УДК 544.478.1;544.478.4;544.473

ФИЗИКО-ХИМИЧЕСКИЕ И КАТАЛИТИЧЕСКИЕ СВОЙСТВА МЕЗОПОРИСТЫХ АЛЮМОСИЛИКАТОВ, МОДИФИЦИРОВАННЫХ ИЗОПРОПОКСИДОМ АЛЮМИНИЯ

© 2015 г. Е. Е. Князева^{1, 2}, А. В. Медведько¹, А. В. Фионов¹, О. А. Пономарева^{1, 2}, И. В. Добрякова¹, И. И. Иванова^{1, 2}

¹Московский государственный университет им. М.В. Ломоносова, химический факультет ²Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва E-mail: eknyazeva62@mail.ru Поступила в редакцию 19.01.2015 г.

Исследовано влияние алюминирования на текстурные, кислотные и каталитические свойства мезопористых алюмосиликатов с упорядоченной системой мезопор. Установлено, что процедура алюминирования сопровождается встраиванием Al в алюмосиликатный материал стенок мезопор. Показано, что в реакции метилирования фенола состав продуктов на исходном (Si/Al = 12.5) и алюминированных алюмосиликатах (Si/Al = 2.2 и 0.8) одинаков, что указывает на идентичную природу активных центров. В отличие от исходного мезопористого алюмосиликата, алюминированные материалы работали без потери активности в течение 4 ч. Предположено, что причиной стабильной активности алюминированных катализаторов является генерирование дополнительных кислотных центров в результате взаимодействия обогащенного алюминием материала стенок мезопор с водой, образующейся в процессе взаимодействия фенола с метанолом.

Ключевые слова: мезопористые алюмосиликаты, модифицирование, изопропоксид алюминия. **DOI**: 10.7868/S0028242115040085

Мезоструктурированные материалы с упорядоченной системой пор с диаметром 2-10 нм уже несколько десятилетий остаются в центре внимания исследователей. Интерес к этим материалам связан с их уникальными свойствами и перспективами использования в адсорбционных и каталитических процессах, а также в материаловедении для приготовления новых композитных материалов [1]. Совокупность текстурных и кислотных характеристик мезопористых алюмосиликатов обуславливает возможность их применения в реакциях кислотно-основного катализа для превращения или получения больших органических молекул [2]. Кислотные центры в мезопористых алюмосиликатах типа Al-MCM-41 возникают в результате внедрения Al в кремнеземный материал стенок мезопор, которое может осуществляться как в ходе прямого синтеза, так и в ходе постсинтетического модифицирования.

С использованием прямого синтеза мезопористые алюмосиликаты могут быть получены в очень широком диапазоне отношений Si/Al. Согласно литературным данным, нижний предел Si/Al находится в интервале 1.25–2 [3, 4]. Стенки мезопор алюмосиликатов со структурой MCM-41 представляют собой непористый аморфный материал, природа которого ограничивает доступность атомов алюминия из брутто-формулы алюмосиликата, в результате чего в каталитических превращениях участвуют алюминиевые центры, локализованные только на стенках мезопор.

С использованием постсинтетического алюминирования получены мезопористые материалы с отношением Si/Al от 4 до 200 [5-12]. Процедура алюминирования изучена, главным образом для чисто кремнеземных материалов со структурой МСМ-41, с использованием в качестве прекурсоров нитрата [5], оксихлорида [6-8] и изопропоксида алюминия [9–11]. Увеличение содержания Al в таких материалах приводило к уменьшению поверхности и объема пор. Было показано, что природа прекурсора Al определяет характер воздействия на размер пор исходного силиката: при использовании в качестве прекурсоров Al(NO₃)₃ и Al(OC₃H₇)₃ диаметр мезопор в ходе модифицирования не менялся [5, 11], при использовании раствора оксихлорида алюминия, содержащего поликатионы алюминия, - уменьшался [7]. С использованием термопрограммированной десорбции циклогексиламина показано, что при одинаковом отношении Si/Al концентрация кислотных центров в алюминированных образцах выше, чем в алюмосиликатах, полученных прямым синтезом [9].

Возможность получения композитных материалов на основе мезопористого силиката и мультислоев оксида Al описана авторами [12], использовавшими в качестве прекурсора алюминия Al(OC_4H_9)₃. Такой вариант алюминирования мезопористых силикатов связан с высокой скоростью гидролиза бутоксида Al, взаимодействующего с гидроксильным покровом стенок мезопор. Пятикратное повторение процедуры модифицирования привело к уменьшению диаметра пор от 5.2 до 3.2 нм и позволило получить материал, содержащий 48 мас. % Al₂O₃.

