функциональных групп или соединительных мостиков.

С использованием методов ИК-спектроскопии для смолистых веществ обнаружена достаточно высокая интенсивность полос поглощения в области 3470—3430, 1730—1700 и при 1660 и 1030 см⁻¹ свидетельствует о том, что гетероатомы участвуют в структуре их молекул в виде функциональных групп кислот, амидов, эфиров и сульфоксидов. Атомы азота входят также в структуру пиридиновых циклов, на что указывает характерный дуплет в области 1580—1560 см⁻¹. Для молекул исследуемых смол характерно наличие конденсированных сильно замещенных ароматических структур (3030, 1598, 868—746 см⁻¹) и насыщенных фрагментов (2921, 2851, 1452, 1375 см⁻¹).

Азотистые основания смол усинской нефти. Основную массу (37.6%) выделенных из смол азоторганических соединений составляют высокомолекулярные компоненты (ММ = 1278 а. е. м.), с которыми связано 47% общего и 80% основного азота смол. На долю низкомолекулярных соединений (ММ = 365 а. е. м.) приходится лишь 2.3% и с ними связано только 3% общего и 5% основного азота, содержащегося в смолах. По данным элементного и функционального анализов в составе обоих концентратов преобладают АО. Среди высокомолекулярных соединений их относительное содержание составляет 86%, среди низкомолекулярных — 92%. Общая степень извлечения $N_{\rm осh}$ из смол — 85%.

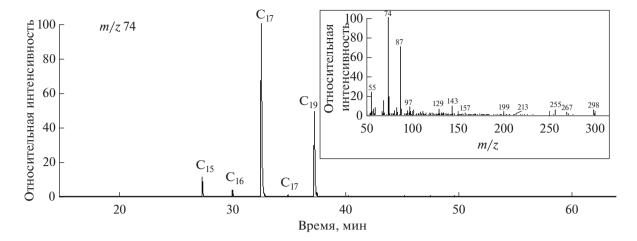
Сравнительный анализ данных СГА (таблица) позволил установить сходства и различия в структуре ВМ АО и НМ АО. Так средние молекулы ВМ АО содержат больше углеродных атомов, чем средние молекулы НМ АО, главным образом, за счет большего количества этих атомов в ароматических (C_a) и парафиновых (C_n) фрагментах. В средних молекулах ВМ АО в 1.9 раза выше доля углерода ароматического характера (f_a) , а в средних молекулах НМ АО в 3.2 раза выше доля углерода нафтенового характера ($f_{\rm H}$). Различия в распределении углерода парафинового типа (f_{Π}) не столь существенны. В средних молекулах ВМ АО углеродные атомы образуют почти три, а в средних молекулах НМ АО только один структурный блок ($m_a = 2.72$ и 1.03 соответственно), представленные полициклическими системами, в которых ароматические кольца сконденсированы с насыщенными. При незначительном различии в общей цикличности структурных блоков ($K_o^* = 4.16$ и 3.35), молекулы BM AO характеризуются повышенным количеством ароматических колец ($K_a^* = 3.20$ против 1.08), а молекулы HM AO — нафтеновых циклов ($K_H^* = 2.27$ против 0.96). Отличительной особенностью структурных блоков средних молекул BM AO является также более высокая доля парафиновых фрагментов ($C_n^* = 14.71$ против 9.41). Они характеризуются большим числом коротких алкильных заместителей, связанных с ароматическими циклами (C_a^*), и большей длиной парафиновых цепей, не примыкающих к бензольным ядрам ($C_n^* - C_a^*$). Степень разветвленности алкильного замещения (C_γ^*) ароматических блоков средних молекул BM AO и HM AO практически одинакова.

