УДК 665.6.033.28:669.292:669.24

СОДЕРЖАНИЕ И СООТНОШЕНИЕ ВАНАДИЯ И НИКЕЛЯ В АСФАЛЬТЕНАХ ТЯЖЕЛЫХ НЕФТЕЙ

© 2016 г. М. Р. Якубов, Д. В. Милордов, С. Г. Якубова, Д. Н. Борисов, В. Т. Иванов, К. О. Синяшин

Институт органической и физической химии им. А.Е. Арбузова КазНЦ РАН E-mail: yakubovmr@mail.ru
Поступила в редакцию 22.05.2015 г.

Исследованы особенности изменения содержания ванадия и никеля в асфальтенах для тяжелых нефтей различных месторождений, где суммарное содержание данных металлов меняется от 0.0049 до 0.1795 мас. %. Показано, что с увеличением содержания ванадия и никеля в тяжелых нефтях концентрирование ванадия в асфальтенах происходит опережающими темпами по сравнению с никелем. В тяжелых нефтях на асфальтены приходится примерно 40-90% от общего содержания ванадия и 25-75% от общего содержания никеля. Суммарное содержание ванадия и никеля в асфальтенах тяжелых нефтей может достигать 1 мас. %.

Ключевые слова: ванадий, никель, тяжелая нефть, асфальтены, смолы.

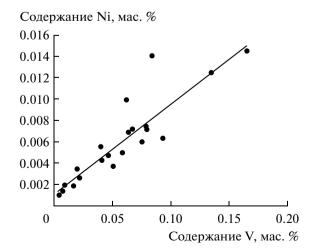
DOI: 10.7868/S002824211601007X

Особенностью тяжелых нефтей является повышенное содержание ванадия и никеля, которое в сумме достигает 0.1 мас. % и выше, что сопоставимо с промышленно добываемыми рудами. Ванадий и никель сконцентрированы в асфальтено-смолистой части, при этом максимальное содержание данных металлов фиксируется в асфальтенах. Ванадий в виде катиона ванадила VO^{2+} и никель в виде катиона Ni^{2+} координированы преимущественно с порфиринами и их тетрапиррольными аналогами [1-4].

Нефтяное сырье с повышенным содержанием ванадия и никеля неприменимо для каталитических процессов нефтепереработки [5, 6]. Также ванадий и никель оказывают существенное влияние при термокрекинге и гидродеметаллировании тяжелых нефтяных остатков [7, 8]. Первичное удаление металлов из нефтяного сырья может осуществляться посредством деасфальтизации, и в асфальтеновом концентрате остается основная масса ванадия и никеля [9]. Однако количество и соотношение данных металлов в полученных продуктах оценивается, как правило, эмпирическим путем и не позволяет прогнозировать эти величины при изменении состава сырья. Поэтому представляется важным выявление особенностей концентрирования ванадия и никеля в асфальтенах тяжелых нефтей различного состава.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объектов исследованы тяжелые нефти Республики Татарстан и Самарской обла-


сти, а также нефть Ярегского месторождения Республики Коми. Пробы отобраны в различное время из действующих и разведочных скважин и представлены образцами пермских и каменноугольных отложений. Большинство месторождений разрабатываются традиционными скважинными методами. Ашальчинское месторождение с применением технологии парогравитационного дренажа в системе парных горизонтальных скважин, а Мордово-Кармальское ранее разрабатывалось при помощи внутрипластового горения. На Ярегском месторождении добыча осуществляется термошахтным методом. Дополнительно получен экстракт остаточной нефти из породы этого месторождения.

Определение компонентного состава нефтей (табл. 1) и выделение асфальтенов проводилось по общепринятой методике [10]. Все нефти предварительно обезвоживались центрифугированием, затем подвергались разгонке с отбором фракции, выкипающей до 200°C. Асфальтены выделялись из остатка >200°C разбавлением 40-кратным по объему количеством гексана с последующим доотмывом от соосадившихся масел и смол в аппарате Сокслета до полного обесцвечивания вытекающего растворителя. Далее асфальтены вымывались бензолом и после отгонки растворителя высушивались при 80°C до постоянной массы. Углеводороды (масла) из деасфальтизата выделялись колоночной хроматографией с использованием в качестве неподвижной фазы силикагеля марки АСКГ и гексана в качестве элюента. После

