УДК 547.27:669.14.018.8:548.75

ПОВЕДЕНИЕ ДИМЕТИЛОВОГО ЭФИРА НА ПОВЕРХНОСТИ НЕРЖАВЕЮЩЕЙ СТАЛИ: ВЫСОКОТЕМПЕРАТУРНАЯ ИК-ФУРЬЕ-СПЕКТРОСКОПИЯ *IN SITU*

© 2015 г. Г. Н. Бондаренко, А. С. Родионов, Э. А. Волнина, М. А. Кипнис, С. Н. Хаджиев

Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва E-mail: kipnis@ips.ac.ru Поступила в редакцию 02.04.2015 г.

Методом ИК-спектроскопии диффузного отражения (ИКДО) *in situ* в высокотемпературной ячейке, сопряженной с ИК-Фурье-спектрометром, в условиях протока исследовано поведение диметилового эфира (ДМЭ) на поверхности пластины из стали 12X18H10T. Спектры регистрировались в интервале температур 25–350°С. ДМЭ адсорбируется на поверхности стали, о чем можно судить по полосам поглощения 2980, 2837, 1460, 1175, 1117 и 940 см⁻¹. Взаимодействие молекулы адсорбированного ДМЭ с металлом сопровождается миграцией атома водорода к металлу с образованием металл-гидридных связей, характеризуемых полосами в области 2040, 2100 см⁻¹. В спектрах имеется также ряд полос, свидетельствующих о наличии на поверхности продуктов распада ДМЭ – карбоновых кислот, карбоксилат-ионов и альдегидов. При повышении температуры интенсивность полос, принадлежащих адсорбированному ДМЭ и металл-гидридным связям, снижается, в то время как интенсивность полос, принадлежащих поверхностным карбоксилатным структурам, возрастает.

Ключевые слова: диметиловый эфир, нержавеющая сталь, ИК-спектры, гидриды металлов, карбоксилатные структуры.

DOI: 10.7868/S0028242115060027

ДМЭ является моторным топливом, альтернативным дизельному топливу, полученному из нефти [1]. Кроме того, ДМЭ – один из ключевых агентов в превращении ненефтяного сырья в моторные топлива и ценные химические продукты [2]. Интенсивно исследуются такие практически важные реакции, как прямая конверсия синтезгаза в ДМЭ [2–9], реакции разложения ДМЭ, позволяющие получить различные углеводороды [10–17], дегидратация метанола в ДМЭ [4, 9, 18], гидратация ДМЭ в метанол [19, 20]. Во всех указанных процессах неизбежен контакт ДМЭ с поверхностью металла реактора, однако данные о поведении ДМЭ на металле при повышенных температурах в литературе отсутствуют.

В настоящей работе методом ИКДО *in situ* изучено поведение ДМЭ на поверхности нержавеющей стали 12Х18Н10Т, материала, который, как правило, используется для изготовления каталитических реакторов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Шлифованную пластину из нержавеющей стали 12X18H10T (средняя шероховатость по данным атомно-силовой микроскопии 160 нм) помещали в высокотемпературную ячейку PIKE Diffus IR, сопряженную с ИК-Фурье-спектро-

метром VERTEX-70. Спектры регистрировались в интервале температур $25-350^{\circ}$ С. Спектр записывали в непрерывном режиме в течение 10 мин (194 сканирования/спектр, 6 спектров/ч) с разрешением 2 см⁻¹ в диапазоне 600–4000 см⁻¹. Обработку ИК-спектров проводили в программном пакете OPUS.

В качестве инертного газа использовали аргон. ДМЭ (Новомосковск, ПО "Азот") подавали в смеси с азотом (10 об. % ДМЭ) с общим расходом 0.3 л/ч. Опыты проводили в двух вариантах: в первом образец нагревали в токе рабочей смеси до 350°С с шагом 50°С, затем охлаждали в токе аргона до комнатной температуры. Во втором – предварительно прогревали образец до 350°С в токе аргона, затем охлаждали до комнатной температуры, меняли аргон на рабочую смесь и проводили эксперимент в режиме, аналогичном первому опыту. Как показали результаты, предварительная прокалка образца при 350°С в аргоне не повлияла на характеристики полученных спектров.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты исследования поверхности стали в потоке ДМЭ при различных температурах методом ИКДО представлены в таблице и на рис. 1.