Полученные алюминированные силикаты обладали высокой активностью в синтезе бисфенола F [10], в реакции изомеризации эндо-дициклопентадиена [11], а также крекинге кумола, дегидратации изопропанола и алкилирования фенола метанолом [12].

Основная идея настоящей работы — получение обогащенных алюминием мезопористых материалов с высокой кислотностью и стабильностью. С этой целью в качестве исходного образца был использован мезопористый алюмосиликат с отношением Si/Al = 12.5. В работе детально изучены текстурные, кислотные и каталитические свойства материалов, полученных в ходе одностадийной процедуры алюминирования исходного алюмосиликата с использованием в качестве прекурсора алюминия Al(OC₃H₇)₃, а также прослежено влияние термопаровой обработки, сопровождающей протекание каталитического эксперимента, на свойства алюминированных мезопористых материалов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходный образец мезопористого алюмосиликата MAC0 синтезировали на основе свежеосажденного алюмокремнегеля, полученного взаимодействием раствора силиката натрия и подкисленного раствора $Al_2(SO_4)_3$ при pH = 11, с использованием в качестве темплата бромида гексадецилтриметиламмония. Реакционную смесь состава $0.3Na_2O \cdot 0.03Al_2O_3 \cdot SiO_2 \cdot 0.2C_{16}H_{33}(CH_3)_3NBr \cdot 0.4C_6H_6(CH_3)_3 \cdot 0.3H_2SO_4 \cdot 70H_2O$ кристаллизовали в автоклаве при 110°C в течение 24 ч. По окончании кристаллизации твердую фазу отделяли на воронке Бюхнера и отмывали от избытка темплата. Последующие обработки включали высушивание при 100°C в течение 12 ч и прокаливание при 550°C в токе воздуха в течение 24 ч.

Синтез мезопористых алюмосиликатов, обогащенных Al, проводили путем модифицирования MAC0 в растворе изопропоксида Al в толуоле, содержащем триэтиламин. Массовые отношения толуол/MAC0 и триэтиламин/MAC0 составляли

НЕФТЕХИМИЯ том 55 № 4 2015

50 и 0.1 соответственно. В полученную смесь добавляли раствор изопропоксида Al в толуоле при массовом отношении Al(OC_3H_7)₃/MAC0, равном 5, и 15 — при получении образцов MAC1 и MAC2. Модифицирование и последующие обработки соответственно проводили аналогично [12]. Высушенные образцы прокаливали при 550°C в токе воздуха в течение 6 ч.

В качестве образца сравнения использовали мезопористый оксид Al, полученный гидролизом изопропоксида Al в толуольном растворе водноэтанольной смесью (аналогично [12]) с последующими промывкой толуолом и этанолом, высущиванием при 100°C в течение 12 ч и прокаливанием при 550°C в токе воздуха в течение 6 ч.

Химический состав образцов определяли с использованием методов пламенной фотометрии и атомной абсорбции. Для этого образцы обрабатывали в платиновой чашке концентрированными H_2SO_4 и HF с последующим упариванием до полного удаления SiO₂. Остаток после упаривания растворяли в 1 н растворе HCl, в полученном растворе определяли содержание Na (на пламенном фотометре ФПА) и Al (на атомно-абсорбционном спектрофотометре Hitachi 180.80). Содержание H_2O в образце определяли по потере массы при прокаливании образца при 800°C.

Рентгенофазовый анализ образцов проводили на дифрактометре ДРОН-3М в области углов 5–70 град 2 θ (излучение Си*К* α).

Характеристики пористой структуры синтезированных образцов определяли с использованием метода низкотемпературной адсорбции—десорбции азота. Съемку изотерм проводили на порометре ASAP-2010 (Micrometrics, США). Расчет изотерм проводили с использованием стандартного программного обеспечения прибора.

Концентрацию поверхностных ОН-групп определяли с использованием ТГ-анализа (дериватограф SDT Q600, TA Instruments, США). Навеску образца массой 20-50 мг помещали в корундовый тигель, который устанавливали на высокоточные весы внутри нагреваемой камеры. Кривые ТГ регистрировали в токе осушенного воздуха в режиме линейного подъема температуры со скоростью 10°С/мин в диапазоне 25-800°С. Запись и обработку кривых вели при помощи программного комплекса Universal Analysis. Концентрацию ОН-групп рассчитывали по потере массы свежепрокаленного образца в интервале температур 200-800°С.

