УЛК 553.985.2

СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПРИРОДНЫХ БИТУМОВ МЕСТОРОЖДЕНИЯ ПАСАР ВАДЖО (ИНДОНЕЗИЯ)

© 2016 г. Е. С. Охотникова^{1, 2}, Ю. М. Ганеева^{1, 2}, Е. Е. Барская^{1, 2}, Г. В. Романов^{1, 2}, Т. Н. Юсупова^{1, 2}, В. Р. Хусаинов³, Н. Ю. Башкирцева⁴

¹Институт органической и физической химии им. А.Е. Арбузова Казанского НЦ РАН
² Казанский федеральный университет, Институт геологии и нефтегазовых технологий

³PT. Xoma Power Nusantara, Indonesia, Jakartam

⁴Казанский национальный исследовательский технологический университет

E-mail: okhotnikova@iopc.ru

Поступила в редакцию 12.02.2016 г.

Проведено комплексное исследование физико-химических свойств и состава битумов, извлеченных с трех различных участков месторождения Пасар Ваджо, Индонезия. Установлено, что по плотности и содержанию масел битумы относятся к классу асфальтов. Особенностями состава исследованных битумов является низкое содержание серы и микроэлементов и отсутствие углеводородов нормального строения. На основании полученных данных о составе и физико-химических свойствах битума предложены возможные направления переработки, а именно получение вяжущих материалов дорожного и строительного назначения.

Ключевые слова: природные битумы, состав, физико-химические свойства.

DOI: 10.7868/S0028242116050142

По разным оценкам мировые запасы тяжелых нефтей и природных битумов (ПБ) составляют от 790 млрд т до 1 трлн т. Их роль значительно возрастает в связи с истошением месторождений нефти и природного газа и усложнением проблем их добычи. Месторождения природных битумов открыты на всех континентах земного шара, за исключением Австралии и Антарктиды. Наибольшими запасами природных битумов обладают Канада, Венесуэла и Россия. Значительное количество запасов сосредоточено также в США, Мексике, Кувейте, Индонезии. Запасы органической части битумсодержащих пород известных во всем мире месторождений составляют 300-330 млрд т, что практически эквивалентно всем потенциальным ресурсам нефти и в четыре раза превышают ее мировые доказанные запасы [1].

Природные битумы залегают в пористых породах, представленных в основном песками, песчаниками и известняками. Битумсодержащие пески характеризуются слабой сцепляемостью зерен, в то время как в песчаниках и известняках они достаточно крепко сцементированы. По содержанию в битумах масляной составляющей (парафино-нафтеновые и ароматические углеводороды) выделяют классы мальт (65–40%), асфальтов (40–25%), асфальтитов (25–5%) и керитов [2]. Так, типичными представителями класса

мальт являются битумы месторождений Атабаска и Колд Лейк (Канада), Мортук и Тюбкараган (Западный Казахстан) [2, 3], класса асфальтов — битумы месторождения Иманкара (Западный Казахстан) [4], а класса асфальтитов — битумы месторождений Пич-Лейк (Тринидад и Тобаго) и Спиридоновского (Республика Татарстан) [5].

В последних ежегодных обзорах Всемирного энергетического совета (ВЭС) сверхтяжелой нефтью считается естественный углеводородный продукт со средней плотностью 1.018 г/см³, тогда как к природным асфальтам отнесены углеводороды со средней плотностью 1.037 г/см³. Кроме того, природные асфальты характеризуются высокой динамической вязкостью — порядка 10000 мПа с [6]. Для природных битумов характерна обогащенность серой до 10—15% и более, а также металлами (V, Ni, U, Co, Mo, Rb и т.д.) [1].

Данная работа посвящена изучению состава и свойств битумсодержащих пород и экстрагированных битумов месторождения Пасар Ваджо (Индонезия) инструментальными методами исследования. Известно, что подтвержденные запасы природных битумов Индонезии составляют 67 млн т; начальные геологические — 1.4 млрд т. Подавляющая доля запасов относится к месторождению Пасар Ваджо на о. Бутон (к югу от Сулавеси), крупнейшему в Юго-Восточной Азии.