Отнесение полос (см ⁻¹) при <i>T</i> , °С	ДМЭ	Гидрид металла		Карбоксилат-ионы		Альдегиды		Карбоновые кислоты и сложные эфиры
	1460	2040	2100	1540	1560	1648	1685	1700-1743
25	2.36	0.147	0.406	0.005	0.014	0.054	0.041	0.036
100	1.92	0.120	0.347	0.014	0.017	0.066	0.048	0.039
150	1.55	0.090	0.286	0.019	0.022	0.071	0.045	0.040
200	1.28	0.072	0.238	0.021	0.019	0.074	0.058	0.048
250	1.07	0.056	0.195	0.032	0.028	0.066	0.052	0.047
300	0.89	0.042	0.162	0.034	0.031	0.071	0.056	0.044
350	0.75	0.038	0.142	0.042	0.042	0.083	0.065	0.051

Интенсивности (координаты Кубелки–Мунка, (К–М)) и отнесение полос ИКДО в спектре ДМЭ, адсорбированного при разных температурах на нержавеющей стали

Как видно из приведенных данных, ДМЭ адсорбируется на поверхности пластинки, о чем свидетельствует наличие в спектрах полос, характерных для метильных групп адсорбированного ДМЭ: 2980, 2925, 2890, 2837, 1460 см⁻¹, а также не приведенных на рис. 1 очень интенсивных полос от связей С–О в ДМЭ: 1175, 1117 и 940 см⁻¹ [21].

Наибольшее содержание адсорбированного ДМЭ наблюдается при комнатной температуре, повышение температуры приводит к монотонному уменьшению количества ДМЭ на поверхности. При этом адсорбированный ДМЭ сохраняется даже при 350°С.

При 25°С, кроме полос самого ДМЭ, в спектре появляются новые полосы в области 2040, 2108 см⁻¹ (рис. 2), которые могут быть отнесены к связям металл—гидрид (М–Н) различной природы [22], поскольку в состав стали, кроме железа, входят Ni, Cr, Ti. Это указывает на то, что уже при комнатной температуре при адсорбции ДМЭ на поверхности стали возможно образование гидридов металлов. Повышение температуры приводит к снижению интенсивности полос как адсорбированного ДМЭ, так и связей М–Н; при этом наблюдается прямая зависимость количества образованных гидридов от количества адсорбированного на поверхности ДМЭ (рис. 3).

Полагая адсорбцию ДМЭ на металле мономолекулярной для не очень больших покрытий (θ), ее можно описать уравнением Генри:

$$\theta = a_m K P, \tag{1}$$

где P — парциальное давление ДМЭ в газе, a_m — емкость монослоя и K — константа адсорбционного равновесия. Действительно, оптическая плотность полосы 1460 см⁻¹, пропорциональная логарифму содержания ДМЭ, линейно зависит от обратной температуры (К) с коэффициентом 8 кдж/моль (рис. 4), что указывает на физическую адсорбцию с заметным вкладом специфического взаимодействия адсорбат-адсорбент. При температуре 100°С в области 1550—1750 см⁻¹ спектра ИКДО появляются очень слабые полосы, которые могут быть отнесены к образующимся карбоксилат-анионам, а также альдегидам, карбоновым кислотам и сложным эфирам, адсорбированным на поверхности стальной пластинки (таблица). Интенсивность этих полос возрастает при повышении температуры, несмотря на уменьшение содержания ДМЭ и гидридов на поверхности (рис. 5).

Поскольку появление и увеличение с температурой содержания карбоксилатных групп на поверхности стали сопровождается уменьшением содержания гидридов металлов и ДМЭ, можно предполагать, что карбоксилаты образуются с участием гидридных центров, возникающих при сорбции ДМЭ на поверхности стали. Можно полагать, что отрыв гидрид-иона от метильной группы ДМЭ приведет к образованию формальдегида и метильного катиона (схема 1):

$$\begin{bmatrix} M^+_{O} & CH_3 \\ M^+_{O} & CH_3 \end{bmatrix} \xrightarrow{M^+_{O} O} \begin{bmatrix} M^+_{O} & CH_3 \\ MH_{O} & CH_2 \end{bmatrix} \xrightarrow{M^-_{O} H_2 C = O} \\ MH_{O} & CH_2 \end{bmatrix} \xrightarrow{M^-_{O} H_2 C = O} \\ MH_{O} & CH_3 \\ MH_{O} & CH_2 \end{bmatrix} \xrightarrow{M^-_{O} H_2 C = O} \\ MH_{O} & CH_3 \\ MH_{O} & CH_2 \end{bmatrix} \xrightarrow{M^-_{O} H_2 C = O} \\ MH_{O} & CH_3 \\ MH_{O} & CH_2 \\ MH_{O} & CH_3 \\ MH_{O} & CH$$

Схема 1. Возможная схема распада ДМЭ на поверхности стали (М) с образованием поверхностных интермедиатов.