С использованием методов ИК-спектроскопии и ГХ-МС получена более детальная информация о составе НМ АО смол усинской нефти. По данным качественной ИК-спектроскопии они представлены смесью сильно- и слабоосновных соединений. В ИК-спектре концентрата проявляются полосы поглошения бензологов пиридина (перегиб в области 1576 см⁻¹) и карбонильной группы амидов (перегиб при 1650 см^{-1}), характерных, соответственно, для сильных и слабых АО [5]. Полосы поглощения при 3211 и 1720 см $^{-1}$ указывают на наличие карбоксилсодержащих азотистых соединений, которые, в зависимости от положения карбоксильной группы по отношению к атому азота, могут проявлять как сильно-, так и слабоосновные свойства [19]. Не исключено присутствие в смеси оснований, содержащих в структуре фенольный гидроксил (поглощение свободной -3600 и связанной -3585 см⁻¹ ОН-группы), а также сульфоксидов (1037 см^{-1}). Последние достаточно близки по свойствам к слабоосновным соединениям азота [15] и могут экстрагироваться из сложных органических смесей применяемым реагентом [20]. Разделение концентрата НМ АО на силикагеле, модифицированном щелочью [21], позволяет получить фракцию оснований, не содержащих в структуре кислородные функции. По данным ГХ-МС-анализа этой фракции, в составе НМ АО смол усинской нефти присутствуют C_1 - C_7 -хинолины (m/z 143, 157, 171, 185, 199, 213, 227), C_1 – C_5 -бензохинолины (m/z 193, 207, 221, 235, 249), C_0 - C_4 -дибензохинолины (m/z 229, 243, 257, 271, 285) и C_3 – C_4 -азапирены (m/z 245, 259). Основную массу идентифицированных соединений составляют бензо- и дибензохинолины с максимумом распределения на гомологи C_3 и C_{2-3} соответственно.

Рис. 1. Масс-фрагментограмма алифатических спиртов по иону m/z 55 продуктов деструкции С-О связей в макромолекулах смол и масс-спектр спирта состава C_{14} . Здесь и далее цифры на рисунках соответствуют числу атомов углерода в молекуле соединения.

Фрагменты смол усинской нефти, связанные в молекулах через эфирные и сульфидные мостики. Результаты ГХ-МС-анализа растворимых продуктов хемолиза свидетельствуют, что через эфирные мостики в молекулах смол усинской нефти связаны алканы, моноциклоалканы, моно-, би- и трициклические ароматические углеводороды (АУ), алифатические соединения кислорода и ароматические соединения серы.

Алифатические УВ (m/z, 71) представлены гомологическими рядами алканов нормального строения (C₁₀-C₃₀) с концентрационным максимумом на С₁₂ и разветвленного строения, в составе которых идентифицированы монометилзамещенные УВ $(C_{11}-C_{31})$ с различным положением замещающего радикала и изопреноиды, представленные 2,6,10-триметилалканами ($C_{15}-C_{18}$), пристаном и фитаном. Среди нафтенов присутствуют алкилциклопентаны (m/z 68, 69) от C_{15} до C_{25} и алкилциклогексаны (m/z 82, 83) от C_{12} до C_{24} . В составе моноаренов установлены н-алкилбензолы (m/z 91, 92) от C_{12} до C_{26} , фитанилбензол $(m/z 92, C_{26})$, фенилалканы $(m/z 91) C_{16}$, C_{17} , C_{18} , C_{19} с различным положением фенильного заместителя в алкильной цепи [22], би- (m/z, 105), три-(m/z 119) и тетраалкилзамещенные бензолы (m/z 133), представленные, соответственно, алкил-толуолами $C_{12}-C_{25}$, метилфитанилбензолом $(m/z 106, C_{27})$, алкилксилолами $C_{12}-C_{23}$, диметилфитанилбензолом (m/z 120) и алкилтриметилбензолами $C_{13}-C_{22}$.


Полициклические АУ представлены незамещенными нафталином и фенантреном и их (C_1 – C_4)- и (C_1 – C_2)-алкилпроизводными соответствен-

но. В ряду нафталинов повышено содержание C_2 -гомологов, в ряду фенантренов явных различий в содержании гомологов не наблюдается.

Среди гетероатомных соединений присутствуют (C_2 – C_5)-бензотиофены (БТ), незамещенный дибензотиофен, его алкилпроизводные от C_1 до C_4 и алифатические спирты нормального строения состава C_{12} , C_{14} , C_{16} , C_{18} (рис. 1). Большую часть ароматических сернистых соединений составляют дибензотиофены (ДБТ). Доминируют C_1 – C_2 –ДБТ. В составе алкилированных серосодержащих структур идентифицированы диметил-, триметил-, этил-, метилэтил-, диметилэтил-, диэтил-, этил-пропил-, метилдиэтил-, метилбутил-БТ, метил-, диметил-, триметил-, этил- и этилметил-ДБТ.

