УДК 662.71+630.86

КВАНТОВО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЧНОСТИ МЕТАЛЛ-ОРГАНИЧЕСКИХ СВЯЗЕЙ В НЕФТИ

© 2015 г. Х. М. Кадиев, А. М. Гюльмалиев, С. Н. Хаджиев

Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва E-mail: Kadiev@ips.ac.ru

Поступила в редакцию 10.05.2015 г.

С применением неэмпирических квантово-химических методов проведен расчет энергии разрыва связей металл-органика в соединениях, моделирующих различные металлсодержащие структуры в нефти. Установлено, что в двухатомных молекулах значения энергии связи, рассчитанные по методам cbs-qb3, b3lyp/dgdzvp и b3lyp/cc-pVDZ, образуют ряд: $E_{(M-O)} > E_{(M-C)} > E_{(M-N)}$, где M = V, Ni, Co. Показано, что самую прочную связь (277.4 ккал/моль) имеет оксид ванадия VO в молекуле ванадилпорфирина. Устойчивы также сэндвичевые структуры: по методу ub3lyp/6-31g(d,p) найдена энергия разложения сэндвичей (C₅H₅)₂M = M + 2C₅H₅, равная при M = Fe 260.2 ккал/моль и при M = Ni – 141.0 ккал/моль. Методом ub3lyp/6-31g(d) проведен расчет электронной структуры комплексов переходных металлов (M–V, Ni, Fe) с π -сопряженными связями молекул (CM) бензола, пиррола, пиридина. По величине энергии связи сделаны выводы о термической устойчивости этих комплексов

Ключевые слова: квантово-химический метод, энергия связи, металлы в нефти, электронная структура атомов, порфирин, π-комплексы.

DOI: 10.7868/S0028242115060076

Интерес к исследованию характера связывания микроэлементов в нефти обусловлен несколькими причинами, в частности, геолого-геохимическими аспектами образования металлсодержащих соединений, большой промышленно-сырьевой ценностью металлов и существенным их влиянием на протекание термокаталитических реакций в процессах переработки нефти, экологическими аспектами [1, 2].

Один из основных показателей физико-химических характеристик микроэлементов в нефти и продуктах ее переработки – энергия их химической связи с органическими соединениями нефти. Именно энергией связи во многом определяется термическая устойчивость металлсодержащих соединений нефти и направления реакций их превращений при термохимическом воздействии. К сожалению, в настоящее время в литературе практически отсутствуют достоверные экспериментальные данные. Это связано, в первую очередь, с тем, что структуры металлсодержащих соединений мало изучены и, во-вторых, со сложностью структуры высокомолекулярных компонентов нефти – асфальтенов и смол, в которых в основном содержатся металлы; кроме того само экспериментальное определение энергии этих связей является весьма сложной задачей. С другой стороны, современные квантово-химические методы высокого уровня позволяют рассчитать энергию разрыва химических связей в молекулах с точностью, сравнимой экспериментальной [3].

В данной работе рассматриваются методические аспекты моделирования и расчета энергии связей металл-органические соединения в нефти с применением неэмпирических методов квантовой химии.

Общие характеристики распределения металлов в составе нефти. Природное органическое вещество (OB) осадочных пород (нефть и битумоиды) содержит $10^{-1}-10^{-7}$ мас. % V, Ni, Fe, Co, Cr, Zn, As и других микроэлементов. Выявлено около 60 микроэлементов; ванадий, концентрация которого, как правило, больше других, и никель — первые металлы, обнаруженные в нефти [1–7]. Однако в литературе до настоящего времени должным образом не обсуждаются вопросы взаимосвязи между содержанием V с других микроэлементов в сырой нефти различных месторождений.

В табл. 1 приведены содержания переходных элементов (в г/т), в основных сортах сырой нефти, экспортируемой в Нидерланды [5].

По данным табл. 1 методом наименьших квадратов (НК) на рис. 1 построены линейные зависимости содержания Ni и ванадия V в сырой нефти:

$$C_{\rm Ni} = 0.3192C_{\rm V} - 0.4956 \ (R^2 = 0.984).$$
 (1)

КАДИЕВ и др.

