УЛК 541128

ОКИСЛИТЕЛЬНЫЙ ПИРОЛИЗ ПРОПАНА С ДОБАВКАМИ ЭТИЛЕНА

© 2016 г. Н. М. Погосян¹, М. Дж. Погосян¹, С. Д. Арсентьев¹, Л. Н. Стрекова², Л. А. Тавадян¹, В. С. Арутюнов², *

¹Институт химической физики им. А.Б. Налбандяна НАН Армении, Ереван
²Институт химической физики им. Н.Н. Семенова РАН, Москва
*E-mail: arutyunov@chph.ras.ru
Поступила в редакцию 24.11.2015 г.

Показано, что при некаталитическом окислительном пиролизе пропана добавление к реагентам этилена значительно повышает концентрацию пропилена в продуктах. При этом процесс может быть организован так, что этилен в нем практически не расходуется, т.е. фактически выступает в роли катализатора образования пропилена. Это открывает перспективы создания селективного процесса получения пропилена непосредственно из пропана.

Ключевые слова: пропан, окислительный пиролиз, пропилен, этилен.

DOI: 10.7868/S0028242116060174

Низшие олефины являются одним из основных базовых продуктов для химической промышленности. Согласно прогнозам в 2016 г. ожидается увеличение мирового производства этилена до 173.2 млн т, а объем мирового производства пропилена уже достиг 67.5 млн т в год [1]. Постоянный рост потребности в низших олефинах в значительной степени определяется быстрым увеличением потребления полиэтилена и полипропилена и расширением сферы их технологического применения. В связи с устойчивым ростом потребления олефинов требуются надежные источники дешевого и доступного сырья для их получения и более эффективные технологии их производства.

Традиционные процессы пиролиза и каталитического крекинга углеводородного сырья, на которые приходится около 80% мирового производства пропилена, предназначены для получения широкого спектра продуктов и не в полной мере удовлетворяют растущий спрос рынка на пропилен [2]. Преобладающим продуктом пиролиза нафты является этилен, который все в больших объемах получают пиролизом этана, выделяемого из природного газа. Поэтому удовлетворение быстрорастущего спроса на пропилен становится все более сложной задачей.

В настоящее время активно разрабатываются методы целевого получения пропилена: каталитический пиролиз [3], глубокий каталитический крекинг [4], дегидрирование пропана [5], метатезис и ряд других. В 2011 г. на долю целевых процессов получения пропилена приходилось лишь около 13% его мирового производства, а в 2016 г.

доля целевых процессов прогнозируется на уровне 20%.

Очень привлекательной задачей является разработка процессов получения пропилена из более дешевого и доступного газового сырья. Но это должны быть принципиально новые методы, так как при традиционном термическом пиролизе этан-пропановой смеси при суммарном выходе олефинов до 66% выход пропилена составляет всего 14—22% [6], не говоря уже о пиролизе этана и метана, при котором его выход ничтожен.

В наших предыдуших работах [7–10] было показано, что переход от традиционного газофазного термического пиролиза пропана к его окислительному пиролизу позволяет значительного повысить выход пропилена. Интересные результаты были также получены при совместном окислении этилена и метана [11, 12], показавшие заметное увеличение выхода пропилена по мере увеличения концентрации метана в смеси. Эти результаты показывают перспективность сопряженного некаталитического окисления легких углеводородов, которое можно рассматривать как потенциальный метод получения пропилена, а возможно и более тяжелых олефинов и ряда других продуктов. Переход с дорогостоящей нафты на более дешевое газовое сырье позволил бы существенно удешевить и быстро нарастить производство пропилена.

