УДК 66.081:547.912

ПРИМЕНИМОСТЬ РАССЧЕТНОЙ ОТРАЖАТЕЛЬНОЙ СПОСОБНОСТИ ВИТРИНИТА ДЛЯ ОЦЕНКИ СТЕПЕНИ ПРЕОБРАЗОВАННОСТИ ОРГАНИЧЕСКОГО ВЕЩЕСТВА НЕФТЕМАТЕРИНСКИХ ПОРОД ИЗ ГИПЕРТЕРМАЛЬНЫХ БАССЕЙНОВ (БАНАТСКАЯ ДЕПРЕССИЯ, СЕРБИЯ)

© 2015 г. С. Стоядинович, А. Костич¹, Х. П. Нитофт², К. Стоянович³

Университет в Белграде, Центр химии, ИХТМ, Сербия ¹Университет в Белграде, Горно-геологический факультет, Сербия ²Геологический институт Дании и Гренландии, Копенгаген, Дания ³Университет в Белграде, Химический факультет, Сербия E-mail: ksenija@chem.bg.ac.rs; xenasyu@yahoo.com Поступила в редакцию 01.07.2014 г.

Исследованы нефтематеринские породы Банатской депрессии (юго-восточной части Паннонского бассейна, Сербия), отложений среднего и верхнего миоцена, содержащие органическое вещество (OB) в относительно широком диапазоне преобразованности (от начала до поздней стадии генерации жидких углеводородов). ОВ представлено преимущественно керогеном II типа и сформировано в меняющихся окислительно-восстановительных условиях. Для этой нефтегазоносносной провинции, как для всего гипертермального Паннонского бассейна, типичны очень высокие геотермические градиенты ($4.0-7.5^{\circ}$ С/100 м) и скорости нагрева миоценовых пород ($9-22^{\circ}$ С/млн лет). С помощью корреляционного анализа согласно Spearman- и Pearson тесту проведено сравнение значений измеренного и на основе максимальной палеотемпературы и геохимических параметров термической преобразованности рассчетного индекса отражательной способности витринита. Показано, что для рассчета отражательной способности витринита и определения степени термической зрелости ОВ нефтематеринских пород в гипертермальных бассейнах с высокой скоростью нагрева достоверными являются геохимические параметры, рассчитанные по составу стеранов и метилдибензотиофенов, и, как ожидалось, максимальная палеотемпература залегания.

Ключевые слова: ОВ, нефтематеринские породы, гипертермальный бассейн, витринит, отражательная способность витринита, биомаркеры, алкиларены, корреляционный анализ. **DOI:** 10.7868/S0028242115040139

Для определения степени термической преобразованности ОВ пород часто используют измерение отражательной способности витринита (%Rr). В геохимической литературе существуют данные об граничных значениях %Rr для начала, максимума и конца нефтяного окна [1, 2]. Однако, эти величины считаются эмпирическими, поскольку процессы увеличения отражения витринита и генерации углеводородов (УВ) из керогена различаются по механизмам протекания. Известно, что при высокой скорости нагрева пород (больше 6°С/млн лет) нефтяному окну соответствуют более узкие пределы отражения витринита и его пониженные значения (0.5-0.8% Rr), тогда как при умеренной скорости нагрева, составлящей примерно 1-2°С/млн лет, нефтяному окну соответствуют величины %Rr в пределе 0.5-1.3 [1, 2].

Измерение отражательной способности витринита в породах, содержащих кероген I и II типов, весьма проблематично. Витринит в ОВ таких пород представлен мелкими частицами, что иногда затрудняет достоверную идентификацию. Кроме того, такие породы часто содержат очень мало частиц витринита. Особую проблему при измерении %Rr представляет наличие разновидностей витринита, которые при одинаковой степени преобразованности показывают значимое понижение величины %Rr [1]. В области нефтяного окна часто наблюдается резкое понижение отражения витринита (0.15–0.55 %Rr) для рассеянного органического вещества (РОВ) морских и озерных сланцов по сравнению с углями, рассположенными в их кровле или подошве.

Учитывая эти затруднения и ограничения по измерению %Rr, авторами [3–12] предложены уравнения, связывающие значения геохимических параметров, рассчитанных по составу биомаркеров и алкиларенов с величинами отражательной способности витринита. Эти исследования проведены на образцах, содержащих ОВ различного происхождения (типа керогена), геологической эволюции и степени преобразованности. Кроме того, предложена и упрощенная модель максимальной температуры (модель геотермометра отражения витринита, или Vitrinite Reflectance Geothermometer, VRG model), предусматривающая корреляцию отражения витринита с максимальной палеотемпературой, которой ОВ пород подвергалось в течение геологической эволюции [1].

Цель работы заключалась в проверке достоверности использования рассчетной отражательной способности витринита, основанной на максимальной палеотемпературе и геохимических параметрах, для ОВ нефтематеринских пород (кероген II типа) из гипертермальных бассейнов с высокой скоростью нагревания. Исследование проведено методом корреляционного анализа измеренных и на основе многочисленных уравнений рассчитанных значений отражательной способности витринита.