Сорт нефти	Содержание элементов, мас. %							
	S	V	Ni	Cd	Zn	Cu	Cr	As
Арабская легкая	1.91	23.7	4.6	2.1	285	21	41	7.9
Арабская тяжелая	2.92	69.8	22.3	0.54	500	31	140	14.4
Иранская легкая	1.46	55.2	17.0	0.76	412	55	62	8.4
Иранская тяжелая	1.67	68.2	21.4	1.44	499	47	161	15.0
Кувейт	2.47	32.9	9.6	0.4	420	35	24	14.6
Статфьорд	0.26	1.5	0.7	2.4	213	25	13	5.4
Озеберг	0.24	1.6	0.8	2.1	116	195	19	4
Урал	1.55	37.1	12.2	0.69	380	51	21	37

Таблица 1. Содержание тяжелых элементов в основных сортах сырой нефти, экспортируемой в Нидерланды, в г/т [5]

Таблица 2. Распределение металлов V и Ni по хроматографическим фракциям гудрона западносибирской нефти [7]

Франция.	Содержание, ррт			
Фракция	ванадия	никеля		
Гудрон	120	46		
Фракции:				
парафинонафтеновые	0.10	0.10		
легкие ароматические	0.13	0.07		
средние ароматические	0.12	0.04		
тяжелые ароматические	2.6	1.4		
смолы I	80	88.4		
смолы II	370	57		
асфальтены	963	480		

Аналогичное уравнение получено для содержания цинка: $C_{Zn} = 4.8088C_V + 178.81$ ($R^2 = 0.890$) (2). Связь концентрации других элементов, приведенных в табл. 1, с концентрацией ванадия не наблюдается.

Рис. 1. Взаимозависимость содержания Ni и V в нефти.

Учитывая, что в нефтях различных месторождений между содержанием V и Ni существует хорошая линейная корреляция, можно сделать два предположения:

 – содержание обоих элементов в нефти обусловлено условиями формирования металлсодержащих компонентов нефти (смол и асфальтенов) и не зависит от геохимических характеристик ее месторождения;

– в нефтях, независимо от их месторождения имеются определенные классы высокомолекулярных соединений типа асфальтенов и смол, со схожей структурой, способные связывать из окружающей породы V и Ni в определенных соотношениях. Учитывая хорошую корреляцию между их содержанием в нефти, по концентрации в ней одного из них можно прогнозировать с определенной точностью содержание другого.

Распределение V и Ni в отдельных классах соединений гудрона западносибирской нефти (по хроматографическим данным) приведено в табл. 2 [7]. Видно, что основная масса металлосодержащих соединений сосредоточена в смолах и асфальтенах, а

Рис. 2. Электронная конфигурация атома азота в sp^2 - и sp^3 - гибридных состояниях в органических соединениях.

углеводородные фракции содержат до 1–3 ppm металлов.

По данным табл. 2 методом НК получено уравнение зависимости содержания Ni от содержания V во фракциях гудрона: $C_{\text{Ni}} = 0.4636C_{\text{V}} - 4.2015$ ($R^2 = 0.9096$) (3). Как видно, между ними имеется хорошая корреляция, что может свидетельствовать о том, что V и Ni во фракциях нефти образуют по своей природе схожие соединения, хотя коэффициенты в линейных уравнениях (1) и (3) отличаются.

Структурные особенности органических соединений в составе нефти. Предполагается, что металлы связаны с органикой через гетероатомы N, O и S донорно-акцепторной связью, а с ненасыщенными и ароматическими соединениями они образуют π комплексы [5, 11, 12]. К типичным N-, O- и S-содержащим соединениям, выделенным из нефти, относятся меркаптаны $C_nH_{2n+1}SH$, тиофенол, тиоэфиры, тиофены и их производные, одноосновные кислоты линейного и разветвленного типа, нафтеновые кислоты, азотсодержашие соединения производные пиридина и пиррола [2, 7, 8].

Таким образом, можно предположить, что металлы в нефти могут находиться в самых различных формах: в составе порфириновых соединений, в комплексе с ароматическими фрагментами, алкенами, в насыщенных гетероатомных соединениях, образуя при этом различные по природе и по прочности химические связи. В нефти превалирует содержание комплексов переходных металлов с азотсодержащими соединениями и они имеют различные структуры и свойства, обусловленные, повидимому, валентным состоянием атома азота.