В данной работе исследовано совместное окисление пропана и этилена как один из возможных вариантов получения пропилена сопряженным окислением газообразных углеводородов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали методику струевого двухсекционного реактора, разработанную в [13]. Эксперименты проводили в проточном двухсекционном кварцевом реакторе, представляющем собой два цилиндрических объема, соединенных между собой перегородкой. Длина первой и второй секций реактора - 160 мм и 170 мм соответственно; диаметр одинаков и равен 45 мм. С целью разделения процессов, протекающих в секциях реактора, и предотвращения диффузии продуктов реакции из второй секции в первую, секции были отделены друг от друга перегородкой, представляющей собой пакет кварцевых трубок с внутренним диаметром 3 мм и длиной 40 мм. Реактор снабжен торпевыми вволами для термопар, помещенных в кварцевые чехлы, предварительно пассивированные борной кислотой. Через эти же отводы без нарушения герметичности реактора отбирали пробы для хроматографического анализа продуктов реакции. Все эксперименты проводили при давлении P = 660 Торр и времени пребывания смеси во второй секции реактора 4.5 с. Более подробно схема установки и методика проведения экспериментов описаны в [11, 12].

Эксперименты проводили с двумя разными наборами реагентов: в первой группе экспериментов изучали окисление пропана в присутствии азота (смеси состава $N_2: C_3H_8: O_2=3:5:1$ и 4.5:8:1), а во второй группе азот был замещен таким же количеством этилена (смеси состава $C_2H_4: C_3H_8: O_2=3:5:1$ и 4.5:8:1).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖЛЕНИЕ

Экспериментальные данные, полученные для смесей состава $N_2:C_3H_8:O_2=3:5:1$ и $C_2H_4::C_3H_8:O_2=3:5:1$, представлены в табл. 1 и 2.

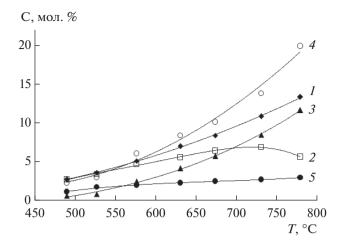

Сопоставление данных табл. 1 и 2 показывает, что в присутствии этилена конверсия пропана несколько снижается. При этом этилен существенно влияет на соотношение углеродсодержащих продуктов реакции, хотя их качественный состав в присутствии и отсутствии этилена одинаков. При добавлении этилена в исходную реагирующую смесь увеличивается выход пропилена, бутана, бутенов и оксида этилена. Следует отметить, что, как в присутствии, так и в отсутствии этилена в исходной смеси, выход таких кислородсодержащих продуктов, как метиловый спирт, уксусный альдегид, формальдегид пренебрежимо мал, поэтому в таблицах данные по этим продуктам не

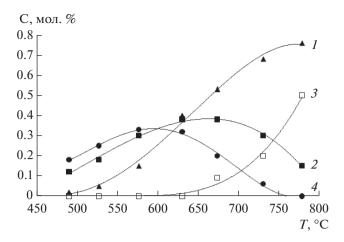
Таблица 1. Температурная зависимость конверсии пропана и концентрации образовавшихся продуктов (мол. %) при окислении смеси состава N_2 : C_3H_8 : O_2 = 3 : 5 :1

T, °C	C ₂ H ₆	C ₃ H ₆	C ₂ H ₄	C ₄ H ₁₀	C ₄ H ₈	H ₂	CH ₄	СО	C ₂ H ₄ O	S [C ₃ H ₆],	K(C ₃ H ₈), %
490	0.12	4.24	5.23	0.18	0	1.23	6.14	4.27	0.42	31.8	27.1
526	0.23	5.07	6.32	0.38	0	2.12	7.70	4.73	0.41	32.7	32.7
567	0.38	6.14	7.65	0.52	0	4.03	9.47	5.35	0.36	32.9	39.2
624	0.61	6.94	9.39	0.57	0.04	5.61	11.77	5.06	0.30	32.2	46.0
674	0.68	7.61	10.38	0.54	0.07	7.07	13.64	5.06	0.23	32.6	51.2
726	0.91	7.73	12.14	0.36	0.26	9.62	16.44	4.83	0.08	30.5	61.4
780	1.06	5.74	14.56	0.18	0.71	12.76	22.27	4.94	0.03	20.5	85.2