Таблица 1. Данные экстракции битумсодержащей породы

Параметр	Номер образца			
Параметр	1	2	3	
Содержание органического вещества в породе, мас. %	38.3	29.7	21.9	
Содержание минеральной составляющей, мас. %	61.7	70.3	78.1	

Ежегодная добыча в настоящее время составляет около 0.5 млн т. [6]. Так как выбор технологии комплексной переработки битуминозных пород зависит от физико-химических свойств природного битума, его группового и элементного составов, а также содержания металлов, всестороннее изучение органической и минеральной составляющей битуминозных пород является необходимым этапом для разработки вариантов их практического применения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты исследования — образцы битумсодержащих пород, извлеченные с различных участков месторождения Пасар Ваджо (о. Бутон, провинция Юго-Восточный Сулавеси, Индонезия), добытые карьерным способом с глубины 15—20 м мест Самполава — Васуемба, Такимпо и пр. Выделение битума из битумсодержащих пород проводилось последовательной экстракцией породы хлороформом и спиртобензольной смесью с последующим упариванием растворителей.

Термический анализ образцов битумсодержащих пород и битумов проводили на дериватографе Q-1500D фирмы MOM (Венгрия) в интервале температур 20—1000°С со скоростью нагрева печи 10°/мин. Атмосфера в печи воздушная стационарная. В качестве инертного вещества использовали оксид алюминия. В опытах применяли платиновый тигель. Навеска битума составляла 50 мг, битумсодержащей породы — 300 мг.

Анализ физико-химических показателей битумов проводили по стандартным методикам: определение плотности по ГОСТ 3900-85, определение компонентного состава по ГОСТ 11851-85, метод A, определение коксового остатка по ГОСТ 19932-99. Твердые парафины выделяли из битумов методом осаждения ацетоном из бензольного раствора (1:1) масел при -21°C на воронке Шотта.

Элементный состав битумов определяли на приборе "Анализатор CHN-3" методом сожжения на меди в токе кислорода.

Содержание ванадия и никеля в битумах находили методом прямой пламенной атомно-абсорбционной спектрометрии на спектрофото-

метре "AAS-1N". Раствор пробы распыляли в пламя ацетилен—воздух при определении никеля и ацетилен—закись азота при определении ванадия. В качестве растворителя использовали смесь ортоксилола 80, ацетона 10 и этанола 10 об. %. Концентрацию элементов определяли по калибровочным кривым, используя в качестве эталонов — дибутилдитиокарбамат никеля или ванадия(II) в вышеуказанной смеси растворителей, полученный кулонометрически по методике.

Углеводородный состав битумов изучали методом высокотемпературной ГЖХ с использованием хроматографа фирмы PerkinElmer с ПИД в режиме программирования температуры 20–360°С.

Структурно-групповой состав битумов определяли методом инфракрасной спектроскопии с применением ИК-Фурье спектрофотометра "Vector" фирмы "Bruker" в области $2000-650~{\rm cm}^{-1}$. Образец был выполнен в виде тонкой пленки между двумя плоскопараллельными пластинками из KBr.

Структурно-реологические свойства битумов изучали на приборе Реотест-2 (ротационный вискозиметр) с коаксиальным цилиндрическим устройством. Объем пробы составлял 17 мл. Измерения проводили при температурах 100, 135 и 150° С в диапазоне скоростей сдвига от 0.17 до $146 \, \mathrm{c}^{-1}$. Энергию активации вязкого течения рассчитывали на основании уравнения Аррениуса.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Содержание битума в породе определяли по данным экстракции (табл. 1) и по данным комплексного термического анализа (ТА) (табл. 2). По данным экстракции установлено, что содержание битума в породе составляет от 21 до 39 мас. % и увеличивается в ряду обр. 3 — обр. 2 — обр. 1. Промышленная разработка битумных месторождений рекомендуется при содержании битума в породе выше 10 мас. %, следовательно, исследуемое месторождение является перспективным объектом для добычи природных битумов.

Метод термического анализа является универсальным для изучения нефте- и битумсодержащих пород и экстрактов, который позволяет определить не только содержание органического вещества (в т.ч. нерастворимого (НОВ)) непосредственно в породе, но и охарактеризовать состав минеральной части и фракционный состав вмещаемого органического вещества [7]. По данным ТА в образцах содержание органического вещества составляет 38.7, 31.0 и 23.8 мас. %, что практически совпадает с данными экстракции при значительной разнице в объеме исследуемой навески. Несколько повышенные значения содержания органического вещества, определенного методом ТА, связаны с присутствием в породе НОВ, содержание которого можно оценить при исследовании породы

Образец	H ₂ O, %	Δm_1 , %	Δm_2 , %	Δm_3 , %	Содержание битума, %	F	Содержание СаСО3, %
Битумсодержащая порода							
1	_	8.9	12.2	17.6	38.7	0.3	40.0
2	_	7.7	11.8	6.9	31.0	0.4	53.0
3	2.8	5.5	4.6	13.7	23.8	0.3	34.1
Порода после экстракции							
1	0.8	2.0	1	.0	3.7	2.0	68.9
2	1.5	1.6	1.1		2.7	1.5	72.3
3	2.0	1.3	0	.7	2.0	1.8	51.4

Таблица 2. Данные ТА образцов битумсодержащей породы, а также породы после экстракции битума

 Δm_1 , Δm_2 , Δm_3 — потери массы в температурных интервалах 20–410°C, 410–530°С и 530–700°С соответственно; $F = \Delta m_1/(\Delta m_2 + \Delta m_3)$.