Электронная конфигурация атома азота в основном состоянии $2s^22p^3$. Известно, что в органических соединениях атом N, как правило, присут-

ствует в двух гибридных состояниях: *sp*² – в соединениях типа пиридина и пиррола и *sp*³ – в производных аммиака (рис. 2). При *sp*²-гибридизации 2s- и 2p-орбиталей азота образуются три гибридные tr-(тригональные) орбитали, а электронная конфигурация валентной оболочки имеет вид $tr^{1}tr^{1}tr^{2}\pi^{1}$ – в пиридине и $tr^{1}tr^{1}\pi^{2}$ – в пирроле. Поскольку в молекуле пиридина неподеленная пара электронов находится на гибридной орбитали, она проявляет себя и как донор электронов, и как основание, и способна образовать координационные связи с переходными металлами. В молекуле же пиррола неподеленная пара находится на π-орбитали и входит в общее π-электронное сопряжение молекулы. Поэтому, комплексные соединения двух форм азота по природе существенно отличаются.

При гибридном состоянии *sp*³ атом азота имеет четыре гибридных орбитали *te* (тетраедр) электронной конфигурации *te*¹*te*¹*te*² и образует соединения типа производных аммиака $-(R_1R_2R_3)N$, которые также являются слабыми основаниями Льюиса – донорами пары электронов и, поэтому, могут быть представлены как нуклеофильные реагенты, способные образовать координационные связи с переходными металлами. Олефины нефти через π -связи могут образовать донорно-акцепторную и дативную связь с переходными металлами.

Электронная конфигурация комплексообразователя и форма гибридизации его валентных орбиталей в конечном итоге определяют пространственную структуру комплекса и формируют его важнейшие физико-химические свойства — относительную термическую устойчивость, реакционную способность по отношению к различным химическим реагентам, температуру фазового перехода второго рода, связанную с магнитными свойствами (ферромагнетизм, парамагнетизм и диамагнетизм). Так, ферромагнитными свойствами до критической температуры $T_{\rm c}$ — точки Кюри, обладают переходные элементы Fe, Co и Ni (3*d*-металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er [9].

Порфириновые соединения нефти. Как уже было отмечено, основные переходные элементы нефти, находясь в составе многофункциональных компонентов – асфальтенов и смол, образуют термостой-кие металлпорфириновые соединения. Ванадий присутствует в нефти преимущественно в виде ванадил-иона (VO²⁺), входящего в состав ванадилпорфириновых соединений [10–13].

Электронная конфигурация валентного уровня атома ванадия: $3d^34s^2$. В органических соединениях степени окисления ванадия (+5, +4, +3, +2), наиболее устойчивой является +4. Ванадил-ион (VO²⁺) входит в состав ванадилпорфириновых соединений [9, 10]. Ванадилпорфирин парамагнитен, один единственный неспаренный электрон расположен на *d*-орбитали V. Наличие ванадилпорфирина в нефти хорошо устанавливается методом электронного парамагнитного резонанса (ЭПР), по характерному отражению в спектре спин-орбитального взаимодействия [11].

Комплексные соединения металлов с *п*-сопряжением. Одна из разновидностей соединений переходных металлов с сопряженными структурами сэндвичевые структуры с пятичленными И шестичленными циклическими углеводородами с л-электронным сопряжением, наиболее известным представителем которых является ферроцен (бис- η^5 -циклопентадиенилжелезо(II) (η^5 -C₅H₅)₂Fe [14]), не разлагающийся при нагревании до 470°С. Причина устойчивости, по-видимому, в том, что атом Fe одновременно связан с 10 атомами углерода, которые входят в ароматические структуры – кольца С₅H₅-, придающие всей молекуле большую термическую стойкость и играющие роль анионов, образующихся, как предполагают, в результате передачи протона от С₅H₆ [15]. Поэтому, вполне вероятно, что металлорганические соединения в нефти, содержащие металлы в двухвалентном состоянии, могут образовывать сэндвичевые молекулярные структуры. В случае металлов другой валентности π-комплексы имеют другую структуру: это полусэндвичи, когда атом металла располагается над кольцом, образуя пирамиду.