Таблица 1. Плотность и компонентный состав тяжелых нефтей

No	Месторождение, № скважины	Плотность, $\Gamma/\text{см}^3$	Содержание, мас. %				
л <u>№</u> п/п			фракция $T_{\text{кип}} \leq 200^{\circ}\text{C}$	масла	смолы	асфальтены	
1	Аделяковское, 8630	0.9516	8.3	54.8	26.1	10.8	
2	Аделяковское, 8638	0.9645	8.7	51.8	27.5	12.0	
3	Аделяковское, 8667	0.9451	7.9	54.0	33.2	4.9	
4	Аделяковское, 8684	0.9579	7.1	52.5	30,3	10,1	
5	Ашальчинское, 232	0.9387	2.5	55.4	36.6	5.5	
6	Горское, 134	0.9920	13	42.8	34.7	21.2	
7	Екатериновское, 6072	0.9715	3.1	48.8	35.0	13.1	
8	Зюзеевское, сборная	0.9216	8.3	55.7	29.1	6.9	
9	Зюзеевское, 918	0.9432	5.3	49.1	33.1	12.5	
10	Зюзеевское, 2349	0.9341	8.3	50.6	31.8	9.3	
11	Калмаюрское, 238	0.9531	6.1	39.7	37.2	20.0	
12	Каменское, 206	0.9781	2.2	51.3	38.1	8.4	
13	Майоровское, 133	0.9319	6.2	55.5	28.9	9.4	
14	Мордово-Кармальское, 177	0.9316	7.7	53.9	32.5	5.9	
15	Сборновское, 217	0.9219	7.6	53.8	33.3	5.3	
16	Сборновское, 221	0.9276	6.7	58.7	27.3	7.3	
17	Смородинское, 254	0.9523	7.7	44.2	29.7	18.4	
18	Смородинское, 502	0.9416	6.2	51.7	27.1	15.0	
19	Шугуровское, 10	0.9616	1.7	46.7	35.6	16.0	
20	Юганское, 403	0.9216	7.7	53.8	33.2	5.3	
21	Ярегское (экстракт)	0.9415	2.3	50.5	35.7	11.5	
22	Ярегское (нефть)	0.9206	5.1	53.9	37.5	3.5	

десорбции масел выделяли смолы смесью бензол: изопропанол (соотношение 50:50).

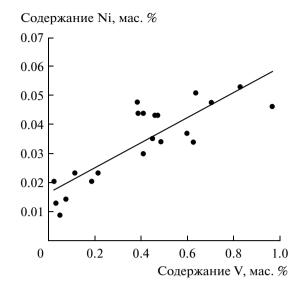


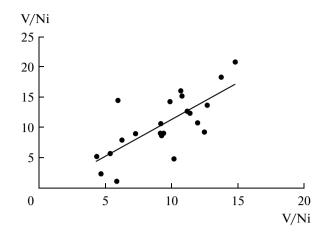
Рис. 1. Изменение содержания ванадия и никеля в тяжелых нефтях.

Концентрацию ванадия и никеля определяли методом прямой пламенной атомно-абсорбционной спектрометрии на спектрофотометре "AAS-1N". Расхождение в результатах определения содержания металлов не превышало 0.0001.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В исследованных тяжелых нефтях содержание асфальтенов варьирует в интервале 3.52—1.2 мас. %, при этом в половине объектов превышает 10 мас. %. Содержание ванадия в нефтях имеет широкий диапазон величин — 0.004—0.165 мас. % (40—1650 г/т) и аналогично для никеля — 0.0009—0.0145 мас. % (9—145 г/т). Соотношение V/Ni в нефтях меняется в пределах 4.7—14.8. С увеличением содержания ванадия содержание никеля также пропорционально увеличивается (рис. 1, 2). Анализ влияния содержания асфальтенов на изменение содержания ванадия и никеля в исследованных нефтях не обнаруживает четко выраженных корреляций. При этом с ростом содержания ванадия и никеля в нефтях со-

Рис. 2. Изменение содержания ванадия и никеля в асфальтенах тяжелых нефтей.


держание данных металлов в асфальтенах также пропорционально увеличивается.

