УДК 541.183.03:665.64.097.3

НҮ-ЦЕОЛИТНЫЕ КАТАЛИЗАТОРЫ НА АІ-ПИЛЛАРИРОВАННОМ NaMM-MOHTMOРИЛЛОНИТЕ С ВАРЬИРУЕМЫМ СОДЕРЖАНИЕМ АЛЮМИНИЯ В КРЕКИНГЕ УТЯЖЕЛЕННОГО ВАКУУМНОГО ГАЗОЙЛЯ

© 2016 г. Н. А. Закарина, Л. Д. Волкова, Н. А. Шадин, Ө. Дөлелханулы, В. П. Григорьева

AO "Институт органического катализа и электрохимии им. Д.В.Сокольского", Алматы E-mail: nelly_zakarina@rambler.ru
Поступила в редакцию 06.10.2015 г.

В крекинге утяжеленного вакуумного газойля (ВГ) Шымкентского завода Казахстана испытаны НУ-цеолитные на монтмориллоните, пилларированном гидроксокомплексами алюминия разных концентраций, катализаторы. Показана прямая корреляционная зависимость активности катализаторов в крекинге ВГ с текстурными и кислотными характеристиками образцов. Определены углеводородный и фракционный составы бензинов крекинга.

Ключевые слова: крекинг, цеолит, фожазит, монтмориллонит.

DOI: 10.7868/S0028242116040171

Известно что в последние годы пилларирование природных слоистых глин широко используют [1, 2] для приготовления матриц катализаторов нефтепереработки. Пилларированные слоистые силикаты отличает повышенная термостабильность [3], развитая пористая структура и размеры полостей — 9Å большие, чем в крупнопористых фожазитах – цеолитах, присутствие кислотных центров различной силы и природы [5], что определяет возможность использования их в качестве компонентов катализаторов каталитического крекинга. Ранее [6] нами было показано, что катализаторы на основе пилларированной алюминием Н-формы Таганской глины, проявляют активность в крекинге вакуумных газойлей даже в отсутствие цеолита. Однако при кислотной обработке, повышающей кислотность монтмориллонитовых контактов, снижается их механическая прочность, что является нежелательным в производстве и эксплуатации катализаторов крекинга.

Цель данной работы — исследование НУ-цеолитных катализаторов повышенной твердости на основе пилларированного алюминием монтмориллонита с варьируемой концентрацией пилларирующего агента без предварительной кислотной активации, выявление взаимосвязи активности синтезированных катализаторов в крекинге ВГ с их физико-химическими характеристиками.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Особенности пилларирования Таганского монтмориллонита алюминием и приготовление

НУ-цеолитного катализатора, схема установки и методики проведения эксперимента описаны нами ранее [7]. В качестве сырья использован вакуумный газойль Шымкентского завода Казахстана "Петроказахстан Ойл продактс" (ВГ ШНПЗ) с концом кипения 610°С, плотностью 0.88 г/см³ и солержанием серы 0.5 мас. %.

В работе исследованы 15% НҮ-цеолитные катализаторы на основе пилларированных алюминием монтмориллонитов Al(2.5)NaMM, Al(5.0)NaMM и Al(7.5)NaMM. Величины в скобках означают исходную концентрацию алюминия в гидроксокомплексах в ммоль Al³⁺ на 1 г монтмориллонитовой глины в Na-форме. Об активности катализатора судили по выходу бензина и суммы светлых продуктов.

Текстурные характеристики катализаторов определяли по изотермам адсорбции и десорбции азота на приборе "Accusorb" (метод БЭТ). Контроль за изменением фазового состава синтезированных образцов глин и катализаторов с их использованием осуществляли рентгенографически на приборе "DRON-4*.7" с $\text{Си}K_{\alpha}$ —излучением. Данные по кислотным характеристикам контактов опубликованы нами в [8].