Кислотные свойства образцов изучали с использованием термопрограммированной десорбции аммиака (ТПД NH₃). Образец последовательно прокаливали в токе осушенного воздуха и в токе осушенного азота при 550°С, затем охлаждали до комнатной температуры. Адсорбцию

Образец	Состав	в образца, моль/мо.	Si/Al		
	Na ₂ O	Al_2O_3	H ₂ O	51/14	
MAC0	0.004	0.04	0.30	12.50	1.25
MAC1	0.004	0.22	0.60	2.25	5.34
MAC2	0.004	0.62	0.83	0.80	10.06

Таблица 1. Химический состав мезопористых алюмосиликатов

аммиака проводили в течение 30 мин при комнатной температуре из аммиачно-азотной смеси (1:1). Физически сорбированный аммиак отдували в токе осушенного гелия при 65°С в течение 1 ч. Десорбцию аммиака проводили в интервале температур от 25 до 800°С (скорость нагрева 8°/мин) в токе осушенного гелия. Обработка данных проводилась по методике, описанной в [13].

ИК-спектры образцов регистрировали с использованием ИК-спектрометра Nicolet Protégé 408 в области частот 400–1400 см⁻¹. Перед записью спектра навеску 1 мг образца смешивали с 150 мг КВг и прессовали в таблетку. Обработку полученных ИК-спектров проводили с помощью пакета программ OMNIC E.S.P. фирмы Nicolet.

Спектры ЭПР адсорбированного антрахинона записывали на радиоспектрометре EMX-6 фирмы Bruker при комнатной температуре. Перед адсорбцией антрахинона образцы нагревали при 673 К в течение 2 ч на воздухе и 2 ч в вакууме (10⁻⁴ Topp). Адсорбцию антрахинона проводили по методике, описанной в [17]. Значения g-фактора были установлены на основе дифенилпикрилгидразильного стандарта. Обработку данных осуществляли с помощью программы WinEPR.

Для проведения каталитических экспериментов образцы прессовали в таблетки, дробили и отсеивали фракцию 0.25–0.5 мм.

Каталитическую активность образцов изучали в реакции алкилирования фенола метанолом в проточной каталитической установке при 400°С и массовой скорости подачи сырья 1 ч⁻¹. В качестве газа-носителя использовали азот, мольные отношения фенол : метанол : азот составили 1 : 1 : 3. Жидкие продукты реакции анализировали на хроматографе "Chrom-5" с ПИД с использованием кварцевой капиллярной колонки с нанесенной жидкой фазой "Carbowax 20 М", газ-носитель – азот. Газообразные продукты анализировали на хроматографе "ЛХМ-8МД" с катарометром в качестве детектора, газом-носителем азотом, набивной колонкой длиной 3 м с насыпной фазой "Porapac-Q". Обработку хроматограмм проводили с помощью программно-аппаратного комплекса "Ecochrom".

Регенерацию образцов после каталитической реакции проводили в токе воздуха при 550°С в течение 6 ч.

Термопаровую обработку образцов проводили в кварцевом реакторе в токе 100%-ного водяного пара в течение 4 часов при температуре 400°С.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Как показывают результаты химического и адсорбционного анализов (табл.1, рис.1), выбранный способ синтеза исходного мезопористого

Рис. 1. Характеристики исходного (МАСО) и алюминированных (МАС1, МАС2) мезопористых алюмосиликатов.

НЕФТЕХИМИЯ том 55 № 4 2015

Рис. 2. Изотермы низкотемпературной адсорбции азота на исходном (МАС0) и алюминированном (МАС1) мезопористых алюмосиликатах.

алюмосиликата MAC0 позволил получить материал с развитой пористой структурой, образованной порами диаметром 6.5 нм, и отношением Si/Al = 12.5. Использование в качестве сырья свежеосажденного алюмокремнегеля с pH = 11 обеспечило незначительное содержание натрия в образце (Na/Al = 0.1), что позволило избежать стадии декатионирования при использовании полученного материала в качестве катализатора.