после экстракции органического вещества (табл. 2). Установлено, что окисление НОВ при нагревании происходит в температурном интервале 250—490°С. Это свидетельствует о том, что оно представляет собой скорее хемосорбированную органику, обогащенную гетерофункциональными структурами (кероген), а не карбено-карбоидные соединения, образующиеся при гипергенной деградации битума. Содержание НОВ изменяется в интервале от 2.0 до 3.7%.

Методом ТА установлено, что минеральная составляющая битумсодержащих пород представлена в основном кальцитом (от 50 до 73%) (табл. 2). В обр. 3 отмечено присутствие глинистой породы типа монтмориллонита, а также адсорбированной воды (порядка 2%), сохраняющейся в породе и после экстракции.

Для характеристики битумной составляющей пород по кривым ДТА и ДТГ рассчитаны потери массы на трех стадиях термоокислительной деструкции органического вещества (табл. 2). Первая и вторая стадии (Δm_1 (20–410°C), Δm_2 (410–530°C)) соответствуют испарению и термическому окислению легких и средних фракций, а третья $(\Delta m_3 (530-700^{\circ}C))$ – термоокислительной деструкции тяжелых фракций [7]. Отношение потерь массы на первой и второй стадиях деструкции органического вещества к потерям массы на третьей стадии отражает показатель фракционного состава (F). Потери массы на первой, второй и третьей стадиях термоокислительной деструкции изменяются в интервалах 5.5-8.9, 4.6-12.2 и 6.9-17.6 мас. % соответственно. Однако по фракционному составу исследуемые образцы битумов схожи. Следует отметить, что битумы Индонезии являются достаточно тяжелыми (F = 0.3 - 0.4), например, по сравнению с природными битумами месторождения Иманкара (Западный Казахстан), также относящихся к классу асфальтов, показатель фракционного состава которых в два раза выше [5].

В ходе исследования проведено углубленное изучение состава и физико-химических свойств экстрактов битумов (табл. 3). Установлено, что согласно "Временной инструкции по применению классификации запасов месторожлений и прогнозных ресурсов природных нефтяных битумов" [2] по плотности (1.03-1.06), содержанию масляных компонентов (30-40%) и полной растворимости в хлороформе исследуемые битумы относятся к классу асфальтов. Содержание асфальтенов в битумах изменяется в пределах 26-30 мас. %. Сравнительный анализ данных элементного состава исследуемых образцов с битумами подобного класса [2] показал, что битумы Индонезии выделяются пониженным содержанием углерода, низким содержанием серы (обр. 2 и 3 — малосернистые, обр. 1 сернистый) и микроэлементов (V - 50-100 г/т, Ni - 27 - 39 г/т). Минимальная концентрация ванадия в природных битумах, при которой выгодна его промышленная добыча, составляет 120 г/т, а никеля 50 г/т [8]. Следовательно, выделение металлов из природных битумов Индонезии не является экономически перспективным.

Следует отметить, что все битумы характеризуются высокими значениями показателя коксуемости (67–78%), что указывает на возможность их использования в процессах получения кокса.

Содержание твердых парафинов в исследованных образцах незначительно (не более 2.5%). Показано [5], что для битумов с высоким содержанием асфальтенов характерны хроматограммы с высоким нафтеновым фоном, распределение нормальных углеводородов может быть как унимодальным, так и бимодальным. Особенностью исследуемых битумов является полное отсутствие углеводородов нормального строения (рис. 1), нафтеновый фон выражен слабо (особенно для обр. 1 и 2).