Анализ углеводородного состава продуктов крекинга проводили на хроматографе "Кристаллюкс-4000М" с ПИД и капиллярной колонкой DB—Реtго длиной 50 м; температура 250°С; газноситель — гелий. Регистрацию и обработку хроматограмм проводили с применением программы "NetChrom-win" (продукции ООО МПФ "Мета

Образец	d, Å	Δd , Å	$S_{ m yд}$, м 2 /г	$V_{\rm max}$, cm ³ / Γ	R, Å	Мезо, %	Микро, %
NaMM	11.9	_	48.2	0.478	12-60	_	_
Al(2.5)NaMM + HY	14.1	2.2	149.3	0.101	10-75	62.3	37.7
Al(5.0)NaMM	11.9	0	123.4	0.176	10-90	78.5	21.5
Al(5.0)NaMM + HY	14.0	2.1	180.7	0.173	10-80	82.6	17.4
Al(7.5)NaMM	18.6	6.7	379.9	0.309	10-80	90.4	9.6
Al(7.5)NaMM + HY	17.1	5.2	211.6	0.376	10-75	89.1	10.9

Таблица 1. Физико-химические характеристики NaMM и AlNaMM и HY катализаторов на их основе

Хром"). Анализ компонентов С14—С40 проводили на хроматографе Perkin Elmer Clarus 500 с ПИД, колонкой PE ELITE VS 2887 30м. Газ-носитель — гелий. В составе ВГ ШНПЗ идентифицированы 61.5% парафино-нафтеновых углеводородов, 7.1% ароматических углеводородов и 1.2% кислородсодержащих соединений. Октановое число (ОЧ) бензинов определяли хроматографически расчетным методом, цетановое число (ЦЧ) легкой газойлевой фракции — с использованием октанометра типа SX.

Прочностные характеристики исследуемых катализаторов определяли на универсальной напольной испытательной машине Autograph AG-100 kNX и ННЛ 22-5.5.1-13 по ГОСТ 8817-82 "Метод испытания на осадку" по результатам трех измерений. Показано, что гранулы синтезированных катализаторов отличаются высокой прочностью и выдерживают напряжение до 306 кгс/см².

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

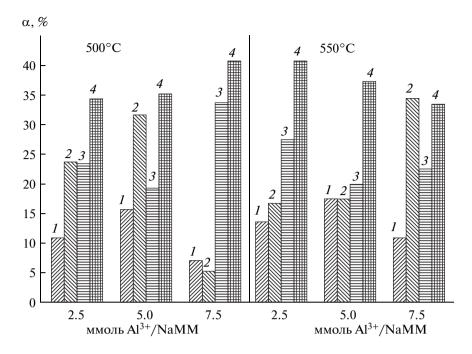
В табл. 1 приведены физико-химические характеристики матриц и цеолитсодержащих катализаторов на их основе.

Как видно из приведенных данных, увеличение концентрации пилларирующего агента от 2.5 до 7.5 ммоль Al^{3+} /г NаММ приводит по данным БЭТ к увеличению удельной поверхности от 48.2 м²/г для NаММ до 379.9 м²/г для Al(7.5)NаММ. Для НY — цеолитных катализаторов S_{yz} растет в последовательности 149.3; 180.7 и 211.6 м²/г для Al(2.5)NаММ, Al(5.0)NаММ и Al(7.5)NаММ, соответственно.

Данными рентгенофазового анализа (РФА) подтверждено, что кристаллическая структура NaMM при пилларировании сохраняется. Первое базальное отражение (d_{001}) для Al(2.5) NaMM + HУ возрастает по сравнению с NaMM от 11.9 до 14.1 Å, то есть взаимодействие пилларирующего агента с глиной приводит к проникновению катионов алюминия в межслоевое пространство и вызывает раздвижение его слоев на 2.2 Å. Очень четко изменение величины базальных рефлексов ис-

ходного NaMM и пилларированных образцов видно на примере Al(7.5)NaMM. Для этого образца Δd составляет 6.7 Å. Введение цеолита приводит к некоторому уменьшению величины первого базального рефлекса с 18.6 до 17.1 Å. Большая удельная поверхность AlNaMM-контактов способствует равномерному распределению цеолита на поверхности носителя.