МЕТОДИЧЕСКИЕ АСПЕКТЫ РАСЧЕТА ЭНЕРГИИ РАЗРЫВА ХИМИЧЕСКИХ СВЯЗЕЙ МЕТАЛЛ-ОРГАНИКА В НЕФТИ

Принятые нами методические аспекты расчета и выбора объектов для квантово-химических исследований следующие:

 на примере двухатомных молекул, провести сравнительный анализ энергии разрыва связей атомов переходных металлов с атомами C, N, O и S, рассчитанных различными по уровню точности квантово-химическими методами;

• оценить влияние окружения на энергию связей;

• для оценки энергии связей металл-органика использовать ряд соединений, моделирующих структурные фрагменты вещества нефти и содержащих различные по природе аналогичные связи, т.к. конкретные химические структуры соединений металлов в нефти экспериментально не установлены.

Популярными при термохимических расчетах являются методы: CBS-QB3 "композитной" схемы, использующий базисный набор 6-31G (*d*, *p*), функционала плотности DFT (density functional theory) с гибридным функционалом B3LYP (Becke, Lee,Yang, Parr) в базисах dgdzvp (DGauss double-zeta valence polarized), и сс-рvqz-корреляционно-согласованные базисные наборы (Correlation consistent polarized valence basis sets). Выбор именно этих методов расчета обусловлен, с одной стороны, точностью получаемых результатов, а с другой — ограниченностью квантово-химических методов при расчете электронной структуры соединений, содержащих атомы тяжелых металлов. Квантово-химические расчеты проводились по программам [16, 17].

Энергия разрыва связи $E_{\rm cB}$ в двухатомной молекуле *XY* определялась по формуле: $E_{\rm cB} = (E_X + E_Y) - E_{XY}$, где E_{XY} – полная энергия молекулы *XY* при оптимизированном межатомном расстоянии *r*; E_X и E_Y – полные энергии атомов *X* и *Y*.

При сопоставлении результатов квантово-химических расчетов энергии связей с экспериментальными данными учитывалось что:

• хартри-фоковская энергия молекулы в приближении Борна–Оппенгеймера вычисляется при фиксированных положениях ядер атомов в молекуле, а энергия нулевых колебаний $E_{\text{колеб}} = h\nu/2$ (*h* – постоянная Планка, ν – частота колебания) определяется отдельно, в приближении гармонического осциллятора;

• из-за неправильной асимптотики потенциальной энергии в методе Хартри-Фока, при $r = \infty$ энергия двухатомной молекулы $E(\infty)$ не равна сумме энергий двух невзаимодействующих атомов E_X и $E_Y E(r = \infty) \neq E_X + E_Y$.

Поэтому, для сопоставления расчетного значения энергии связи с экспериментальным, было необходимо, во-первых, скорректировать асимптотику хартри—фоковской энергии, вычислив E_X и E_Y отдельно в основном электронном состоянии атомов X и Y, во-вторых, внести поправку к полной энергии E_{XY} , учитывающую энергию нулевых колебаний $E_{\text{колеб.}}$: $E_{\text{св}} = (E_X + E_Y) - (E_{XY} + E_{\text{колеб.}})$. В общем случае, энергия гомолитического разрыва конкретной связи X - Y в молекуле M, с распадом молекулы на R_i радикалы, равна:

Уравнение реакции	Энер	ΔH_0 по данным [17],			
атомизации	cbs-qb3 b3lyp/ dgdzvp b3lyp/cc		b3lyp/cc-pVDZ	ккал/моль	
VC = V + C	87.2	93.8	89.6	111 ± 15	
VN = V + N	72.4	83.8	80.1	_	
VO = V + O	142.8	153.7	158.0	145 ± 10	
VS = V + S	98.2	107.7	103.6	_	
NiC = Ni + C	92.4	71.6	_	_	
NiN = Ni + N	46.2	49.5	51.7	_	
NiO = Ni + O	94,8	80,7	84.3	86 ± 5	
NiS = Ni + S	89.1	71.6	73.5	85 ± 5	
MoC = Mo + C	_	91.5	_		
MoN = Mo + N	_	107.8	_		
MoO = Mo + O	_	106.0	_	_	
MoS = Mo + S	_	57.7	_		
CoC = Co + C	86.4	68.3	66.0	_	
CoN = Co + N	50.4	45.1	36.3	-	
CoO = Co + O	94.0	76.9	73.9	87 ± 5	
CoS = Co + S	68.2	73.2	59.5	81 ± 5	