Обработка МАСО в толуольном растворе $Al(OC_3H_7)_3$ приводила к обогащению образца алюминием. В ходе модифицирования удалось увеличить содержание Al в мезопористых материалах в 4 (MAC1) и 7.6 раза (MAC2) по сравнению с исходным образцом (рис. 2). Содержание Al_2O_3 в образцах МАС1 и МАС2 коррелировало с количеством изопропоксида Al, взятым для модифицирования, однако в состав образца удавалось ввести не более 30% прекурсора.

Согласно литературным данным, ключевой стадией алюминирования мезопористых силикатов является взаимодействие прекурсора алюминия с поверхностными ОН-группами на стенках мезопор [7, 12]. По результатам ТГ-анализа, концентрация ОН-групп в образце МАС0 составила 4.12 ммоль/г. Сравнение этой величины с концентрацией Al в образцах (табл. 1) показывает, что количество вводимого в ходе модифицирования Al для образца MAC1 ($c(Al)_{MAC1}-c(Al)_{MAC0} = 4.09$ ммоль/г) соответствует ресурсу ОН-групп, а для образца МАС2 ($c(Al)_{MAC2}-c(Al)_{MAC0} = 8.81$ ммоль/г) превышает этот ресурс в 2.1 раза. Очевидно, во втором случае при одностадийном модифицировании в избытке изопропоксида Al имеет место более сложный механизм взаимодействия прекурсора с материалом стенок мезопор, который требует специального исследования.

Как и образец МАС0, образцы МАС1 и МАС2 оставались рентгеноаморфными в области углов

Рис. 3. ИК-спектры образца сравнения Al_2O_3 (1), исходного МАСО (2) и алюминированных МАС1 (3) и МАС2 (4) мезопористых алюмосиликатов.

5–70 град 20. С использованием РФА ни в образце МАС1, ни в образце МАС2, индивидуальная фаза оксида Al зафиксирована не была.

Модифицирование сопровождалось некоторым уменьшением поверхности и объема пор, но ухудшение характеристик пористой структуры не было критическим (рис. 1). Вид изотерм (рис. 2, для образцов МАС1 и МАС2 они практически совпали), так же как величины поверхности и объема пор (рис. 1), свидетельствовали о получении материалов с развитой мезопористой структурой. Сохранение размера пор (6.5, 6.5 и 6.0 нм у образцов МАС0, МАС1 и МАС2 соответственно) позволило предположить, что модифицирование было связано не с образованием отложений Al_2O_3 на стенках мезопор, а с изменением материала стенок.

Для выяснения природы материала стенок мезопористых алюмосиликатов были использованы спектральные методы. Как следует из ИК-спектров, представленных на рис. 3, в спектре исходного образца МАСО присутствуют полосы поглощения (п.п.), характеризующие алюмосиликатный остов и соответствующие асимметричным колебаниям Т-О-Т-групп (1082 см⁻¹) и колебаниям связей Т-О (800, 545 и 462 см⁻¹). Модифицирование МАСО приводит к изменениям спектров, заключающихся в заметном сдвиге перечисленных п.п. в область низких частот, что свидетельствует об увеличении содержания тетраэдров алюминия в алюмосиликатном остове. Кроме то-

Рис. 4. ИК-спектры (а) и спектры ЭПР адсорбированного антрахинона (б) образца сравнения Al_2O_3 (*1*), исходного МАСО (*2*) и алюминированных МАС1 (*3*) и МАС2 (*4*) мезопористых алюмосиликатов.

го, в области 550-700 см⁻¹ появились новые п.п. (рис. 3). Отнесение этих полос может предусматривать два варианта. Первый вариант связан с возможностью присутствия на стенках мезопор алюмосиликата фазы Al₂O₃, образующейся в результате гидролиза Al(OC₃H₇)₃ и последующего прокаливания. На это указывает близость положений п.п. в ИК-спектрах модифицированных образцов МАС1 и МАС2 и образца сравнения Al₂O₃ (рис. 3). Согласно [14], п.п. в области 550-850 см⁻¹ соответствуют колебания связей в октаэдрах AlO₆. Но, по данным [12], этим п.п. должны сопутствовать п.п. около 1630 и 1520 см⁻¹, связанные с водой, адсорбированной на аморфном оксиде алюминия; такие полосы присутствовали в ИК-спектрах МСМ-41, на стенки мезопор которых был нанесен мультислой Al₂O₃ [12]. В ИК-спектрах образцов МАС0, МАС1 и МАС2 (рис. 4a) п.п. 1520 см⁻¹ отсутствует.