Увеличение содержания ванадия и никеля в асфальтенах по сравнению с данной величиной для исходной нефти меняется в широких пределах от 1.2 до 19 раз (табл. 2). При этом максимальная разница данного показателя отмечается в нефтях Ярегского месторождения, где применяется термовоздействие на пласт в процессе нефтедобычи. Для нефтей с максимальными величинами содержания ванадия и никеля (0.1 мас. % и выше) их суммарное содержание в асфальтенах достигает 1 мас. %. Такой уровень концентраций металлов позволяет рассматривать асфальтены некоторых тяжелых нефтей как сырье для извлечения ванадия и никеля или получения концентратов металлопорфиринов.

Практически для всех асфальтенов исследованных нефтей содержание ванадия существенно выше содержания никеля, что в целом соответствует величине данного показателя для исходных нефтей (рис. 3).

Величина соотношения V/Ni в асфальтенах сравнительно хорошо коррелирует с содержанием ванадия в асфальтенах (рис. 4). Аналогичная диаграмма изменения соотношения V/Ni с увеличением никеля в асфальтенах имеет менее выраженный характер (рис. 5).

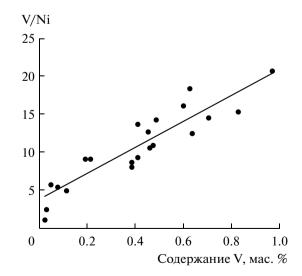

Соотношение V/Ni в асфальтенах варьирует в пределах 1.1–20.9. При этом для нефтей, где значения соотношения V/Ni составляют примерно 10–15, в соответствующих им асфальтенах величины V/Ni составляют уже 14–20. Таким образом, с увеличением содержания ванадия и никеля в тяжелых нефтях концентрирование ванадия в асфальтенах

Рис. 3. Изменение соотношения V/Ni в асфальтенах в зависимости от соотношения V/Ni в тяжелых нефтях.

происходит опережающими темпами по сравнению с никелем.

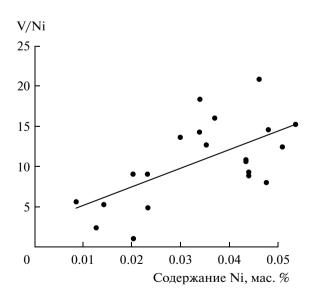

Дополнительное объяснение выявленной закономерности вытекает из сопоставительного анализа величин доли ванадия и никеля, содержащихся в асфальтенах из общего содержанию данных металлов в тяжелых нефтях (табл. 2). Так, в большинстве нефтей доля ванадия в асфальтенах превышает 50% и в некоторых случаях достигает 80—90% (табл. 2). Из исследованных образцов только для 5 нефтей доля ванадия в асфальтенах составляет от 39 до 44.5%. Концентрирование никеля в асфальтенах наблюдается в меньшей степени — основной интервал значений составляет 26.6—76.7%. При этом по сравнению с ванадием, для большего количества объектов доля никеля в асфальтенах составляет менее 50%. Таким об-

Рис. 4. Изменение соотношения V/Ni в зависимости от содержания ванадия в асфальтенах тяжелых нефтей.

Таблица 2. Доля ванадия и никеля в асфальтенах и степень увеличения содержания данных металлов в асфальтенах по сравнению с исходными тяжелыми нефтями

№ п/п	Месторождение, № скважины		фальтенах кания в нефти, %	Содержание в асфальтенах/ содержание в нефти	
		V	Ni	V	Ni
1	Аделяковское, 8630	59.0	54.9	5.5	5.1
2	Аделяковское, 8638	67.5	59.7	5.6	5.0
3	Аделяковское, 8667	39.0	43.4	8.0	8.9
4	Аделяковское, 8684	73.7	64.5	7.3	6.4
5	Ашальчинское, 232	44.5	44.9	8.1	8.2
6	Горское, 134	51.4	60.1	2.4	5.1
7	Екатериновское, 607	60.9	48.6	4.7	3.7
8	Зюзеевское, сборная	39.5	42.2	5.7	6.1
9	Зюзеевское, 918	77.4	60.4	6.2	4.8
10	Зюзеевское, 2349	50.7	68.2	5.5	7.3
11	Калмаюрское, 238	76.0	70.3	3.8	3.5
12	Каменское, 206	39.9	43.0	1.2	6.0
13	Майоровское, 133	83.5	86.4	12.3	9.2
14	Мордово-Кармальское, 177	73.9	76.7	12.5	13.0
15	Сборновское, 217	40.1	26.6	7.6	5.0
16	Сборновское, 221	75.8	53.5	10.4	7.3
17	Смородинское, 254	81.6	63.2	8.4	3.4
18	Смородинское, 502	91.8	64.4	6.1	4.3
19	Шугуровское, 10	55.1	56.6	3.4	6.7
20	Юганское, 403	62.7	42.9	11.8	8.1
21	Ярегское (экстракт)	80.5	76.1	7.0	6.6
22	Ярегское (нефть)	66.5	55.6	19.0	15.9