Таблица 3. Энергия разрыва связей в двухатомных молекулах

$$D_{X-Y}(M) = \sum_{i} E_{\text{продукты}}(R_i) - E(M).$$

• E(M) – полная хартри-фоковская энергия молекулы M с учетом энергии нулевых колебаний, $E(M) = E(M) + E_{\text{колеб.}}(M), E_{\text{продукты}}(R_i)$ – то же самое, только для продуктов, образующихся после разрыва связи X - Y, в их основном состоянии.

Следует отметить, что энергия разрыва конкретной химической связи в молекуле не всегда равна ее усредненной энергии. Так, например, в случае молекулы метана CH₄ из-за симметрии все четыре C-H-связи эквивалентны и усредненная их энергия связи \overline{D}_{C-H} равна $\overline{D}_{C-H} = E_{ar}/4$, где E_{ar} – есть энергия атомизации CH₄, т.е. тепловой эффект реакции CH₄ = C + H + H + H + H. Однако, энергия разрыва связи D_{C-H} , определенная по формуле $D_{C-H} = E_{CH_s} + E_H - E_{CH_4}$, отличается и $D_{C-H} \neq \overline{D}_{C-H}$. Согласно результатам расчета по методу b3lyp/6-31(*d*) $\overline{D}_{C-H} = E_{ar}/4 = 109.5$ ккал/моль и $D_{C-H} = 103.2$ ккал/моль.

Расчет электронной структуры молекул проводили с оптимизацией геометрических параметров (межатомных расстояний и валентных углов), определением термохимических параметров при давлении 1 атм и температурах 0 К и 298.15 К. При расчете энергии разрыва связи наиболее энергетически стабильное состояние молекулы и про-

НЕФТЕХИМИЯ том 55 № 6 2015

дуктов ее гомолитического распада определялись с оптимизацией геометрических параметров и с учетом мультиплетности их основного терма.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Энергии разрыва связей металл-органика. Результаты расчета энергии разрыва связей в двухатомных молекулах, приведены в табл. 3.

Расчет энергии молекулы и продуктов ее разложения при их основном мультиплетном состоянии проводился по трем квантово-химическим методам: cbs-qb3, b3lyp/dgdzvp и b3lyp/cc-pVDZ. Результаты расчетов сопоставлены между собою и с имеющимися литературными данными [17]. Из данных табл. 3 следует, что: погрешность литературных данных по определению энергии связей велика (~15 ккал/моль); результаты квантово-химических расчетов энергии связей с различными методами между собою хорошо согласуются (по значениям коэффициентов корреляций с литературными данными лучше согласуются данные, полученные по методу b3lyp/dgdzvp); как по данным эксперимента, так и по расчетным данным среди рассмотренных связей наиболее прочной является связь V–O (~145 ккал/моль), наименее слабыми – связи Ni- N и Co- N.

В табл. 4 приведены энергии разрыва связей металл-кислород в оксидах и гидроксидах. Как следует из сравнения данных табл. 3 и 4, ближние

	ΔH_0- энтальпия реакции при 0 K, ккал/моль					
Уравнение реакции	cbs-qb3	b3lyp/ dgdzvp	b3lyp/cc-pVDZ	∆ <i>H</i> _о по данным [17], ккал/моль		
${}^{1}\text{GaOH} = {}^{2}\text{Ga} + {}^{2}\text{OH}$	114.3	102.6	105.3	103 ± 5		
${}^{4}\mathrm{Co(OH)}_{2} = {}^{4}\mathrm{CoO} + \mathrm{H}_{2}\mathrm{O}$	74.6	62.6	74.7	_		
$^{3}Ni(OH)_{2} = ^{3}NiO + H_{2}O$	51.0	59.6	75.6	—		
${}^{3}\mathrm{MoO}_{2} = {}^{5}\mathrm{MoO} + {}^{3}\mathrm{O}$	—	133.8	—	156 ± 7		
$^{2}\text{VO}_{2} = ^{4}\text{VO} + ^{3}\text{O}$	132.1	118.8	104.5	150 ± 7		

Таблица 4. Энергии разрыва М-О-связей

окружения связи существенно влияют на энергию ее разрыва.