Второй вариант отнесения полос в области 550-700 см⁻¹ на ИК-спектрах связан с возможностью встраивания Al в стенки мезопор исходного образца и образования некоторых алюмосиликатных фрагментов, колебания по внешним и внутренним связям которых регистрируются в этой области ИК-спектров [15]. Дополнительная информация была получена с привлечением ЭПР-спектров адсорбированного антрахинона (рис. 4б). Метод парамагнитных комплексов адсорбированного антрахинона позволяет регистрировать электроноакцепторные центры - координационно-ненасыщенные ионы Al [16]. Антрахинон образует комплекс с двумя соседними координационно-ненасыщенными ионами алюминия, при этом в спектре ЭПР такого комплекса на поверхности оксида алюминия (рис. 46, спектр 1) проявляется 11-компонентная сверхтонкая структура (СТС) от двух ядер ²⁷Al [16]. На поверхности мезопористых алюмосиликатов MAC0, MAC1 и MAC2 (рис. 46, спектры 2–4) антрахинон образовывал парамагнитный комплекс, аналогичный описанному в литературе для сверхвысококремнеземных цеолитов и аморфных алюмосиликатов [17], не содержащий СТС от ядер алюминия.

Полученные результаты показывают, что в ходе модифицирования мезопористого алюмосиликата наиболее вероятно реализуется второй вариант взаимодействия изопропоксида алюминия с материалом стенок пор, приводящий к встраиванию алюминия в алюмосиликатный остов мезопористого материала.

Интересным оказывается анализ положения и интенсивности п.п. около 960 см⁻¹ (рис. 3), которая, согласно [12], характеризует колебания связей Si-O-H в аморфном материале стенок мезопор. Авторами [12] показано, что в ходе модифицирования МСМ-41, приводящем к образованию мультислоев Al_2O_3 на поверхности стенки мезопор, с ростом содержания Al в образцах п.п. 960 см⁻¹ из ИК-спектров исчезает, что обусловлено взаимодействием поверхностных ОН-групп с молекулами бутоксида Al, использованного в качестве прекурсора. При модифицировании образца МАСО плечо 961 см⁻¹ не исчезает, интенсивность его растет и положение смещается в сторону низких частот до 924 и 916 см⁻¹ у образцов МАС1 и МАС2 соответственно (рис. 3). Наблюдаемые факты указывают на то, что в ходе алюминирования мезопористого алюмосиликата с использованием в

Рис. 5. Спектры ТПД NH₃ для исходного и алюминированных мезопористых алюмосиликатов.

качестве прекурсора изопропоксида Al в стенках мезопор может формироваться обогащенный алюминием аморфный алюмосиликат.

Кислотные свойства мезопористых алюмосиликатов были изучены с использованием метода термопрограммированной десорбции аммиака (рис. 5). Концентрация кислотных центров *a*₀(NH₃), оцениваемая по площади под кривой ТПД, для образцов МАСО, МАС1 и МАС2 составила 0.53, 0.74 и 0.59 ммоль/г соответственно. Уменьшение величины a_0 у образца МАС2 по сравнению с образцом МАС1 указывает на то, что значительная часть алюминия, вводимого в состав образца при модифицировании, локализуется в позициях, недоступных для молекул аммиака. Независимо от содержания алюминия в образцах, спектры ТПД имеют идентичный асимметричный профиль (рис. 5). Проведение деконволюции спектров позволило выделить три их составляющих, соответствующих десорбции аммиака в интервалах 60–230°С (слабые кислотные центры), 230-430°С (кислотные центры средней силы) и 430-800°С (сильные кислотные центры). Не зависимо от содержания алюминия, доли каждого типа центров в образцах были близки и составили 37-38, 42-45 и 18-20% соответственно. Полученные результаты свидетельствуют о том, что процедура алюминирования мезопористого алюмосиликата позволяет регулировать концентрацию кислотных центров, но не влияет на их природу. Концентрация кислотных центров в образце сравнения Al_2O_3 составила 70 мкмоль/г.

Каталитические свойства мезопористых алюмосиликатов и образца сравнения Al₂O₃были изучены в реакции алкилирования фенола метанолом. Согласно литературным данным, эта реак-

НЕФТЕХИМИЯ том 55 № 4 2015

Puc. 6. Зависимости активности катализаторов от времени реакции: $\blacklozenge - Al_2O_3$, $\blacklozenge - MAC0$, $\bigtriangleup - MAC1$, $\blacksquare - MAC2$.