ХАРАКТЕРИСТИКА ОБЪЕКТОВ ИССЛЕДОВАНИЯ

В настояшей работе исследованы нефтематеринские породы (31 образец) среднего миоцена (баден и сармат) и верхнего миоцена (панон) Банатской депрессии, юго-восточной части Паннонского бассейна, Сербия. В состав Банатской депрессии входит несколько локальных депрессий. Наиболее значимые нефтегазоносные месторождения расположены в трех локальных депрессиях: Банатское Аранджелово, Сербская Црня и Зренянин. Характеристика объектов исследования приведена в табл. 1. В литологическом отношении породы представлены мергелями и алевролитами, которые залегают в относительно широком диапазоне глубин и температур от 1500 м и 88° до 3440 м и 175°С, соответственно. Исследованные нефтематеринские породы содержат ОВ в относительно широком диапазоне преобразованности (с начала до поздней стадии генерирования жидких УВ), представленное преимущественно керогеном II типа [13].

Для Банатской депрессии, как и для всего гипертермального Паннонского бассейна, типичны очень высокие геотермические градиенты (4.0– 7.5° C/100 м) и скорости нагрева пород среднего и верхнего миоцена (9–22°C/млн лет). Интенсивная седиментация в Понте (верхний Миоцен; 1150 м/млн лет) также способствовала сохранению ОВ как и интенсивное погружение и нагревание ранее сформированных пород [1]. Высокие тепловые потоки (90–110 мВт/м²) обеспечили интенсивное преобразование/созревание ОВ [1]. Из-за постоянного опускания (погружения) всей области в течение Кайнозоя [14] считается, что эти породы сегодня находятся на их максимальной глубине залегания и соответствуют максимальной температуре [1, 14]. Ранее проведенные исследования этих нефтематеринских пород (мергелей и алевролитов) показали, что OB составлено из смешанного исходного материала (водоросли, бактерии, наземные растения). OB осаждалось в водах от слабосоленых до пресных, соленость которых, согласно переходу от Паннонского моря к озеру, уменьшалась от среднего к верхнему миоцену. Осадконакопление OB пород протекало в меняющихся окислительновосстановительных условиях [13].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Измерение отражения витринита осушествляли на микроскопе LEITZ при монохроматическом излучении длиной волны 546 нм и иммерсионном масле с индексом преломления 1.518, используя оптический свидетель с отражением 0.69%. В зависимости от количества представительного витринита измерения проводили 10–60 точек по одному препарату. Значения стандартного отклонения составляли от 0.04 до 0.10.

Растворимое OB (битумоид) экстрагировали из пород азеотропной смесью CH_2Cl_2 и CH_3OH в течение 42 ч в аппарате Сокслета. Разделение битумоидов на фракции осуществляли методом жидкостно-адсорбционной хроматографии на колонках с SiO₂ и Al₂O₃ путем последовательного их вытеснения растворителями различной полярности. Насыщенные УВ элюированы *н*-гексаном со скоростью 0.5 см³/мин, ароматические – *н*-гексаном, смесью *н*-гексан : бензол = 3 : 1 (об/об) и бензолом, а смолы – смесью метилового спирта и хлороформа в отношении 1 : 1 (об/об).

Насыщенные фракций анализировали метотандемной хроматомасс-спектрометрии лом (ГЖХ-МС-МС). Анализ проводили в системе: газовый хроматограф Agilent 6890N – квадрупольный масс спектрометр Waters (Micromass) Quattro Micro GC с компьютерной регистрацией. Обработку результатов осуществляли с помощью программы MassLynx V4.0. Для деления была использована капиллярная колонка Phenomenex ZB-5, длиной 30 м и внутренним диаметром 0.25 мм. Анализ проводили в режиме программирования температуры от 70 до 100°C со скоростью 30°C/мин и от 100 до 308°С со скоростью 4°С/мин с выдержкой при конечной температуре 8 мин. ГЖХ-МС-МС проводили в режиме записи характеристичных переходов для $C_{21}-C_{22}$, $C_{27}-C_{29}$ стеранов (молекулярный ион, $M^+ \rightarrow$ осколочный ион, m/z 217) и для $C_{27}-C_{35}$ гопанов (молекулярный ион, М⁺ → осколочный ион, *m*/*z* 191).

Анализ ароматических углеводородов осушествляли методом хроматомасс-спектрометрии (ГЖХ-МС) в системе: газовый хроматограф Agi-

Nº	Локальная депрессия	Скважина	Глубина залегания, м	Температу- ра, °С	Возраст	Литология
1	_	Чока-3	1605	107	Сармат	Алевролит
2	OBO	Обиличево-3	1874	125	Сармат	Мергель
3	жел	Падей-1	2103	125	Баден	Песчаный мергель
4	сдня	Црна Бара – юг-3	3075	155	Панон	Мергель
5	Apa	Црна Бара — юг-4	3130	161	Панон	Мергель
6	çoe	Црна Бара — юг-4	3197	165	Панон	Мергель
7	arck	Црна Бара – юг-4	3300	169	Панон	Мергель
8	бана	Црна Бара – юг-2	3145	165	Панон	Мергель
9	<u>ш</u>	Црна Бара — юг-2	3205	171	Панон	Алевролит
10		Велико Село-4	2813	145	Понт	Песчаный мергель
11		Велико Село-4	3305	164	Понт	Песчаный мергель
12		Велико Село-4	3340	165	Миоцен	Алевролит
13		Наково-2	3237	153	Панон	Мергель
14	КН	Наково-3	3282	155	Панон	Мергель
15	Цр	Наково-3	3405	161	Панон	Мергель
16	хая	Караджорджево – север-1	2890	148	Панон	Глинистый мергель
17	2001	Итебей – север-1	2930	140	Биоцен	Мергель
18	Cel	Войвода Степа – восток-1	3025	155	Сред. миоцен	Мергель
19		Войвода Степа-4	3164	157	Миоцен	Мергель
20		Молин-2	3053	147	Баден	Мергельный известняк
21		Новая Црня – Село-1	3066	156	Панон	Мергель
22		Новая Црня – Село-1	3440	175	/	Аргиллит
23		Елемир-15	1540	88	Миоцен	Мергель
24		Житиште-2	1880	100	Миоцен	Мергель
25		Зренянин – север-8	2370	130	Баден	Алевролит
26	НИ	Русанда-8	2513	140	Миоцен	Мергель
27	НВН	Русанда – запад-1	2580	139	Миоцен	Мергель
28	3pe	Михайлово – запад-1	2470	142	Панон	Мергель
29		Михайлово – запад-1	2570	147	Панон	Мергель
30		Михайлово – запад-1	2589	148	Сармат	Мергель
31		Михайлово – запад-1	2590	148	Сармат	Мергель