Структурно-групповой состав битумов охарактеризован методом ИК-спектроскопии по основным полосам поглощения, характеризующим опре-

Φ	Номер образца			
Физико-химические характеристики	1	2	3	
Плотность при 20°C, г/см ³	1.055	1.025	1.030	
Элементный состав, мас. %	64.7	64.9	60.0	
C	11.1	11.8	11.5	
Н	2.8	0.5	0.3	
S	1.6	1.8	1.8	
N				
Содержание ванадия, %	0.0099	0.0054	0.0104	
Содержание никеля, %	0.0030	0.0027	0.0039	
Компонентный состав, мас. %				
масла	31.2	40.2	37.9	
бензольные смолы	26.6	20.8	22.2	
спиртобензольные смолы	11.9	13.2	10.9	
н-С7-асфальтены	30.3	25.8	29.0	
Содержание твердых парафинов, мас. %	2.3	1.4	2.6	
Растворимость в хлороформе, %	100	100	100	

68.5

Таблица 3. Физико-химические характеристики экстрактов битумсодержащей породы

деленную структурную группу (1380 см $^{-1}$ (-CH $_3$), 720 см $^{-1}$ (-CH $_2$ -), 1600 см $^{-1}$ (С=С $_{\rm аром}$), 1460 см $^{-1}$ (\equiv C-H), 1710 см $^{-1}$ (С=О) и 1030 см $^{-1}$ (S=O) (рис. 2) [9]. Битумы характеризуются высоким содержанием карбонильных групп в кислотах и ароматических сложных эфирах, что свойственно для сильноокисленных систем. Поглощение в обла-

Коксовый остаток по Конрадсону, мас. %

сти 1030 см⁻¹ подтверждает наличие SO-групп сульфоксидов. Однако их содержание незначительно, что коррелирует с данными элементного состава по содержанию серы. Установлено, что алифатические фрагменты характеризуются высокой разветвленностью, о чем свидетельствует высокая интенсивность полосы поглощения в области 1460 см⁻¹,

78.1

67.2

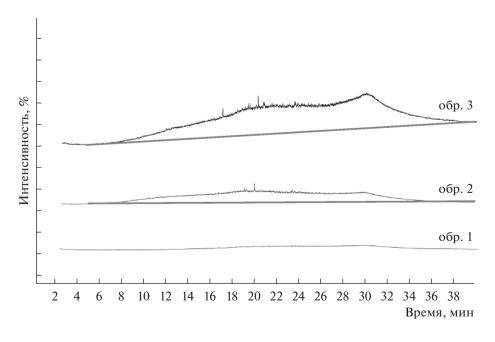


Рис. 1. Хроматограммы природных битумов.

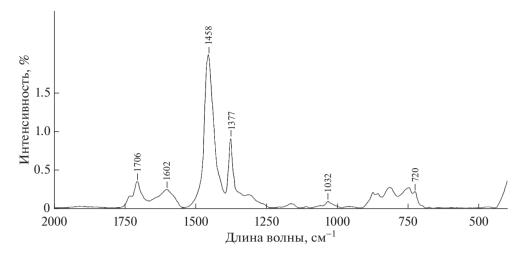


Рис. 2. ИК-спектр битума (обр. 1).

обусловленной наличием четвертичного атома углерода. С учетом отсутствия парафиновых углеводородов в битумах по данным ГЖХ, можно предположить, что алифатические фрагменты, в основном, представлены многочисленными короткими алкильными заместителями.

Физико-химические свойства битумов определяются не только их составом, но и дисперсным строением. Для оценки дисперсной структуры рассчитан индекс пенетрации (ИП) (табл. 4). По данному показателю битумы относятся к "золь—гель" типу. Однако на основании показателей химического состава, а именно содержания асфальтенов, установленных в работе А.С. Колбановской [10], битумы имеют структуру типа "гель". "Гель" структура битумов подтверждается

также данными вискозиметрии (табл. 4), о чем свидетельствуют высокие значения динамической вязкости и пониженные значения энергии активации вязкого течения, обусловленные наличием жесткого структурного каркаса, устойчивого к температуре [11].

Природные битумы являются перспективным сырьем для получения вяжущих материалов дорожного и строительного назначения. В связи с этим проведено изучение технологических характеристик образцов, входящих в стандарты на битумные вяжущие (табл. 4). С учетом технологических характеристик нами предложены следующие направления переработки природных битумов месторождений Индонезии. Наиболее перспективным является метод извлечения битума с исполь-

Таблица 4. Технологические характеристики образцов экстрагированных битумов

Технологические характеристики,	Номер образца			
метод определения	1	2	3	
Температура вспышки в открытом тигле, °С	273	218	>280	
Пенетрация при 25°C, 0.1 мм	10	73	25	
Температура размягчения, °С	67.4	48.0	61.9	
Дуктильность, см — при 0°C — при 25°C	0.3 82.8	0.4 >100	0.3 >100	
ИП	-0.75	-0.80	-0.13	
Динамическая вязкость, Пз — при 100°C — при 135°C — при 150°C	3787 150 70	300 21 12	670 57 25	
Энергия активации вязкого течения в температурном интервале $100-150^{\circ}\mathrm{C}$, кДж/моль	104	84	86	