ция протекает как на оксиде алюминия так и на цеолитах и мезопористых алюмосиликатах [18– 20], а основными продуктами реакции являются анизол, крезолы и ксиленолы.

Как следует из зависимостей конверсии фенола от времени реакции (рис. 6), в выбранных условиях проведения реакции оксид Al уступал мезопористым алюмосиликатам по активности. Образцы МАСО, МАС1, МАС2 обладали одинаковой начальной активностью (конверсия фенола ок. 70%), но в течение 4 ч реакции модифицированные образцы работали стабильно, а конверсия фенола на МАСО снизилась на 10%. Изучение состава продуктов реакции показало следующее. Содержание анизола в продуктах реакции не превышало 0.4 молн. %, что указывает на преимущественное алкилирование фенола в ароматическое кольцо. Мезопористые алюмосиликаты продемонстрировали близкий состав продуктов превращения (табл. 2), что может указывать на одинаковый характер активных центров. В продуктах реакции преобладали крезолы, уменьшение отношения Si/Al в образцах сопровождалось снижением образования продуктов С₉₊ и ростом образования ксиленолов.

Таким образом, при использовании в качестве катализаторов реакции алкилирования фенола метанолом, алюминированные мезопористые алюмосиликаты обладают существенным преимуществом как над Al-MCM-41 [20], так и над цеолитами BEA, MFI и FAU [19], заключающимся в стабильной каталитической активности.

По окончании каталитического эксперимента была проведена регенерация катализаторов. Изучение характеристик пористой структуры и кислотных свойств образцов показало, что цикл "ре-

	MAC0			MAC1			MAC2		
Время, ч	селективность, мольн. %			селективность, мольн. %			селективность, мольн. %		
	крезолы	ксиленолы	C ₉₊	крезолы	ксиленолы	C ₉₊	крезолы	ксиленолы	C ₉₊
1	64.2	22.2	13.6	64.2	26.8	9.0	68.3	26.9	4.8
2	65.6	22.6	11.8	63.7	28.0	8.3	70.0	27.1	2.9
3	63.8	23.9	12.3	62.6	29.7	7.7	66.9	28.0	5.1
4	65.8	22.7	11.5	61.9	29.8	8.3	66.3	29.1	4.6

Таблица 2. Состав продуктов алкилирования фенола метанолом

Таблица 3. Текстурные и кислотные свойства мезопористых алюмосиликатов

Образец	Xapa	ктеристики п	ористой струк	Кислотные свойства			
	<i>S</i> , м²/г	$S_{\rm muk},{ m m}^2/{ m f}$	<i>V</i> , См ³ /г	<i>D</i> , нм	<i>a</i> ₀ (NH ₃)*, ммоль/г	$d(NH_3)^{**}, HM^{-2}$	$E_{ m cp}^{***},$ кДж/моль
MAC0	890	0	1.10	6.5	0.53	0.36	134
MAC0 _{KP}	680	0	0.71	5.7	0.33	0.29	148
MAC0 _{TΠO}	750	0	1.02	6.0	0.62	0.50	118
MAC1	680	0	0.95	6.5	0.74	0.65	136
MAC1 _{KP}	320	3	0.46	5.7	0.37	0.69	124
MAC1 _{TΠO}	520	5	0.73	5.5	0.88	1.02	135
MAC2	610	0	0.92	6.0	0.59	0.58	132
MAC2 _{KP}	300	5	0.46	5.5	0.34	0.68	123
MAC2 _{TIIO}	480	7	0.72	5.6	1.14	1.80	140

* — концентрация кислотных центров по данным ТПД NH₃; ** — плотность центров, сорбирующих аммиак; *** — средняя энергия активации десорбции аммиака.

акция—регенерация" сопровождается частичной деградацией пористой структуры катализаторов и уменьшением концентрации кислотных центров в образцах (образцы $MAC0_{KP}$, $MAC1_{KP}$, $MAC2_{KP}$, табл. 3). При этом глубина отрицательного воздействия на пористую структуру образцов MAC1 и MAC2 была выше, чем у не модифицированного образца MAC0: образцы, обогащенные алюминием, теряли около 50% поверхности, тогда как образец MAC0 - ок. 25%. Наблюдаемые изменения свойств образцов не коррелировали со стабильной активностью образцов MAC1 и MAC2.