Таблица 1. Характеристика объектов исследования Банатской депрессии

Средний миоцен соответствует бадену или сармату. Миоцен (неопределенный) соответствует среднему миоцену или панону.

lent GC System 7890А — масс спектрометр Agilent Inert MSD 5975С с компьютерной регистрацией. Обработку результатов осуществляли с помощью программы GCMS Data Analysis. Для деления была использована капиллярная колонка длиной 30 м, внутренним диаметром 0.25 мм и неподвижной фазой HP-5MS. Газ носитель — гелий. Режим программирования температуры от 80 до 300°С со скоростью 2°С/мин и выдержкой при конечной температуре 20 мин. Ионизирующее напряжение составляло 70 эВ. Для определения индивидуального состава алкиларенов проведена реконструкция масс-фрагментограмм по характеристичным ионам для алкилнафталинов — m/z 142, 156, 170; алкилфенантренов — m/z 178, 192, 206 и алкилдибензотиофенов — m/z 184, 198, 212. Идентификацию индивидуальных соединений осуществляли путем сравнения полученных масс-фрагментограмм с опубликованными данными [15–17], а также на основе массспектров индивидуальных соединений, используя библиотеку NIST5а.

Рис. 1. ГЖХ-МС-МС-анализ гопанов битумоида образца № 5 скважины Црна Бара– юг-4. Е–рано элюирущиеся гопаны; dia – 17 α (H)-диагопан; (S) и (R) обозначает конфигурацию на C₂₂ в C₃₁– C₃₅-гомогопанах; Ts – C₂₇ 18 α (H)-22,29,30-триснорнеогопан; Tm – C₂₇17 α (H)-22,29,30-трисноргопан; C₂₉H – C₂₉17 α (H)21 β (H)-30-норгопан; C₂₉Ts – C₂₉18 α (H)-30-норнеогопан; Nsp – C₂₉-28-нор-спергулан; C₃₀HH – C(14a)-гомо-26-нор-17 α (H)-гопан; O – олеанан; C₃₀H – C₃₀17 α (H)21 β (H)-гопан; C₃₀M – C₃₀17 β (H)21 α (H)-моретан; C₃₁H(S) – C₃₁17 α (H)21 β (H)22(S)-гомогопан; C₃₁H(R) – C₃₁17 α (H)21 β (H)22(R)-гомогопан; C₃₃H(S) – C₃₃17 α (H)21 β (H)22(S)-гомогопан; C₃₃H(R) – C₃₃17 α (H)21 β (H)22(R)-гомогопан; C₃₄H(S) – C₃₃17 α (H)21 β (H)22(S)-гомогопан; C₃₃H(R) – C₃₃17 α (H)21 β (H)22(R)-гомогопан; C₃₄H(R) – C₃₅17 α (H)21 β (H)22(R)-гомогопан; C₃₅H(R) – C₃₅17 α (H)21 β (H)22(R)-гомогопан; C

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Терпаны и стераны. Состав пентациклических терпанов — гопанов представлен соединениями с числом атомов углерода C_{27} и C_{29} — C_{35} . Кроме типичных для нефтей и битумоидов нефтематеринских пород 17 α (H)21 β (H)-гопанов, 17 β (H)21 α (H)-моретанов, 17 α (H)-диагопанов и 18 α (H)-неогопанов, в битумоидах исследованных пород обнаружен C_{30} C(14a)-гомо-26-нор-17 α (H)-гопан (содержащий семь атомов углерода в кольце C) [18, 19]. В неко-

торых образцах идентифицированы рано элюирущиеся гопаны состава C_{27} , $C_{29}-C_{35}$, а также и $C_{29}-28$ -нор-спергулан ($C_{29}-21$ -метил-28-норгопан) (рис. 1). Структура рано элюирущихся гопанов (Е) до сих пор точно не установлена. Однако, предположено, что структура рано элюирущегося гопана (C_{30} Е) соответствует 9,15-диметил-25,27бисноргопану, поскольку это соединение получено органическим синтезом имеет идентичный массспектр и время удерживания при ГЖХ-МС ана-

Рис. 2. ГЖХ-МС-МС-анализ стеранов битумоида образца № 5 скважины Црна Бара - юг-4. $\alpha \alpha$ и $\beta \beta$ обозначает 14 α (H)17 α (H) и 14 β (H)17 β (H) конфигурацию в стеранах; $\alpha \beta$ и $\beta \alpha - 13\alpha$ (H)17 β (H) и 13 β (H)17 α (H) конфигурацию в диастеранах; (S) и (R) – конфигурацию на С₂₀ в стеранах и диастеранах.