В составе жидких продуктов десульфуризации идентифицированы нормальные ($C_{14}-C_{30}$ с максимумом на C_{16}) и разветвленные алканы ($C_{14}-C_{25}$), 2,6,10-триметилалканы ($C_{15}-C_{18}$), пристан и фитан, алкилциклопентаны ($C_{16}-C_{23}$), алкилциклогексаны ($C_{14}-C_{22}$), фенилалканы ($C_{16}-C_{19}$), алкилтолуолы ($C_{16}-C_{20}$), алкилксилолы ($C_{17}-C_{19}$), алкилтриметилбензолы ($C_{13}-C_{21}$) и метиловые эфиры н-алкановых кислот состава $C_{14}-C_{18}$ (рис. 2). Не обнаружены алкилбензолы, фитанилбензолы, нафталины, фенантрены, бензо-, дибензотиофены и n-алифатические спирты.

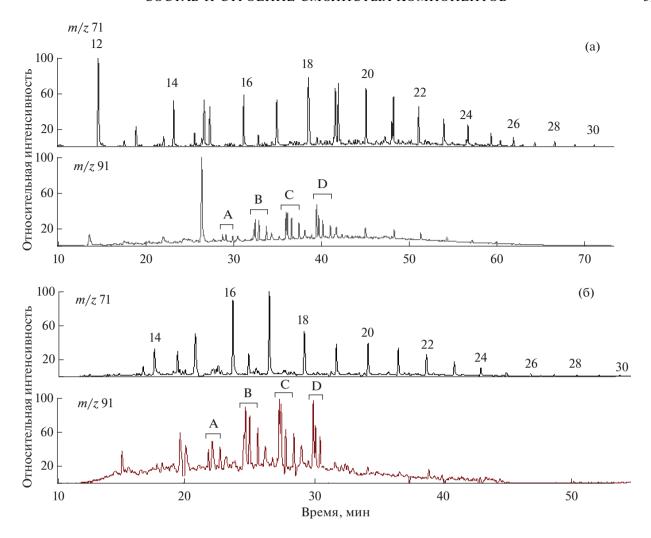
Анализ результатов химической деструкции связей углерод—кислород и углерод—сера выявил сходства и различия в составе фрагментов, связанных через эфирные и сульфидные мостики в структуре смолистых веществ. Так среди насыщенных УВ, связанных в молекулах смол эфирными и сульфидными мостиками, домини-

Рис. 2. Масс-фрагментограмма метиловых эфиров высших жирных кислот по иону m/z 74 продуктов деструкции C–S-связей в макромолекулах смол и масс-спектр метилового эфира состава C_{19} .

руют н-алканы (94.9 и 85.9 отн. % соответственно). При этом в составе "эфиросвязанных" насышенных УΒ В заметных количествах присутствуют четные гомологи н-алканов и изоалканов. Основные представители АУ в продуктах деструкции эфирных связей – фенилалканы (34.1% отн.) и алкилтолуолы (28.8% отн.), в продуктах деструкции сульфидных связей - фенилалканы (49.7% отн.) и алкилтриметилбензолы (34.3% отн.). Хотя *н*-алканы и фенилалканы являются основными представителями насыщенных и моноароматических УВ в исследуемых продуктах, доля н-алканов выше в продуктах разрушения эфирных связей (рис. 3а), а фенилалканов в составе "серосвязанных" моноароматических УВ (рис. 3б).

Наличие перечисленных типов соединений в качестве структурных фрагментов в молекулах смолистых компонентов усинской нефти подтверждается их идентификацией в составе жидких продуктов низкотемпературного (160—450°С) термолиза [23] и летучих продуктов флэш-пиролиза (650°С) смол этого месторождения [24].

По данным [25], распределение насыщенных УВ — биомаркеров (стераны, терпаны, *н*-алканы и изопренаны), присутствующих в структуре смолистых компонентов нефтей, может быть использовано при корреляции в системах нефть—нефть, материнское ОВ—нефть.