Таблица 2. Температурная зависимость конверсии пропана и концентрации образовавшихся продуктов (мол. %) при окислении смеси состава C_2H_4 : C_3H_8 : O_2 = 3 : 5 : 1

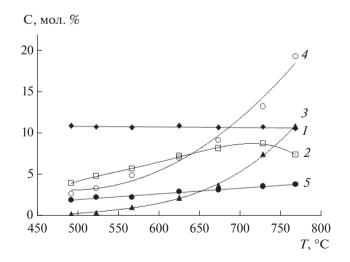
T, °C	C ₂ H ₆	C ₃ H ₆	C ₄ H ₁₀	C ₄ H ₈	H_2	CH ₄	СО	C ₂ H ₄ O	K(C ₂ H ₄), %	K(C ₃ H ₈), %	$\Delta[C_2H_4]$
485	0.45	5.76	0.41	0.03	0.94	5.23	4.54	0.91	8.7	19.7	19.1
538	0.76	6.64	0.48	0.10	1.62	6.71	5.35	0.77	8.9	24.4	19.6
574	1.06	7.12	0.54	0.15	2.45	7.79	5.50	0.91	8.9	28.3	19.6
622	1.35	7.83	0.62	0.18	3.86	10.29	5.65	0.74	9.3	35.4	20.5
674	1.80	8.62	0.58	0.27	5.10	11.77	6.59	0.68	11.3	38.8	24.8
726	2.26	9.04	0.39	0.64	8.20	15.39	6.82	0.36	12.0	48.0	26.3
777	2.64	7.65	0.18	1.29	12.27	21.06	6.59	0.03	13.6	64.1	29.9

Рис. 1. Температурная зависимость концентрации продуктов окислительного пиролиза смеси N_2 : $C_3H_8: O_2 = 4.5:8:1.$ $I-C_2H_4$ (\spadesuit), $2-C_3H_6$ (\square), $3-H_2$ (\blacktriangle), $4-CH_4$ (\bigcirc), 5-CO(\bullet). P=660 Topp, $\tau=4.5$ с.


приведены. С повышением температуры конверсия как пропана, так и этилена закономерно увеличивается.

Поскольку при окислении пропана этилен является одним из продуктов реакции, была сделана попытка подобрать такой состав смеси, при котором в ходе процесса расход этилена на образование продуктов реакции компенсировался бы его образованием при конверсии пропана. В этом случае при циклической организации процесса с промежуточным выделением продуктов (за исключением этилена) не было бы необходимости вводить этилен в исходную смесь, поскольку его постоянное присутствие обеспечивалось бы за счет окисления более дешевого пропана.

Нами экспериментально было показано, что смесь с мольным отношением $C_2H_4:C_3H_8:O_2=4.5:8:1$ обеспечивает выполнение данного условия, т.е. при окислении такой смеси при выбранных нами экспериментальных условиях концентрация этилена до и после реакции практически одинакова. Поэтому смесь такого состава была исследована более подробно.


Полученные экспериментальные данные для этих составов смеси представлены на рис. 1—4. На рис. 1 и 2 приведена температурная зависимость выхода продуктов окислительного превращения пропана в смеси $N_2: C_3H_8: O_2=4.5:8:1$, а на рис. 3 и 4— температурная зависимость выхода продуктов окислительного превращения смеси $C_2H_4: C_3H_8: O_2=4.5:8:1$.

На рис. 5 представлена температурная зависимость конверсии пропана и селективности образования пропилена при окислении смесей состава $N_2: C_3H_8: O_2 = 4.5:8:1$ и $C_2H_4: C_3H_8: O_2 = 4.5:8:1$.