Расчет энергию разрыва связей в ванадилпорфирине. Энергию разрыва связи ПФ–VО в ванадилпорфирине вычисляли с учетом зарядов Q и мультиплетности M продуктов реакции, по формуле: $E_{cB} = E(VO) + E(\Pi\Phi) - E(B\Pi\Phi) = 0.442117$ а.е. = 277.4 ккал/моль, где VO – оксид ванадия (Q = 0, M = 4), ПФ – порфин (Q = 0, M = 1), ВПФ – ванадилпорфирин (Q = 0, M = 2).

Анализ электронной структуры ванадилпорфирина показывает, что молекула имеет ось симметрии C_4 (межатомные расстояния приведены на рис. 3), верхняя занятая молекулярная орбита имеет π -характер, атомы азота и водорода в ней не участвуют. Все четыре атома азота с атомом V, образуют равноценные σ -связи, со средней энергией связи 277.4/4 = 69.3 ккал/моль.

Энергии разрыва связей в циклопентадиенилметаллах (η^5 -C₅H₅)₂М. Известно, что железо с ароматическими структурами образует термостойкие соединения [15]. Поэтому для нас представлял интерес сравнительный анализ прочности связей металлов Fe, Ni и V с пятичленными и шестичленными ароматическими структурами в матрице нефти. (табл. 5). Из приведенных в таблице межатомных расстояний и распределения эффективных зарядов на атомах в молекуле, вычисленные по методу b3lyp/6-31g(d,p), видно что в случае ферроцена молекула симметрична, и атом железа образует равноценную химическую связь со всеми углеродными атомами (атом железа заряжен положительно $Q_{Fe} = 0.579$).

Результаты аналогичных расчетов, проведенных для молекул (η^5 -C₅H₅)₂Ni и (η^5 -C₅H₅)₂V показали, что по форме координации пятичленных колец атомом металла (межатомные расстояния) и по вели-

Рис. 3. Структура молекулы ванадилпорфирина, оптимизированная методом ub3lyp/6-31+g(d).

Таблица 5. Энергия разрыва связи металл-органика в металлоценах

НЕФТЕХИМИЯ том 55 № 6 2015

чине эффективных зарядов на атомах (Q = 0.580, $Q_{\rm Ni} = 0.387$, $Q_{\rm V} = 0.573$) никель существенно отличается от железа и ванадия.

Значения энергии разрыва связей в молекулах $(\eta^5 - C_5 H_5)_2 M$, (M = Fe, Ni, V), рассчитанные по методу b3lyp/6-31g(d,p), вычисляли по формуле $E_{CB} = (2E_{\Pi A} + E_M) - E_{(C_5 H_5)_2 M}$. Судя по величине E_{CB} (табл. 5), молекула $(\eta^5 - C_5 H_5)_2$ Fe термически более устойчива, чем молекула $(\eta^5 - C_5 H_5)_2$ Ni. Данные для молекулы $(\eta^5 - C_5 H_5)_2 V$ неточные, из-за плохой сходимости итерационной процедуры.

Во всех трех случаях малликеновские эффективные заряды на атомах металлов положительные, т.е. электронная плотность смешена от металлов к пятичленным кольцам.

Энергия адсорбции металлов V, Ni и Fe на поверхности бензольного кольца. Представляло интерес также исследование энергии разрыва связей в комплексах металлов с бензольным кольцом. Структурные фрагменты асфальтенов и смол в матрице нефти в основном состоят из конденсированных ароматических колец, способных адсорбировать на поверхности переходные металлы и, тем самым, концентрировать их в высококипящих фракциях. В табл. 6 приведены результаты расчетов электронной структуры комплексов металлов М с сопряженными молекулами (СМ) $[M \cdots CM]$, где M = V, Ni, Fe и CM = бензол (C_6H_6), пиррол (C_4H_5N), пиридин (C_5H_5N). Расчеты проводились по методу ub3lyp/6-31g(d). Энергии связей E_{cB} определяли по формуле $E_{cB} = E(M) +$ $E(CM) - E[M \cdots CM].$