Следует отметить, что при достаточно высоком содержании в смолах усинской нефти общего и основного азота, в продуктах хемолиза нами не были обнаружены азоторганические соединения нейтрального (производные карбазола) и основного характера (производные пиридина). Не установлены они и в продуктах термической деструкции смолистых компонентов этой нефти [24, 26]. Следовательно, можно предположить,

что перечисленные компоненты не являются периферийными фрагментами молекул смол, а находятся в их конденсированных полициклических блоках, что подтверждается результатами выделения из смол АО. Как было показано выше, большую их часть составляют высокомолекулярные компоненты, с которыми связано 47% общего и 80% основного азота исследуемых смолистых вешеств.

Таким образом, результаты проведенных исследований свидетельствуют о сложном составе смолистых веществ тяжелой усинской нефти. Структурные блоки их средних молекул представлены, главным образом, пентациклическими фрагментами, содержащими би- или трициклическое ароматическое ядро, сопряженное с тремя нафтеновыми кольцами, и достаточно развитые алкильные заместители (до 11 углеродных атомов) линейного или слаборазветвленного строения. До 78% структурных блоков содержат 2 атома кислорода, азот присутствует в 24%, а сера — в 13% структурных блоков средних молекул смол усинской нефти.

Часть атомов серы и кислорода участвует в структуре молекул смол усинской нефти в виде соединительных мостиков — эфирных и сульфидных. Основные связанные через них фрагменты — нормальные и разветвленные алканы, алкилциклопентаны и алкилциклогексаны, моно-, би-, три- и тетраалкилзамещенные бензолы, нафталины, фенантрены, бензо- и дибензотиофены, алифатические спирты и кислоты. Для полициклических АУ, ароматических соединений серы и алифатических спиртов характерна только форма связывания через эфирную группу, для алифатических кислот — только через сульфидную группу.

Азотистые основания, находящиеся главным образом в конденсированных полициклических

Рис. 3. Распределение *н*-алканов (m/z 71) и фенилалканов (m/z 91) в продуктах деструкции связей C-O (a) и C-S (6) в макромолекулах смол. A, B, C, D- фенилалканы С $_{16}-$ С $_{19}$.

блоках из одного нафтенового и трех ароматических циклов, содержат достаточно длинные слаборазветвленные парафиновые цепи. В структурном блоке относительно низкомолекулярных АО содержится одно ароматическое и два нафтеновых цикла с меньшим числом парафиновых атомов С в алкильном замещении. Основные низкомолекулярные основания — алкилированные хинолины, бензохинолины и азапирены, незамещенный дибензохинолин и его алкилпроизводные.

Совокупность приведенных результатов имеет значение для углубления знаний о химической природе высокомолекулярных компонентов тяжелых нефтяных систем и прогнозирования состава дистиллятных фракций, получаемых в процессе их термической переработки.

СПИСОК ЛИТЕРАТУРЫ

- Сергун В.П., Чешкова Т.В., Коваленко Е.Ю., Мин Р.С., Сагаченко Т.А. // Технологии нефти и газа. 2013. Т. 89. № 6. С. 22.
- 2. *Коваленко Е.Ю.*, *Сергун В.П.*, *Мин Р.С.*, *Сагаченко Т.А.* // Химия и технология топлив и масел. 2013. Т. 580. № 6. С. 40. [Chemistry and Technology of Fuels and Oils. 2014. V. 49. № 6. Р. 522].
- Чешкова Т.В., Коваленко Е.Ю., Сагаченко Т.А. // Химия в интересах устойчивого развития. 2013. Т. 21. № 3. С. 349.
- 4. *Сергун В.П., Коваленко Е.Ю., Сагаченко Т.А., Мин Р.С.* // Нефтехимия. 2014. Т. 54. № 2. С. 83. [Petrol. Chem. 2014. V. 54. № 2. P. 83].
- 5. Бейко О.А., Головко А.К., Горбунова Л.В., Камьянов В.Ф. и др. Химический состав нефтей Западной Сибири. Новосибирск: Наука. Сиб. отд-ние, 1988, 288 с.
- 6. Гальперн Г.Д. // Успехи химии. 1976. Т. 45. № 8. С. 1395.