На основании результатов адсорбционных измерений и ТПД-экспериментов для образцов были рассчитаны величины плотности кислотных центров, сорбирующих аммиак, $d(NH_3)$ (табл. 3). В ходе каталитических превращений и окислительной регенерации величина $d(NH_3)$ у образца МАС0 уменьшалась от 0.36 до 0.29 нм², что свидетельствовало о необратимой потере части кислотных центров. Для алюминированных образцов МАС1_{КР} и МАС2_{КР} в ходе цикла "реакция—регенерация" величина $d(NH_3)$ возрастала (табл. 3), что может быть объяснено несколькими причинами. Первая причина предполагает, что алюминирование приводит к стабилизации или повышению устойчивости кислотных центров в образцах, в результате чего в ходе каталитических превращений и регенерации скорость деструкции (или блокировки) кислотных центров намного меньше, чем скорость разрушения мезопористой структуры. Вторая причина предполагает, что высокая концентрация Al в образцах способствует генерации дополнительных центров, сорбирующих аммиак. Особую роль при этом может выполнять вода, образующаяся как в ходе каталитических превращений, так и в ходе регенерации. На это указывают данные [21], согласно которым обработка водяным паром при 350°С алюмосиликата со структурой МСМ-41, полученного прямым синтезом, приводила к появлению пятикоординированного алюминия, присутствие которого увеличивало число протонов, способных взаимодействовать с молекулой аммиака.

Для выяснения особенностей взаимодействия мезопористых алюмосиликатов с водяным паром образцы МАСО, МАС1 и МАС2 были обработаны в среде 100%-ного водяного пара в условиях, моделирующих каталитический эксперимент

Рис. 7. Спектры ТПД NH₃ мезопористых алюмосиликатов.

(400°С, 4 ч) и получены материалы МАС0_{тпо}, МАС1_{тпо}, и МАС2_{тпо}. Данные табл. 3 показывают, что термопаровая обработка (ТПО) приводила к ухудшению характеристик мезопористой структуры, что согласуется с литературными данными [8]. Однако в ходе ТПО степень воздействия на мезопористую структуру была гораздо меньше, чем в ходе цикла "реакция-регенерация". Необходимо отметить, что изменения мезопористой структуры алюминированных образцов сопровождались образованием микропор (табл. 3). Причину формирования и природу этой микропористости оценить сложно, но, вероятнее всего, она возникает в результате гидролитического действия воды на обогащенный алюминием материал стенок мезопор.

Изучение кислотных свойств образцов $MAC0_{TПO}$, $MAC1_{TПO}$, $MAC2_{TПO}$ показало (табл. 3, рис. 7), что ТПО приводит к росту концентрации кислотных центров как для исходного, так и для алюминированных образцов. Практическое отсутствие статей по влиянию ТПО на кислотные свойства Al-MCM-41 не позволяет провести корректного сравнения полученных результатов с опубликованными данными. Согласно рис. 7, у образцов $MAC0_{THO}$, $MAC1_{THO}$, $MAC2_{THO}$ сохраняется асимметричный профиль кривых ТПД(NH₃), что свидетельствует о сохранении природы кислотности мезопористых алюмосиликатов. В наибольшей степени ТПО повлияла на концентрацию кислотных центров в образце МАС2, для которого величина $a_0(NH_3)$ возросла более чем в два раза (табл. 3). Даже в условиях частичной деградации пористой структуры, плотность кислотных центров $d(NH_3)$ в образцах в результате ТПО заметно выросла (табл. 3). Таким образом, в результате взаимодействия мезопористых алюмосиликатов с водяным паром параллельно протекают процессы разрушения мезопористой структуры и образования новых кислотных центров. Вероятнее всего, причиной интенсивного образования новых кислотных центров в алюминированных образцах может быть увеличение доступности ма-

НЕФТЕХИМИЯ том 55 № 4 2015

териала стенок мезопор за счет образования микропор в стенках. Микропоры открывают молекулам воды доступ к обогащенному алюминием приповерхностному слою образцов МАС1 и MAC2 (Si/Al = 2.25 и 0.8), в результате чего возникают новые кислотные центры, содержание и плотность которых выше, чем у образца МАСО (Si/Al = 12.5). Полученные результаты позволяют предположить, что аналогичные процессы могут иметь место в ходе каталитической реакции метилирования фенола, протекающей с образованием воды. Это подтверждается образованием микропор в образцах МАС1 и МАС2, прошедших цикл "реакция-регенерация" (табл. 3). Вероятно, причиной стабильной каталитической активности мезопористых алюмосиликатов, модифицированных изопропоксидом алюминия, является генерация кислотных центров в ходе каталитической реакции.