Энергии атомов металлов *E*(M) вычисляли с учетом мультиплетности их основного терма: Fe $-{}^{5}D_{4}$, $Ni - {}^{3}F_{4}$ и V – $F_{3/2}$. Судя по тому, что все собственные числа матрицы Гесса имели положительный знак, энергии комплексов соответствовали минимуму. Интересно отметить, что энергия связи (энергия адсорбции) металла с тремя типами сопряженных молекул у атома никеля больше, чем ванадия и железа. При сильной адсорбции сопряженной системы на атоме металла происходит перераспределение π-электронной плотности (во всех случаях эффективный малликеновский заряд Q на атомах металла положительный), что приводит к повышению реакционной способности молекулы с сопряженными связями молекулы. Можно предполагать, что никель должен быть эффективным катализатором при переработке сопряженных циклических соединений.

Согласно табл. 6, геометрические параметры рассмотренных комплексов существенно отличаются, особенно в случае комплексов с атомом железа; кроме того, энергии связи отрицательны, т.е. комплексы относительно исходных соединений менее устойчивы. Учитывая, что комплексы соответствуют минимуму энергии, должны быть переходные состояния по маршруту реакции от исходных соединений к комплексам.

Таким образом, проведенные исследования показывают, что с применением современных квантово-химических методов можно моделировать структуру и свойства металлоорганических соединений в составе нефти и матрице нефти и оценить один из важных параметров структуры — энергию связи металл — органика. Величина энергии связи позволяет судить об их термостойкости и наиболее вероятном распределении их во фракциях, а также прогнозировать возможную каталитическую активность переходных металлов в процессах термохимической переработки наименее реакционноспособных циклических соединений с π -электронным сопряжением.

Работа выполнена при финансовой поддержке в рамках Соглашения с Минобрнауки, уникальный идентификатор: RFMEFI60714X0052.

СПИСОК ЛИТЕРАТУРЫ

- 1. Хаджиев С.Н., Шпирт М.Я. Микроэлементы в нефтях и продуктах их переработки. М.: Наука, 2012.
- 2. *Якуцени С.П.* Распространенность углеводородного сырья, обогащенного тяжелыми элементамипримесями. Оценка экологических рисков. СПб.: Недра, 2005.
- 3. Joseph W., Ochterski Ph.D. <u>help@gaussian.com</u> c 2000, Gaussian, Inc. June 2, 2000.
- Горбунова Л.В., Филимонова Т.А., Камьянова В.Ф. // Химический состав высших погонов нефтей и нефтяных остатков. М.: ЦНИИТЭнефтехим, 1986.
- 5. *Dekkers C., Daan R.* // Oil and Gas. 1999. V. 97. № 9. P. 41.
- Нукенов Д.Н., Пунанова С.А., Агафонова З.Г. Металлы в нефтях, их концентрация и методы извлечения. М.: ГЕОС, 2001.
- Сафиева Р.З. Физикохимия нефти. Физико-химические основы технологии переработки нефти. М.: Химия. 1998.
- Основы химии нефти. Сыркин А.М., Мовсумзаде Э.М. / Изд-во УГНТУ. Уфа, 2002.
- 9. Тейлор К., Дарби М. Физика редкоземельных соединений. Пер. с англ. М.: Мир, 1974. 376 с.
- Насиров Р.Н. Парамагнетизм нефтей и пород прикаспия, М.: Недра. 1993.
- 11. *Гилинская Л.Г.* // Журн. структур. химии. 2008. Т. 49. № 2. С. 259.
- Дикерсон Р., Грей Г., Хейт А. Основные законы химии: В 2-х томах. Пер. с англ. М.: Мир. 1982. 652 с.
- 13. Угай Я.А. Общая химия, М.: Высш. Школа. 1977.
- Методы элементоорганической химии. Под редакцией А.Н. Несмеянова и К.А. Кочешкова. Кн. I и II. М.: Наука, 1974.
- 15. Барнард А. Теоретические основы неорганической химии. М.: Мир, 1968.
- 16. http://classic.chem.msu.su/gran/gamess
- Гурвич Л.В., Карачевцев Г.В., Кондратьев В.Н., Лебедев Ю.А., Медведев В.А., Потапов В.К., Ходеев Ю.С. Энергия разрыва химических связей, потенциалы ионизации и сродство к электрону. М.: Наука. 1974. С. 351.