- 7. Strausz O.P., Safarik I., Lown E. M., Morales-Izquierdo A. // Energy and Fuels. 2008. V. 22. № 2. P. 1156.
- 8. *Porter D.J., Mayer P.M., Fingas M.* // Energy and Fuels. 2004. V. 18. № 4. P. 987.
- 9. *Shi Q., Hou D., Chung K.H., Xu Ch., Zhao S., Zhang Y. //* Energy and Fuels. 2010. V. 24. № 4. P. 2545.
- 10. *Камьянов В.Ф., Аксенов В.С., Титов В.И.* Гетероорганические компоненты нефтей. Новосибрск: Наука, 1983. 238 с.
- 11. Современные методы исследования нефтей (справочно-методическое пособие). Под ред. Богомолова А.И., Темянко М.Б., Хотынцевой Л.И. Л.: Недра, 1984, 431 с.
- 12. Воронова О.С., Герасимова Н.Н., Цой Л.А., Сагаченко Т.А, Бейко О.А., Большаков Г.Ф. // Нефтехимия. 1987. Т. 27. № 4. С. 447. [Petrol. Chemistry: USSR. 1987. V. 27. № 3. P. 151].
- 13. *Peng P., Morales-Izquierdo A., Hogg A., Strausz O.P.* // Energy and Fuels. 1997. V. 11. № 6. P. 1171.
- 14. Strausz O.P., Mojelsky T.W., Faraji F., Lown E.M., Peng P. // Energy and Fuels. 1999. V. 13. № 2. P. 207.
- 15. *Гальперн Г.Д.*, *Безингер Н.Н*. Методы анализа органических соединений нефти, их смесей и производных. М.: Изд-во АН СССР, 1960. С. 141–169.
- 16. *Камьянов В.Ф.*, *Большаков Г.Ф.* // Нефтехимия. 1984. Т. 24. № 4. С. 443. [Petrol. Chemistry. 1984. V. 24. № 4. P. 443].
- 17. *Камьянов В.Ф.*, *Большаков Г.Ф.* // Нефтехимия. 1984. Т. 24. № 4. С. 450. [Petrol. Chemistry. 1984. V. 24. № 4. P. 450].

- 18. *Камьянов В.Ф.*, *Большаков Г.Ф.* // Нефтехимия. 1984. Т. 24. № 4. С. 460. [Petrol. Chemistry. 1984. V. 24. № 4. Р. 460].
- 19. *Jewell D.M.* // Petroleum in the marine environment. Adv. in Chem. N.Y. 1980. Ser. 185. P. 219.
- 20. *Каширцев В.А., Коваленко Е.Ю., Мин Р.С., Сагачен-ко Т.А.* // Химия твердого топлива. 2009. № 4. С. 3. [Solid Fuel Chemistry. 2009. V. 43. № 4. P. 197].
- 21. *Коваленко Е.Ю., Герасимова Н.Н., Сагаченко Т.А., Голушкова Е.Б.* // Химия и технология топлив и масел. 2001. № 4. С. 33. [Chemistry and Technology of Fuels and Oils. 2001. V. 37. № 4. P. 265].
- 22. Антипенко В.Р., Голубина О.А., Гончаров И.В., Носова С.В., Остроухов С.Б. // Нефтехимия. 2007. Т. 47. № 3. С. 172. [Petrol. Chemistry. 2007. V. 47. № 3. P. 154].
- 23. *Гринько А.А., Мин Р.С., Сагаченко Т.А., Головко А.К.* // Нефтехимия. 2012. Т. 52. № 4. С. 249. [Petrol. Chemistry. 2012. V. 52. № 4. P. 221].
- 24. *Антипенко В.Р., Гринько А.А., Меленевский В.Н.* // Нефтехимия. 2014. Т. 54. № 3. С. 176. [Petrol. Chemistry. 2014. V. 54. № 3. Р. 178].
- 25. *Гордадзе Г.Н., Русинова Г.В.* // Нефтехимия. 2003. T. 43. № 5. C. 342. [Petrol. Chemistry. 2003. V. 43. № 5. P. 306].
- 26. *Гринько А.А., Мин Р.С., Сагаченко Т.А., Головко А.К.* // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2012. № 4. С. 24.