Таким образом, в работе синтезированы и охарактеризованы мезопористые алюмосиликаты, полученные с использованием методик прямого синтеза и алюминирования изопропоксидом алюминия. Анализ физико-химических свойств исходного и алюминированных образцов показал, что в ходе одностадийного модифицирования исходного алюмосиликата изопропоксидом алюминия содержание Al₂O₃ в мезопористом материале может быть увеличено до 45.7 мас. %. Модифицирование приводило к встраиванию алюминия в материал стенок мезопор и формированию обогащенного алюминием аморфного алюмосиликата, что не изменило природу кислотности материалов. В реакции метилирования фенола алюминированные мезопористые алюмосиликаты продемонстрировали стабильную каталитическую активность. Совокупность результатов каталитических экспериментов, текстурных и кислотных свойств мезопористых материалов позволяет предположить, что наиболее вероятной причиной стабильной каталитической активности алюминированных образцов является образование в ходе каталитических превращений новых кислотных центров за счет имеющегося в составе образцов ресурса алюминия, что подтверждено результатами ТПО алюмосиликатов.

Исследование выполнено за счет гранта Российского научного фонда (проект №14-23-00094).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kresge Ch.T., Roth W.J.* // Chem. Soc. Rev. 2013. V. 42. № 9. P. 3663.
- Luque R., Balu A.M., Campelo J.M., Gracia M.D., Losada E., Pineda A., Romero A.A., Serrano-Ruiz J.C. // Catalysis. 2012. V. 24. P. 253.
- 3. *Borade R.B., Clearfield A.* // Catalysis Letters. 1995. V. 31. № 2–3. P. 267.
- 4. *Wang Y., Lang N., Tuel A.* // Micropor. Mesopor. Mater. 2006. V. 93. № 1–3. P. 46.
- 5. Shen S.C., Kawi S. // Langmuir. 2002. V. 18. № 12. P. 4720.
- 6. *Mokaya R., Jones W.* // Chem. Commun. 1998. № 17. P. 1839.
- Mokaya R., Jones W. // J. Mater. Chem. 1999. V. 9. № 2. P. 555.
- 8. Mokaya R. // Chem. Commun. 2001. № 7. P. 633.
- 9. *Mokaya R., Jones W.* // Chem. Commun.1997. № 22. P. 2185.

- 10. *Jana S.K., Kugita T., Namba S.* // Applied Catalysis A: General. 2004. V. 266. № 2. P. 245.
- Zou J.J., Xu Y., Zhang X., Wang L. // Applied Catalysis A: General. 2012. V. 421–422. P. 79.
- Landau M.V., Dafa E., Kaliya M.L., Sen T., Herskowitz M. // Micropor. Mesopor. Mater. 2001. V. 49. № 1-3. P. 65.
- Ющенко В.В. // Журн. Физ. Химии. 1997. Т. 71. № 4. С. 628.
- Boumaza A., Favaro L., Lédion J., Sattonnay G., Brubach J.B., Berthet P., Huntz A.M., Roy P., Tétot R. // J. Solid State Chem. 2009. V. 182. № 5. P. 1171.
- Брек Д. Цеолитовые молекулярные сита. М.: Мир. 1976.
- 16. *Фионов А.В.* // Изв. РАН. Сер. хим. 2009. № 3. С. 526.
- 17. Фионов А.В., Нехаев А.И., Щапин И.Ю., Максимов А.Л., Лунин В.В. // Журн. Физ. Химии. 2013. Т. 87. № 12. С. 1985.
- Santacesaria E., Grassoo D. // Applied Catalysis. 1990. V. 64. № 1. P. 83.
- Sad M.E., Padró C.L., Apesteguía C.R. //Catalysis Today. 2008. V. 133–135. P. 720.
- Bhattacharyya K.G., Talukdar A. K., Das P., Sivasanker S. // J. Mol. Catal. A: Chemical. 2003. V. 197. № 1–2. P. 255.
- 21. *Trong On D., Zaidi S.M.J., Kaliaguine S. //* Micropor. Mesopor. Mater. 1998. V. 22. № 1–3. P. 211.