зованием органических растворителей, позволяюший проводить практически полную экстракцию органической составляющей [12] и получать непосредственно товарные битумы дорожного назначения. При неполном отгоне растворителя из битумного экстракта экстракт можно использовать в качестве жидких дорожных медленно густеющих битумов марок SC по ASTMD 2026-97 (содержание растворителя не более 30%), а также жидких дорожных битумов по ГОСТ 11955-82 (содержание растворителя менее 10 мас. %). Возможность получения жидких битумов дорожного назначения обусловлена тем, что все исследуемые образцы по технологическим показателям соответствуют требованиям, предъявляемым к остаткам, полученным после удаления растворителей. По ГОСТ 11955-82 нормируется температура размягчения (не ниже 28-39°C), по ASTMD 2026-97 нормируется растяжимость при 25°C (не ниже 100), содержание воды (не более 0.5).

В случае полной экстракции с породы и удаления растворителя (по схеме экстракции, использованной при исследовании образцов № 1-3) обр. № 3 соответствует требованиям ASTMD 312-00 к кровельным битумам типа 1 (нормируется температура размягчения (57-66°C), температура вспышки (не ниже 260°C), пенетрация при 25°C $(18-60 \, 0.1 \, \text{мм})$, растяжимость при 25° С (не ниже 10), растворимость в хлороформе (не менее 99%). Следовательно, образец битума № 3 может уже использоваться в качестве товарного продукта. Для остальных образцов, а также для получения продуктов другого назначения (дорожные битумы, изоляционные и кровельные материалы, мастики) битумы необходимо модифицировать введением различных добавок. Вследствие низкого содержания масел и высокой вязкости для повышения совместимости битума с модификатором необходимо использовать разжижители. Это могут быть углеводородные масла, а также небольшие количества растворителя (неполный отгон растворителя после экстракции). Общее содержание разжижителей может достигать до 40 мас. %.

Работа выполнена за счет средств субсидии, выделенной в рамках государственной поддержки Казанского (Приволжского) федерального университета в целях повышения его конкурентоспособности среди ведущих мировых научнообразовательных центров.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Муслимов Р.Х., Г.В. Романов, Г.П. Каюкова и др.* Комплексное освоение тяжелых нефтей и природных битумов пермской системы Республики Татарстан. Казань: Фэн, 2012. 396 с.
- 2. *Хисамов Р.С., Гатиятуллин Н.С., Шаргородский И.Е. и др.* Геология и освоение залежей природных битумов Республики Татарстан. Казань: Фэн, 2007. 295с.
- 3. Надиров Н.К., Мусаев Г.А., Романов Г.В., Половая С.П., Юсупова Т.Н., Петрова Л.М. // Нефтехимия. 1991. Т. 31. № 6. С. 781.
- 4. *Репях Н.А., Ганеева Ю.М., Юсупова Т.Н., Бишимбаев В.К., Башкирцева Н.Ю.* // Вестник Казанского технологического университета. 2012. Т. 15. № 6. С. 170.
- Каюкова Г.П., Успенский Б.В., Абдрахикова И.М., Мусин Р.З. // Материалы межд. научно-практической конференции "Высоковязкие нефти и природные битумы: проблемы и повышение эффективности разведки и разработки месторождений". 2012. С. 208.
- 6. *Москвин А.Г.* // Минеральные ресурсы России. Экономика и управление. 2006. № 1. С. 82.
- 7. *Юсупова Т.Н., Петрова Л.М., Ганеева Ю.М.* // Нефтехимия. 1999. № 4. С. 254.
- Искрицкая И.Н. // Нефтегазовая геология. Теория и практика. 2008. Т. 3. № 1. http://www.ngtp.ru/rub/ 9/15_2008.pdf
- 9. Петрова Л.М. Формирование состава остаточных нефтей. Казань: Фэн, 2008. 203 с.
- 10. Колбановская А.С., Михайлов В.В. Дорожные битумы. М.: Транспорт, 1973. 262с.
- 11. Okhotnikova E. S., Yusupova T.N., Ganeeva Y.M., Frolov I.N., Romanov G.V., Ziganshina S.A. // Petroleum Science and Technology. 2015. V. 33. № 4. P. 467.
- 12. Zhang K., Bin Y. // Petroleum Processing and Petrochemicals. 2008. V. 39. № 6. P. 63.