лизе с С₃₀Е идентифицированным в битумоидах и нефтях [20; приложение]. В работах [21-25] было показано что присутствие рано элюирущихся гопанов и С₂₉-28-нор-спергулана указывает на высокую степень преобразванности ОВ (поздняя стадия генерирования жидких УВ), наиболее вероятно сформированного в озерной или дельтовой обстановке низкой солености при окислительных условиях. В битумоидах исследованных пород идентифицированы $14\alpha(H)17\alpha(H)$ -, $14\beta(H)17\beta(H)$ -стераны, 13α(Н)17β(Н)- и 13β(Н)17α(Н)-диастераны состава С27-С29, как и короткоцепочные стераны содержащие 21 и 22 атомов углерода (рис. 2). Значения геохимических параметров, рассчитанных по составу полициклических биомаркеров, приведенных в табл. 2 (Ts/(Ts + Tm), C₃₀dia/C₃₀H, $C_{30}M/C_{30}H, C_{31}H(S)/C_{31}H(S + R), C_{20}\alpha\alpha(S)/\alpha\alpha(R)$

НЕФТЕХИМИЯ том 55 № 4 2015

и С₂₉ $\beta\beta(R)/(\beta\beta(R) + \alpha\alpha(R))$ в пределах 0.06–0.96, 0.00–1.80, 0.00–0.21, 0.45–0.61, 0.11–1.46 и 0.00– 0.71, соответственно) указывают что исследованные нефтематеринские породы содержат ОВ в относительно широком диапазоне преобразованности от начала (отражательная способность витринита ~0.5 %) до поздней стадии генерации жидких УВ (отражательная способность витринита ~0.9 %).

295

Алкиларены. В битумоидах пород идентифицированы все описанные в литературе изомеры метил-(MN), диметил- (DMN) и триметилнафталинов (TMN). Набор алкилфенантренов в основном представлен голоядерным фенантреном (Р), метилфенантренами (MP) и диметилфенантренами (DMP), тогда как между сернистыми ароматическими соединениями преобладают дибензотиофен (DBT) и его метил- (MDBT) и диметил замещенные (DMDBT).

СТОЯДИНОВИЧ и др.