Рис. 5. Изменение соотношения V/Ni в зависимости от содержания никеля в асфальтенах тяжелых нефтей.

разом, в целом для тяжелых нефтей ванадий по сравнению с никелем в большей степени концентрируется в асфальтенах. Полученные результаты по содержанию ванадия и никеля в асфальтенах показывают необходимость учета данного параметра, что позволяет прогнозировать распределение данных металлов в составе продуктов, например, деасфальтизации или термокрекинга при переработке тяжелых нефтей различного состава.

ЗАКЛЮЧЕНИЕ

На основе полученных данных можно сделать ряд основных выводов об особенностях содержания и распределения ванадия и никеля в асфальтенах тяжелых нефтей:

- с ростом содержания ванадия и никеля в тяжелых нефтях наблюдается прямо-пропорциональное увеличение содержания данных металлов в асфальтенах;
- увеличение содержания ванадия и никеля в асфальтенах по сравнению с данной величиной для исходной тяжелой нефти меняется от 1.2 до 19 раз.

При этом суммарное содержание ванадия и никеля в асфальтенах тяжелых нефтей может достигать 1 мас. %:

- соотношение V/Ni в асфальтенах варьирует в пределах 1.1-20.9 и в целом соответствует величине данного показателя для исходных тяжелых нефтей;
- с увеличением содержания ванадия и никеля в тяжелых нефтях концентрирование ванадия в асфальтенах происходит опережающими темпами по сравнению с никелем;
- в тяжелых нефтях на асфальтены приходится примерно 40-90% от общего содержания ванадия и 25-75% от общего содержания никеля.

Исследование выполнено за счет гранта Российского научного фонда (проект № 15-13-00139).

СПИСОК ЛИТЕРАТУРЫ

1. *Хаджиев С.Н., Шпирт М.Я.* Микроэлементы в нефтях и продуктах их переработки. М.: Наука. 2012. с. 222.

- 2. *Надиров Н.К., Котова А.В., Камьянов В.Ф. и др.* Новые нефти Казахстана и их использование: Металлы в нефтях. Алма-Ата: Наука. 1984. 448 с.
- 3. *Антипенко В.Р.* // Нефтехимия. 1999. Т. 39. № 6. С. 403 / [Petrol. Chemistry. 1999. V. 39. № 6. Р. 388].
- 4. *Галимов Р.А., Кривоножкина Л.Б., Романов Г.В., Петрова Л.М.* // Нефтехимия. 1990. Т. 30. № 9. С. 12 / [Petrol. Chemistry. 1990. V. 30. № 9. P. 12].
- Dechaine Gr.P., Gray M. // Energy & Fuels. 2010. V. 24.
 № 5. P. 2795.
- 6. *Ахметов А.Ф.*, *Красильникова Ю.В.* // Башкирский химический журнал. 2011. Т. 18. № 2. С. 93.
- Liua H., Wanga Z., Guoa A., Lina C., Chena K. // Petroleum Science and Technology. 2015. V. 33. № 2. P. 203.
- 8. *Liu T., Lu J., Zhao X., Zhou Y., Wei Q., Xu Ch., Zhang Y., Ding S., Zhang T., Tao X., Ju L., Shi Q.* // Energy & Fuels. 2015. V. 29. № 4. P. 2089.
- 9. *Хайрудинов И.Р., Султанов Ф.М., Теляшев Э.Г.* Современные процессы сольвентной деасфальтизации нефтяных остатков. Уфа: Издательство ГУП ИНХП РБ. 2011. 208 с.
- Современные методы исследования: справ.-метод. пособие / под ред. А.И. Богомолова. Л.: Недра. 1984. 429 с.