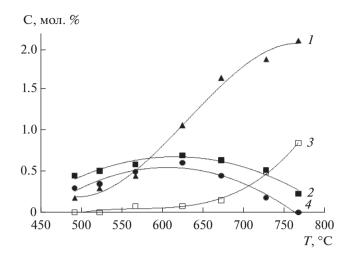
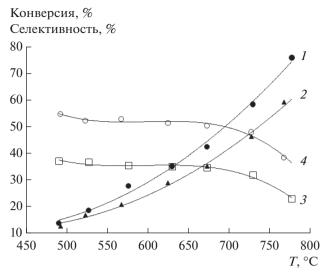


Рис. 2. Температурная зависимость концентрации продуктов окислительного пиролиза смеси N_2 : $C_3H_8: O_2 = 4.5:8:1.$ $I-C_2H_6$ (\blacktriangle), $2-C_4H_{10}$ (\blacksquare), $3-C_4H_8$ (\square), $4-C_2H_4O$ (\bullet). P=660 Topp, $\tau=4.5$ с.

Как видно из представленных на рис. 1 данных, в смеси без добавленного этилена с повышением температуры происходит увеличение конверсии пропана и выхода таких продуктов реакции как этилен, этан, бутилен, метан и водород, а выход пропилена, бутана и оксида этилена проходит через максимум. Причем максимальные концентрации указанных веществ достигаются при разных температурах, что вполне естественно, так как они образуются в результате различных стадий сложного радикального процесса. Снижение концентрации бутана и увеличение бутилена начинаются приблизительно при одной и той же температуре (рис. 2). Этот факт свидетельствует о

Рис. 3. Температурная зависимость концентрации продуктов окислительного пиролиза смеси состава $C_2H_4:C_3H_8:O_2=4.5:8;\ I-C_2H_4(\spadesuit),\ 2-C_3H_6(\square),\ 3-H_2(\blacktriangle),\ 4-CH_4(\bigcirc),\ 5-CO(\bullet).\ P=660$ Торр, $\tau=4.5$ с.

Рис. 4. Температурная зависимость концентраций продуктов окислительного пиролиза смеси состава $C_2H_4: C_3H_8: O_2 = 4.5: 8: 1. \ I-C_2H_6$ (\blacktriangle), $2-C_4H_{10}$ (\blacksquare), $3-C_4H_8$ (\square), $4-C_2H_4O$ (\blacksquare). P=660 Topp, $\tau=4.5$ с.


взаимосвязи процессов образования и расхода этих соелинений.

Уменьшение концентрации оксида этилена при повышении температуры, видимо, связано с тем, что он химически достаточно активен и при высоких температурах быстро расходуется.

Рост выхода метана и этилена (рис. 1) можно рассматривать, как результат распада пропана: $C_3H_8=C_2H_4+CH_4$, о чем свидетельствует ход кривых зависимости конверсии пропана и выхода метана и этилена от температуры (рис. 1 и 5). Снижение концентрации пропилена с повышением температуры после максимума, очевидно, объясняется тем, что скорость его расхода в результате последующего окисления начинает превосходить скорость образования.

В смеси, в которой азот заменен этиленом, наблюдается несколько иная картина (рис. 3 и 4). Этилен немного снижает конверсию пропана (рис. 3–5), однако при этом возрастает концентрация углеродсодержащих продуктов окисления. При сравнении данных, представленных на рис. 1 и 3, можно видеть, что этилен влияет и на закономерности накопления продуктов реакции. Концентрации бутана и оксида этилена практически совпадают во всем исследованном диапазоне температур при слабовыраженных максимумах в районе 625°С (рис. 4). Закономерности накопления остальных продуктов в присутствии и отсутствии этилена в смеси заметно не отличаются (рис. 1–4).

Основной результат этой работы состоит в том, что при определенных условиях концентрация этилена до и после реакции некаталитического окислительного пиролиза пропана остается

Рис. 5. Температурная зависимость конверсии пропана при окислении смесей: $I-N_2: C_3H_8: O_2=4.5: 8:1$ (K_{N_2}) (\bullet) и $2-C_2H_4: C_3H_8: O_2=4.5: 8:1$ (K_{C_2}) (\blacktriangle) и селективность образования пропилена при окислении смесей $3-N_2: C_3H_8: O_2=4.5: 8:1$ (S_{N_2}) (\Box) и $4-C_2H_4: C_3H_8: O_2=4.5: 8:1$ (S_{C_2}) (\odot). P=660 Topp, $\tau=4.5$ с.