ø	Ts/(Ts + Tm)	$C_{30}E/C_{30}H$	C_{30} dia/ C_{30} H	$(C_{30}HH/C_{30}H) \times 10$	$C_{30}M/C_{30}H$	$C_{31}H(S)/C_{31}H(S + R)$	$\begin{array}{l} C_{27}\beta\alpha(S)/(\beta\alpha(S)+\\ +\alpha\alpha(R))\end{array}$	$\begin{array}{l} C_{28}\beta\alpha(S)/(\beta\alpha(S)+\\ +\alpha\alpha(R))\end{array}$	$\begin{array}{l} C_{29}\beta\alpha(S)/(\beta\alpha(S)+\\ +\alpha\alpha(R))\end{array}$	$C_{29} lpha lpha (S) / lpha lpha (R)$	$\begin{array}{l} C_{29}\beta\beta(R)/(\beta\beta(R)+\\ +\alpha\alpha(R))^{*}\end{array}$	$\begin{array}{l} C_{29}\beta\beta(R)/(\beta\beta(R)+\\ +\alpha\alpha(R))^{**}\end{array}$	$(C_{21}+C_{22})/\Sigma(C_{27}-C_{29})$
1	0.26	0.00	0.00	0.004	0.12	0.45	0.10	0.09	0.07	0.11	0.30	0.22	0.02
2	0.37	0.00	0.01	0.002	0.08	0.59	0.28	0.28	0.17	0.49	0.00	0.00	0.08
3	0.35	0.00	0.01	0.003	0.08	0.59	0.22	0.23	0.16	0.47	0.40	0.37	0.11
4	0.92	0.31	1.17	0.182	0.08	0.55	0.81	0.81	0.75	1.38	0.66	0.59	0.25
5	0.96	0.29	1.20	0.170	0.06	0.56	0.86	0.84	0.79	1.46	0.69	0.69	0.38
6	0.96	0.38	1.80	0.338	0.08	0.61	0.89	0.91	0.83	1.38	0.68	0.63	0.59
7	0.94	0.49	1.41	0.000	0.07	0.60	0.90	0.94	0.92	1.12	0.67	H.P.	0.51
8	0.96	0.37	1.71	0.376	0.05	0.56	0.83	0.86	0.77	1.25	0.67	0.65	0.63
9	0.96	0.30	1.52	0.350	0.07	0.60	0.85	0.86	0.78	1.41	0.69	0.66	0.62
10	0.06	0.00	0.03	0.010	0.15	0.59	0.56	0.56	0.53	1.08	0.40	0.34	0.14
11	0.88	0.90	1.25	0.060	0.05	0.58	0.93	0.92	0.88	1.10	0.65	0.63	0.29
12	0.88	0.11	0.35	0.109	0.21	0.61	0.27	0.71	0.67	1.45	0.71	0.65	0.37
13	0.45	0.18	0.25	0.031	0.09	0.60	0.80	0.78	0.79	1.15	0.60	0.54	0.32
14	0.38	0.23	0.25	0.030	0.10	0.60	0.81	0.80	0.78	1.03	0.56	0.51	0.42
15	0.79	0.30	0.48	0.048	0.05	0.59	0.94	0.89	0.90	1.24	0.66	0.60	0.25
16	0.56	0.00	0.03	0.032	0.05	0.60	0.60	0.56	0.45	1.23	0.64	0.55	0.24
17	0.46	0.00	0.03	0.032	0.06	0.60	0.47	0.49	0.37	1.18	0.60	0.56	0.20
18	0.52	0.00	0.03	0.036	0.06	0.60	0.42	0.38	0.32	1.26	0.64	0.58	0.13
19	0.86	0.10	0.29	0.086	0.05	0.58	0.94	0.95	0.93	1.21	0.69	0.64	0.76
20	0.61	0.01	0.07	0.076	0.04	0.59	0.78	0.77	0.72	1.36	0.69	0.65	0.16
21	0.65	0.02	0.09	0.065	0.04	0.60	0.76	0.77	0.69	1.36	0.68	0.60	0.36
22	0.63	0.04	0.36	0.039	0.00	0.61	0.72	0.68	0.76	1.02	0.59	H.P.	0.51
23	0.14	0.00	0.00	0.000	0.12	0.55	0.05	0.06	0.06	0.13	0.28	0.24	0.02
24	0.42	0.00	0.00	0.022	0.06	0.60	0.36	0.30	0.23	1.19	0.55	0.50	0.05
25	0.34	0.00	0.00	0.012	0.07	0.61	0.18	0.16	0.14	1.03	0.43	0.36	0.04
26	0.54	0.00	0.04	0.055	0.06	0.60	0.49	0.43	0.37	1.28	0.64	0.59	0.22
27	0.46	0.00	0.03	0.019	0.06	0.60	0.48	0.45	0.39	1.25	0.59	0.54	0.12
28	0.39	0.00	0.02	0.009	0.08	0.60	0.45	0.45	0.32	1.00	0.46	0.42	0.10
29	0.43	0.00	0.02	0.019	0.06	0.60	0.57	0.58	0.43	1.05	0.58	0.53	0.17
30	0.42	0.00	0.00	0.026	0.06	0.61	0.27	0.23	0.18	1.18	0.55	0.52	0.07
31	0.43	0.00	0.01	0.029	0.06	0.60	0.27	0.23	0.19	1.20	0.55	0.51	0.06
P.3.	1.00	/	/	/	0.05- -0.15	0.57- -0.62	/	/	/	1.08- -1.22	0.67- -0.71	0.67- -0.71	/

Таблица 2. Значения геохимических параметров термической преобразованности, рассчитаных по составу гопанов и стеранов

 $(C_{21}+C_{22})/\Sigma(C_{27}-C_{29}) = [C_{21}+C_{22}(14\alpha(H)17\alpha(H)+14\beta(H)17\beta(H))-\text{стераны}]/2$

 $[\Sigma C_{27}-C_{29}(14\alpha(H)17\alpha(H)(R+S) + 14\beta(H)17\beta(H)(R+S))$ -стераны];

 $C_{29}\beta\beta(R)/(\beta\beta(R) + \alpha\alpha(R))^* - paccчитан на основе данных по ГЖХ-МС-МС (молекулярный ион, 400 <math>\rightarrow$ осколочный ион, m/z 217); $C_{29}\beta\beta(R)/(\beta\beta(R) + \alpha\alpha(R))^* - paccчитан на основе данных по ГЖХ-МС, <math>C_{29}\beta\beta(R)$ стераны считались по m/z = 218, а $C_{29}\alpha\alpha(R)$ стераны считались по m/z = 217; Р.З. – равновесное значение [2]; Н.Р. – не рассчитано из-за низкой концентрации стеранов; Остальные сокращения приведены в легендах рис. 1 и 2.

296

Для оценки степени преобразованности по составу алкиларенов рассчитаны параметры, основанные на соотношениях содержания наиболее и наименее термодинамически стабильных изомеров (табл. 3).

Корреляционный анализ измеренных и рассчитанных значений отражательной способности витринита. Отражетельная способность витринита, основанная на максимальной палеотемпературе (T), рассчитана согласно уравнению Rc = $0.2096 \times e^{0.0085T}$ [1]. Это уравнение установлено на основе корреляции измеренных величин отражения витринита и соответствующих максимальных температур залегания пород, проведенных на 210 ранее исследованых образцов из сербской части Паннонского бассена возраста от нижнего до верхнего миоцена [1]. Максимальные палеотемпературы в бассейне соответствуют современным температурам.

В табл. 2 и 3 приведены также значения геохимических параметров, на основе которых рассчитаны величины отражательной способности витринита. Индекс отражательной способности витринита (Rc, согласно английскому R calculated) рассчитали по всем рекомендованным уравнениям, связывающим его значение со значениями параметров термической зрелости, согласно концепциям, изложенным в [1, 3–12]. Их значения, вместе с измеренными значениями отражательной способности витринита (Rr) даны в табл. 4. Величины измеренной и рассчитанной отражательной способности витринита изменяются в относительно широком диапазоне значений. Данные из табл. 4 показывают что в большинстве случаев рассчитанные значения отражательной способности витринита выше измеренных. Этот результат подтверждает, что при высокой скорости нагрева пород нефтяному окну соответствуют более узкие пределы отражения витринита и его пониженные значения. Кроме того, полученный результат позволяет предположить, что в литературе рекомендованные уравнения в основном относятся к ОВ пород с умеренной или низкой скоростью нагрева.