Интересной особенностью AlNaMM пилларированных систем является увеличение числа мезопор (см. табл.1). С ростом концентрации пилларирующего агента от 2.5 до 7.5 ммоль Al³+/г NaMM у HY — цеолитных катализаторов число мезопор растет от 62.3 до 82.6 и 89.1%. Изменение физико-химических характеристик контактов должно сказаться на их активности в крекинге утяжеленных вакуумных газойлей.


Данные по крекингу ВГ ШНПЗ на AI(5.0)NaMM + НУ цеолитном катализаторе приведены в табл. 2.

Повышение температуры крекинга от 500° до 550° С приводит к росту газообразования от 5.3 при 500° С до 16.6 при 550° С.

Сравнительные данные по активности Al(2.5)NaMM + HY, Al(5.0)NaMM + HY и Al(7.5)NaMM + HY катализаторов в крекинге ВГ ШНПЗ представлены на рисунке.

Таблица 2. Крекинг ВГ ШНПЗ на Al(5.0)NаММ + НУ катализаторе

Выход продуктов, мас.%	500°C	550°C
Газ	5.3	16.6
Бензин	7.0	13.6
Кокс	4.2	11.2
Легкий газойль	33.9	27.5
Тяжелый газойль	47.6	27.2
Потери	2.0	4.0
Конверсия	50.4	69.3
Сумма продуктов	100	100
Сумма светлых продуктов	40.9	40.9

Выход основных продуктов крекинга ВГ ШНПЗ на Al(2.5; 5.0; 7.5) NaMM + HY — катализаторах при 500 и 550°С. 1 — бензин; 2 — газ; 3 — легкий газойль; 4 — сумма светлых продуктов.

Увеличение содержания алюминия в пилларированной глине приводит к повышению выхода легкого газойля и суммы светлых продуктов. Количество газа оптимально в случае Al(2,5)NaMM + HY катализатора. С ростом концентрации алюминия в катализаторе количество образовавшегося газа уменьшается.

Сопоставление активностей и физико-химических характеристик катализаторов свидетельствует о том, что имеется прямая корреляция активности в крекинге ВГ с величиной удельной поверхности, числом мезопор и максимальным объемом пор. Наибольшим величинам удельных

поверхностей и числа мезопор у Al(5.0)NaMM + HY и Al(7.5)NaMM + HY катализаторов отвечают максимальные выходы бензина и светлых продуктов.

Интересным представляется отыскание корреляций активности с кислотностью контактов и их природой. Данные по кислотным характеристикам цеолитных катализаторов и матриц, на которые наносится цеолит, приведены в табл. 3.

Общие кислотности Al(5.0)NaMM + HY и Al(7.5)NaMM + HY довольно близки — 250 и 246 мкмоль NH_3/Γ , но по содержанию сильных кислотных центров и суммы средних и сильных

Таблица 3. Кислотность пилларированного алюминием NaMM при различных соотношениях алюминия и NaMM по данным ТПД аммиака

		Кислотные центры				
Образец	Содержание к.ц.	слабые <200°С	средние 200—300°C	сильные >300°C	общая кислотность	
Al(5.0)NaMM + HY	%	45	30	25	100	
	мкмоль NH_3/Γ	112.5	75	62.5	250	
Al(5.0)NaMM	%	45	35	20	100	
	мкмоль NH ₃ /г	88	68	39	195	
Al(7.5)NaMM + HY	%	43	32	25	100	
	мкмоль NH ₃ /г	105.7	78.7	61.5	246	
Al(7.5)NaMM	%	42.2	30.2	27.5	100	
	мкмоль NH ₃ /г	95.5	67.5	62	225	

№	Наименование/Катализатор	Al(2.5)NaMM + HY	Al(5.0)NaMM + HY	Al(7.5)NaMM + HY
1	Плотность 20° С, кг/м ³	772.1	777.4	748.4
	Давление насыщенных паров, кПа	11.7	13.2	14.1
2	Фракционный состав, об. %			
	Температура начала кипения,°С	37	30	30
	5% перегоняется при	63	63	62
	10%	73	70	72
	50%	127	124	121
	70%	148	143	147
	90%	174	185	171
	95%	186	195	187
	К.к	205	206	198
3	ОЧ	76	78	78

Таблица 4. Фракционный состав бензинов каталитического крекинга ВГ ШНПЗ при 550°C