Разложение ДМЭ с образованием формальдегида и метилкатиона согласуется с механизмом, предложенным в [23] для описания термического разложения ДМЭ, протекающего в отсутствии катализатора при температурах более высоких, чем в данных экспериментах. При этом взаимодействие метилкатиона с гидридом металла приведет к образованию метаноподобной структуры и снижению интенсивности полос гидридов металлов в спектре ИКДО.

Дальнейшее превращение образующегося формальдегида можно описать схемой 2. Формальдегид может самопроизвольно полимеризоваться на холодных стенках реактора (путь 1) [24]. При наличии на поверхности металла связей М–ОН, которые

НЕФТЕХИМИЯ том 55 № 6 2015

Рис. 1. Спектры поверхности стальной пластинки при разных газотемпературных обработках: 1 - Ar, $350^{\circ}C$; 2 - ДМЭ, $25^{\circ}C$; 3 - ДМЭ, $200^{\circ}C$; 4 - ДМЭ, $350^{\circ}C$; 5 - Ar после эксперимента с ДМЭ, $25^{\circ}C$. a - область поглощения валентных колебаний С–Н связей; <math>6 - область поглощения деформационных колебаний Н–С–Н ДМЭ, гидридных и карбоксилатныхструктур.

проявляются в спектре ИКДО слабыми полосами в области 3700–3800 см⁻¹, можно легко представить окисление альдегида до муравьиной кислоты, которая на положительно-заряженных атомах металла будет ионизироваться (путь 2).

Схема 2. Возможная схема превращения образующегося из ДМЭ формальдегида.

Рис. 2. Спектры поверхности стальной пластинки при сорбции ДМЭ в области поглощения гидридов и карбоксилатных структур: *1* – 25°C; *2* – 200°C; *3* – 350°C.

Кроме того, формальдегид может распадаться с образованием СО и водорода. Как известно, СО является ловушкой для карбокатионов [25]. В работе [26] показано, что взаимодействие СО с метильным катионом приводит к образованию ацетильного катиона, реагирующего с ДМЭ, давая метилацетат и восстанавливая метильный катион (схема 3). Подобного типа соединения обнаружены в метанолесырце [27].

$$CO + C_3H^+ \longrightarrow CH_3^+ - C = O \xrightarrow{\mathcal{M} \to \Theta} CH_3C(O)OCH_3 + CH_3^+$$

Схема 3. Образование сложного эфира из формальдегида в токе ДМЭ.

Полосы карбоксилатных групп сохраняют свою интенсивность даже после того, как система была продута аргоном при 350°С, когда ДМЭ практически удаляется с поверхности (полоса 1460 см⁻¹, принадлежащая ДМЭ, практически исчезает).

Таким образом, спектральные эксперименты *in situ* показали, что при протоке над пластиной из стали 12X18H10T ДМЭ адсорбируется при температурах до 350°C, давая продукты превращения и уплотнения, что может влиять на селективность протекания при этих температурах каталитических процессов конверсии ДМЭ.

Авторы благодарят О.Б. Чупичева за предоставленный образец и А.А. Ежова за измерения шероховатости пластины.

Работа выполнена в рамках Федеральной целевой программы "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014—2020 годы" при финансовой поддержке государства в лице Минобрнауки России (уникальный идентификатор проекта RFMEFI60714X0025).

Рис. 3. Зависимость интенсивностей полос связей $M-H \ 2100 \ \text{сm}^{-1}$ (*I*) и 2040 $\ \text{сm}^{-1}$ (*2*) от интенсивности полосы 1460 $\ \text{сm}^{-1}$ (ДМЭ) в спектрах ИКДО при изменении температуры.

Рис. 4. Зависимость оптической плотности полосы поглощения 1460 см⁻¹ от температуры.

Рис. 5. Зависимость интенсивностей полос формиатаниона 1540 см⁻¹ (*1*) и ДМЭ 1460 см⁻¹ (*2*) в ИКДОспектре от температуры.