Корреляционный анализ измеренных и рассчитанных значений отражательной способности витринита провели согласно Spearman- и Pearson-тесту [30], при помощи программы SPSS 11.5 for Windows. Для некоторых параметров термической зрелости, таких, как, например, $C_{29}\beta\beta(R)/C_{29}(\beta\beta(R) +$ $+ \alpha\alpha(R))$ и C_{30} HH/ C_{30} H (отношение C(14а)-гомо-26-нор-17 α (H)-гопана к C_{30} гопану), в литературе не существует прямых уравнений, связывающих их величины со значением отражательной способности витринита; использованы значения самих параметров (табл. 5).

Оба вышеуказанных теста показали, что самые высокие коэффициенты корреляции *r* (соответствующие степени достоверности, *p* более 99 %) с измеренными величинами %Rr имеют рассчет-

Рис. 3. Корреляционная диаграмма измеренной отражательной способности витринита (Rr) и стеранового параметра термической зрелости $C_{29}\beta\beta(R)/C_{29}(\beta\beta(R) + \alpha\alpha(R))$, рассчитанного на основе данных по ГЖХ-МС-МС.

ные индексы отражения витринита (% Rc), основанные на параметрах, рассчитанных по составу стеранов и метилдибензотиофенов, и как ожиданно, максимальной палеотемпературе. Согласно данным по Spearman тесту, относительно хорошее соответствие наблюдается и для параметра $C_{30}HH/C_{30}H$ (табл. 5).

На основе корреляционного анализа (рис. 3) впервые установлены линейное:

$$Rc = 0.9173 \times C_{29}\beta\beta(R) / C_{29}(\beta\beta(R) + \alpha\alpha(R)) + 0.1478$$

и логарифмическое уравнение: Rc = $0.4455 \times \ln C_{29}\beta\beta(R)/C_{29}(\beta\beta(R) + \alpha\alpha(R)) + 0.9342$, связывающие отражетельную способность витринита со значениями стеранового параметра термической зрелости, $C_{29}\beta\beta(R)/C_{29}(\beta\beta(R) + \alpha\alpha(R))$, рассчитанного на основе данных по ГЖХ-МС-МС.

Низкие коэффициенты корреляции (*r*) значений %Rc (Rc3, Rc4, Rc6-Rc13; табл. 5), рассчитанных на основе диметилнафталинового и фенантреновых параметров, наиболее вероятно связаны с тем, что в большинстве случаев приведенные уравнения установлены при иследовании углей, содержащих кероген III типа. Кроме того, можно предположить, что в бассейнах с высоким геотермическим градиентом и скоростью нагревания интенсивно протекают реакции изомеризации и трансалклирования алкиларенов, что способствует уменьшению чувствительности параметров термической зрелости, рассчитанных по их составу.

Таким образом, нами на примере нефтематеринских пород (31 образец) среднего и верхнего миоцена Банатской депрессии, юго-восточной части гипертермального Паннонского бассейна подтверждено, что при высокой скорости нагрева пород нефтяному окну соответствуют более узкие

N⁰	DNR	DNr-x	TNR 2	TNR 3	MPI 1	MPR 1	MPDF	DMPI 1	DMPI 2	MDR
1	1.47	0.58	1.02	1.15	0.35	0.86	0.44	0.23	0.29	0.59
2	2.68	0.68	0.63	0.79	0.44	0.96	0.43	0.31	0.22	1.05
3	2.30	0.72	0.77	1.33	0.37	1.02	0.45	0.24	0.27	1.27
4	2.63	0.76	0.91	3.73	0.60	1.07	0.45	0.35	0.26	6.02
5	3.31	0.87	0.80	3.49	0.63	1.04	0.44	0.35	0.23	11.43
6	3.76	0.89	0.85	4.57	0.73	1.21	0.48	0.44	0.26	13.98
7	3.49	0.93	0.96	5.68	0.77	1.23	0.48	0.46	0.29	17.26
8	3.96	0.92	0.86	5.52	0.69	1.25	0.48	0.42	0.29	10.04
9	3.61	0.87	0.88	5.14	0.68	1.23	0.48	0.40	0.28	10.33
10	1.08	0.49	1.00	0.55	0.46	1.09	0.49	0.22	0.32	3.49
11	1.51	0.58	0.88	1.87	0.58	0.89	0.41	0.29	0.21	3.70
12	2.28	0.75	0.77	4.30	0.21	0.98	0.44	0.12	0.25	17.11
13	2.12	0.68	0.82	0.76	0.50	0.87	0.43	0.30	0.26	3.43
14	0.99	0.52	1.06	0.78	0.52	0.88	0.42	0.36	0.26	3.63
15	1.63	0.61	1.04	1.55	0.50	0.85	0.41	0.33	0.24	3.23
16	2.23	0.73	0.70	1.08	0.41	0.79	0.38	0.29	0.19	2.64
17	1.86	0.62	0.63	1.00	0.44	0.91	0.40	0.23	0.20	1.63
18	0.87	0.43	0.66	1.19	0.51	0.86	0.41	0.41	0.20	1.97
19	1.53	0.62	0.77	1.29	0.42	0.86	0.40	0.22	0.23	3.71
20	2.02	0.66	0.68	1.01	0.46	0.87	0.39	0.29	0.18	2.47
21	2.23	0.68	0.68	1.21	0.42	0.86	0.39	0.25	0.19	2.98
22	4.18	1.23	0.93	4.36	0.73	1.56	0.53	0.36	0.38	8.74
23	2.78	0.87	0.77	1.84	0.39	1.20	0.49	0.22	0.35	1.65
24	2.08	0.69	0.62	1.83	0.53	0.91	0.42	0.40	0.20	2.36
25	2.19	0.64	0.62	1.41	0.50	0.95	0.43	0.38	0.20	1.22
26	2.19	0.70	0.66	1.37	0.51	0.99	0.42	0.31	0.21	4.37
27	1.95	0.58	0.64	0.79	0.41	0.75	0.37	0.31	0.17	2.52
28	1.60	0.55	0.75	0.90	0.39	0.82	0.40	0.29	0.23	1.94
29	2.26	0.65	0.60	0.55	0.46	0.98	0.41	0.29	0.20	2.37
30	1.80	0.60	0.62	1.59	0.50	0.95	0.43	0.33	0.23	1.89
31	1.65	0.58	0.66	1.62	0.52	0.95	0.43	0.36	0.23	2.28
P.3.	2.50	0.95	1.00	4.50	0.85	1.50	0.50	1.25	0.40	15.40