Таблица 5. Углеводородный состав бензина крекинга ВГ Π HX3 при 550° C на AlNaMM+HY катализаторах при различных концентрациях пилларирующего агента

No॒	Углеводороды	Объемная доля, %				
	Углеводороды	Al (2.5)NaMM + HY	Al (5.0)NaMM + HY	Al (7.5) NaMM + HY		
1	Парафиновые + нафтеновые	20.7	28.2	28.3		
2	Изопарафины	17.7	13.7	32.4		
3	Олефины	29.4	26.6	21.2		
4	Ароматика	32.3	31.4	17.9		
5	Кислородсодержащие	0	0.1	0.1		

кислотных центров Al(7.5)NaMM следует поставить на первое место. Таким образом, в крекинге BГ ШНПЗ наблюдается прямая корреляция активности с кислотными характеристиками контактов.

Ниже приведены характеристики бензинов каталитического крекинга фракционный состав (табл. 4) и углеводородный состав (табл. 5).

На основании полученных данных по характеристикам бензинов (табл. 4) можно заключить, что увеличение концентрации пилларирующего агента до 7.5 ммоль Al^{3+}/Γ NaMM приводит к получению более легкого продукта: наименьшая плотность (748.4 кг/м³), наибольшее давление насыщенных паров (14.1кПа), самые низкие температуры начала и конца кипения и 50% "выкипания" бензина при разгонке.

Бензин крекинга ВГ НПЗ на Al (7.5) NaMM + HY катализаторе отличает, как это следует из данных таблицы 5, наименьшее содержание ароматических углеводородов (17.9%) и олефинов. Увеличение

концентрации пилларирующего агента в матрице катализатора приводит, кроме того, к росту изомеризующий активности. Содержание изомеров в бензине, полученном на Al (7.5)NaMM + HY — катализаторе, достигает 32.4%. Наличие в бензине большого количества изокомпонентов делает его привлекательным в качестве составляющей товарных бензинов. Следует также отметить что цетановое число легкого газойля, образующегося при крекинге ВГ ШНПЗ, составляет по данным анализа на октанометре типа SX-100M, 63 единицы, что свидетельствует о возможности его использования как компонента дизтоплива.

Таким образом, из анализа приведенных данных можно заключить, что композит на основе Al (7.5)NaMM + HY, отличающийся повышенной прочностью, может быть использован для получения светлых нефтепродуктов из утяжеленных вакуумных газойлей.

Работа выполнена при финансовой поддержке Комитета науки Министерства образования и нау-

ки Республики Казахстан по заказу $0220/\Pi \coprod \Phi$ -13 (2013—2015 гг).

СПИСОК ЛИТЕРАТУРЫ

- 1. Дуплякин В.К. //Журн. прикл. химии. 1997. Т. 70. № 2. С. 284.
- 2. *Розенгарт М.И., Вьюнова Г.М., Исагулянц Г.В.* // Успехи химии. 1988. Т. 57. Вып. 2. С. 204.
- 3. Figueras F. // Catal. Rev.-Sci. Eng. 1988. V. 30. № 3. P. 457.
- 4. Дроздов В.А., Доронин В.П., Сорокина Т.А., Гуляева Т.И., Дуплякин В.К. // Кинетика и катализ. 2001. Т. 42. С. 129.

- Ханхасаева С.Ц., Тимофеева М.Н., Бадмаева С.В., Бургина Е.Б., Буднева А.А., Паукштис Е.А. // Кинетика и катализ. 2004. Т. 45. № 5. С. 748.
- 6. *Закарина Н.А., Волкова Л.Д.* //Промышленность Казахстана. 2011. № 10. С. 70.
- Волкова Л.Д., Шадин Н.А., Закарина.Н.А. // Известия НАН РК. Серия химии и технологии. 2013. № 4. С. 13.
- 8. Шадин Н.А., Волкова Л.Д., Закарина Н.А., Жумадуллаев Д.А. // VI Международная научно-практическая конференция "Проблемы инновационного развития нефтегазовой индустрии" КБТУ: г. Алматы. 20—21 февраля 2014. С. 345.