СПИСОК ЛИТЕРАТУРЫ

- Semelsberger T.A., Borup R.L., Greene H.L. // J. Power Sources. 2006. V. 156. P. 497.
- Rozovskii A.Ya., Slivinskii E.V., Lin G.I., Makhlin V.A., Kolbanovsky Y.A., Platé N.A. // Pure & Appl. Chem. 2004. V. 76. P. 1735.
- 3. *Chen H.-J., Fan C.-W., Yu C.-S.* // Appl. Energy 2013. V. 101. P. 449.
- 4. Li Y., Wang T., Yin X., Wu C., Ma L., Li H., Lv Y., Sun L. // Renew. Energ. 2010. V. 35. P. 583.
- Bonura G., Cordaro M., Cannilla C., Mezzapica A., Spadaro L., Arena F., Frusteri F. // Catal. Today. 2014. V. 228. P. 51.
- 6. Zhu Y., Wang S., Ge X., Liu Q., Luo Z., Cen K. // Fuel Process. Tech. 2010. V. 91. P. 424.
- 7. Jeong J.W., Ahn C.-I., Lee D.H., Um S.H., Bae J.W. // Catal. Lett. 2013. V. 143. P. 666.
- García-Trenco A., Martínez A. // Appl. Catal. A: Gen. 2012. V. 411–412. P. 170.
- 9. Flores J.H., Peixoto D.P.B., Appel L.G., de Avillez R.R., Pais da Silva M.I. // Catal. Today. 2011. V. 172. P. 218.
- 10. Zhu W., Li X., Kaneko H., Fujimoto K. // Catal. Lett. 2008. V. 120. P. 95.
- 11. Колесниченко Н.В., Яшина О.В., Маркова Н.А., Бирюкова Е.Н., Горяинова Т.И., Кулумбегов Р.В., Хаджиев С.Н., Китаев Л.Е., Ющенко В.В. // Нефтехимия. 2009. Т. 49. № 1. С. 45. [Petrol. Chem. 2009. V. 49. № 1. Р. 42].
- 12. Trippe F., Fröhling M., Schultmann F., Stahl R., Henrich E., Dalai A. // Fuel Process. Technol. 2013. V. 106. P. 577.
- Simonetti D.A., Ahn J.H., Iglesia E. // J. Catal. 2011. V. 277. P. 173.
- Колесниченко Н.В., Китаев Л.Е., Букина З.М., Маркова Н.А., Ющенко В.В., Яшина О.В., Лин Г.И., Розовский А.Я. // Кинетика и катализ. 2007. Т. 48. С. 846.
- Китаев Л.Е., Букина З.М., Ющенко В.В., Ионин Д.А., Колесниченко Н.В., Хаджиев С.Н. // Ж. физ. химии. 2014. Т. 88. С. 396.
- 16. Ионин Д.А., Колесниченко Н.В., Букина З.М., Хаджиев С.Н. // Нефтехимия. 2015. Т. 55. № 2. С. 119. [Petrol. Chem. 2015. V. 55. Р. 112].
- 17. Батова Т.И., Хиврич Е.Н., Широбокова Г.Н., Колесниченко Н.В., Павлюк Ю.В., Бондаренко Г.Н. // Нефтехимия. 2013. Т. 53. № 6. С. 431. [Petrol. Chem. 2013. V. 53. Р. 383].
- Tokay K.C., Dogu T., Dogu G. // Chem. Eng. J. 2012. V. 184. P. 278.
- Semelsberger T.A., Ott K.C., Borup R.L., Greene H.L. // Appl. Catal. B: Env. 2005. V. 61. P. 281.
- Badmaev S.D., Belyaev V.D., Volkova G.G., Sobyanin V.A. // React. Kinet. Catal. Lett. 2007. V. 90. P. 197.
- 21. Gases and vapors: a special collection of evaluated infrared spectra from the Coblentz Society, Inc. / Ed. Clara D. Craver, 1980.
- Epstein L.M., Belkova N.V., Shubina E.S. Dihydrogen bonded complexes and proton transfer to hydride ligand by spectral (IR, NMR) studies / in book: Recent Advances in Hydride Chemistry. Amsterdam. 2001. P. 391.
- 23. *Бенсон С.* Термохимическая кинетика. М.: Мир. 1971. 308 с.
- 24. *Коршак В.В.* Химия высокомолекулярных соединений. Изд-во АН СССР. М.-Л. 1950. 528 с.
- 25. Степанов А.Г. // Успехи химии. 1999. Т. 68. С. 619.
- Cheung P., Bhan A., Sunley G.J., Law D.J., Iglesia E. // J. Catal. 2007. V. 245. P. 110.
- Караваев М.М., Леонов В.Е., Попов И.Г., Шепелев Е.Т. Технология синтетического метанола. М.: Химия. 1984. 240 с.