Таблица 3. Значения геохимических параметров термической преобразованности рассчитаных по составу алкилнафталинов, алкилфенантренов и алкилдибензотиофенов

DNR = (2,6-DMN + 2,7-DMN)/1,5-DMN; DNr-x = (2,6- + 2,7-DMN)/1,6-DMN; TNR 2 = (1,3,7-TMN + 2,3,6-TMN)/(1,3,5-TMN + 1,3,6-TMN + 1,4,6-TMN); TNR 3 = 1,3,6-TMN/1,2,5-TMN;

MPI 1 = 1.5 × (2-MP + 3-MP)/(P + 1-MP + 9-MP); MPR 1 = 2-MP/1-MP; MPDF = (2-MP + 3-MP)/(1-MP + 2-MP + 3-MP + 9-MP); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 2-MP + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 2-MP + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 2-MP + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 2-MP + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 2-MP + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 2-MP + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 2-MP + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 2-MP + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 2-MP + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 2-MP + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 2-MP + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,5- + 3,6-DMP + 1- + 2- + 9-EP)/(P + 3-MP)); DMPI 1 = 4 × (2,6- + 2,7- + 3,6-DMP + 3- + 3,6-DMP

+1,3-+1,6-+1,7-+2,5-+2,9-+2,10-+3,9-+3,10-DMP);

DMPI 2 = (2,6-+2,7-+3,5-DMP)/(1,3-+1,6-+2,5-+2,9-+2,10-+3,9-+3,10-DMP);

MDR = 4-MDBT/1-MDBT; DMN – диметилнафталин; TMN – триметилнафталин;

 $P- \varphi$ енантрен; MP — метил
фенантрен; DMP — диметил фенантрен; EP — этил фенантрен;

MDBT – метилдибензотиофен; Р.3. – равновесное значение [26–29].