постоянной, т.е. расходуется только более доступный и дешевый пропан, из которого в результате некаталитического процесса с высоким выходом образуется пропилен, а также такие ценные продукты, как бутилены и оксид этилена.

На рис. 5 представлены температурная зависимость конверсии пропана и селективности образования пропилена для смесей с этиленом и без этилена. Хотя конверсия пропана в смеси, содержащей этилен, немного ниже конверсии пропана в смеси с азотом, селективность образования пропилена в присутствии этилена заметно выше.

При температурах до 670°С селективность образования пропилена в обеих смесях изменяется незначительно. Но дальнейшее повышение температуры при увеличении конверсия пропана приводит к их синхронному снижению. Снижение селективности образования пропилена, по всей вероятности, объясняется тем, что с повышением температуры увеличивается как доля превращения пропана в побочных реакциях, так и скорость процессов окисления пропилена.

Таким образом, окислительный пиролиз пропана в присутствии практически не расходуемого этилена может рассматриваться, как перспективное направление для создания высокоселективного процесса получения пропилена непосредственно из пропана.

выводы

Показано, что при окислительном пиролизе пропана добавление этилена заметно повышает концентрацию образующегося пропилена, что открывает перспективы создания высокоселективного процесса получения пропилена непосредственно из пропана, являющегося относительно дешевым и доступным сырьем. Процесс может быть организован так, что этилен в нем практически не расходуется, т. е. фактически выступает в роли катализатора образования пропилена.

Работа частично финансировалась в рамках Программы Президиума РАН № 25.

СПИСОК ЛИТЕРАТУРЫ

- Интернет-ресурс: http://www.oknamedia.ru/spagepublish/section-news/detail-32799.html
- Лавренов А.В., Сайфулина Л.Ф., Булучевский Е.А., Богданец Е.Н. // Катализ в промышленности. 2015. Т. 15. № 3. С. 6.
- Черных С.П., Мухина Т.Н., Бабаш С.Е., Амеличкина Г.Е., Адельсон С.В., Жагфаров Ф.Г. // Катализ в промышленности. 2001. № 2. С. 13.

- 4. *Knight J., Mehlberg R.* // Hydrocarbon processing. 2011. № 9. C. 91.
- Макарян И.А., Рудакова М.И., Савченко В.И. //Альтернативная энергетика и экология. 2010. № 6(86). С. 67.
- 6. Craig R.G., Penny S.J., Schwartz W.A. // Oil Gas J., Techn. 1983. V. 81. № 30. P. 161.
- 7. Манташян А.А., Погосян М.Дж. //А. с. № 1348329 СССР // Б.И. 1986. № 40.
- Погосян М.Дж., Алхазян К.Г., Манташян А.А. // А.с. № 1768570 РФ // Б.И. 1992. № 38.
- 9. Погосян Н.М., Погосян М.Дж., Арсентьев С.Д., Тавадян Л.А., Арутюнов В.С. // Хим. журн. Армении. 2015. Т. 68. № 1. С. 11.
- 10. Погосян Н.М., Погосян М.Дж., Арсентьев С.Д., Стрекова Л.Н., Тавадян Л.А., Арутюнов В.С. // Хим. физика. 2015. Т. 34. № 4. С.29.
- 11. *Погосян Н.М., Погосян М.Дж.* // Хим. журн. Армении. 2009. Т. 62. № 3–4. С. 316.
- 12. Погосян Н.М., Погосян М.Дж., Стрекова Л.Н., Тавадян Л.А., Арутюнов В.С. // Хим. физика. 2015. Т. 34. № 3. С. 35.
- 13. *Гукасян П.С., Манташян А.А., Саядян Р.А.* // Физика горения и взрыва. 1976. Т. 12. № 5. С. 789.