298

N⁰	Rr (%)	Rc 1	Rc 2	Rc 3	Rc 4	Rc 5	Rc 6	Rc 7	Rc 8	Rc 9	Rc 10	Rc 11	Rc 12	Rc 13	Rc 14	Rc 15
1	0.42	0.52	0.38	0.62	0.91	1.01	0.58	0.47	0.39	1.96	0.88	0.67	0.79	0.82	0.55	0.76
2	0.46	0.61	0.57	0.73	0.99	0.78	0.63	0.53	0.42	2.08	0.92	0.47	0.65	0.80	0.59	0.92
3	0.51	0.61	0.56	0.70	0.97	0.86	0.59	0.48	0.40	2.16	0.95	0.62	0.75	0.84	0.60	0.97
4	0.66	0.78	1.00	0.73	0.99	0.95	0.73	0.64	0.47	2.22	0.97	0.59	0.74	0.84	0.95	1.38
5	0.71	0.82	1.05	0.79	1.03	0.88	0.75	0.66	0.48	2.18	0.96	0.50	0.67	0.82	1.35	1.55
6	0.66	0.85	1.01	0.83	1.06	0.91	0.81	0.73	0.51	2.39	1.02	0.59	0.74	0.91	1.54	1.60
7	0.79	0.88	0.88	0.80	1.05	0.98	0.83	0.76	0.52	2.41	1.03	0.67	0.79	0.91	1.77	1.65
8	0.70	0.85	0.94	0.85	1.08	0.92	0.78	0.70	0.49	2.43	1.04	0.67	0.79	0.91	1.24	1.51
9	0.72	0.90	1.02	0.81	1.05	0.93	0.78	0.70	0.49	2.41	1.03	0.65	0.77	0.91	1.26	1.52
10	0.61	0.72	0.86	0.59	0.88	1.00	0.65	0.54	0.43	2.24	0.98	0.74	0.84	0.93	0.76	1.23
11	0.70	0.84	0.87	0.63	0.91	0.93	0.72	0.63	0.46	2.00	0.89	0.44	0.63	0.75	0.78	1.25
12	0.85	0.85	1.04	0.70	0.96	0.86	0.50	0.37	0.35	2.11	0.93	0.56	0.72	0.82	1.76	1.66
13	0.71	0.77	0.89	0.68	0.95	0.89	0.67	0.57	0.44	1.98	0.88	0.59	0.74	0.80	0.76	1.23
14	0.76	0.79	0.84	0.58	0.88	1.04	0.68	0.58	0.44	1.99	0.89	0.59	0.74	0.78	0.77	1.24
15	0.97	0.82	0.94	0.64	0.92	1.02	0.67	0.57	0.44	1.95	0.87	0.53	0.69	0.75	0.75	1.21
16	0.78	0.74	0.93	0.69	0.96	0.82	0.62	0.51	0.41	1.88	0.84	0.36	0.58	0.69	0.70	1.16
17	0.73	0.69	0.91	0.66	0.94	0.78	0.63	0.53	0.42	2.02	0.90	0.40	0.60	0.73	0.63	1.03
18	0.81	0.78	0.95	0.57	0.87	0.80	0.68	0.58	0.44	1.96	0.88	0.40	0.60	0.75	0.65	1.08
19	0.87	0.80	0.92	0.63	0.91	0.86	0.62	0.51	0.42	1.96	0.88	0.50	0.67	0.73	0.78	1.25
20	0.71	0.73	1.00	0.67	0.95	0.81	0.65	0.56	0.43	1.98	0.88	0.33	0.55	0.71	0.69	1.15
21	0.81	0.79	1.00	0.69	0.96	0.81	0.62	0.51	0.42	1.96	0.88	0.36	0.58	0.71	0.73	1.19
22	1.10	0.93	0.83	0.87	1.09	0.96	0.81	0.73	0.51	2.81	1.13	0.87	0.93	1.02	1.15	1.47
23	0.38	0.44	0.40	0.74	1.00	0.86	0.60	0.49	0.41	2.37	1.02	0.81	0.89	0.93	0.63	1.04
24	0.45	0.49	0.91	0.68	0.95	0.77	0.69	0.59	0.45	2.02	0.90	0.40	0.60	0.78	0.68	1.13
25	0.58	0.63	0.84	0.69	0.96	0.77	0.67	0.57	0.44	2.07	0.92	0.40	0.60	0.80	0.60	0.96
26	0.68	0.69	0.96	0.69	0.96	0.80	0.68	0.58	0.44	2.12	0.94	0.44	0.63	0.78	0.83	1.29
27	0.53	0.68	0.94	0.67	0.94	0.78	0.62	0.51	0.41	1.83	0.82	0.28	0.52	0.66	0.69	1.15
28	0.55	0.70	0.82	0.63	0.92	0.85	0.60	0.49	0.41	1.92	0.86	0.50	0.67	0.73	0.65	1.08
29	0.60	0.73	0.84	0.69	0.96	0.76	0.65	0.54	0.43	2.11	0.93	0.40	0.60	0.75	0.68	1.13
30	0.58	0.74	0.91	0.65	0.93	0.77	0.67	0.57	0.44	2.07	0.92	0.50	0.67	0.80	0.65	1.07
31	0.58	0.74	0.92	0.64	0.92	0.80	0.68	0.58	0.44	2.07	0.92	0.50	0.67	0.80	0.68	1.12

Таблица 4. Значения измеренной (Rr) и на основе 15 уравнений рассчитанной (Rc) отражательной способности витринита

 $\begin{aligned} & \text{Rc1} = 0.2096 \times e^{0.0085T} \text{ [1]; } \text{Rc2} = 0.49 \times \text{C}_{29} \alpha \alpha(\text{S})/\text{C}_{29} \alpha \alpha(\text{R}) + 0.33 \text{ [3]; } \text{Rc3} = 0.09 \times \text{DNR} + 0.49 \text{ [4]; } \text{Rc4} = (\text{DNR} + 12)/14.8 \text{ [5]; } \\ & \text{Rc5} = 0.6 \times \text{TNR} \text{ 2} + 0.4 \text{ [6]; } \text{Rc6} = 0.6 \times \text{MPI 1} + 0.37 \text{ [7]; } \text{Rc7} = 0.7 \times \text{MPI 1} + 0.22 \text{ [8]; } \text{Rc8} = 0.291 \times \text{MPI 1} + 0.293 \text{ [9]; } \text{Rc9} = (\text{MPR 1} + 0.77)/0.83 \text{ [5]; } \end{aligned}$

 $Rc10 = (lgMPR1 + 0.95)/1.01 [5]; Rc11 = (lgDMPI 2 + 0.94)/0.6 [5]; Rc12 = (log DMPI 2 + 1.21)/0.85 [5]; Rc13 = 2.242 \times MPDF - 0.166 [11];$

Rc14 = $0.073 \times MDR$ + 0.51 [10]; Rc15 = $0.2633 \times \ln MDR$ + 0.9034 [12]; T – максимальная палеотемпература; C₂₉ $\alpha\alpha(S)/C_{29}\alpha\alpha(R) = C_{29}14\alpha(H)17\alpha(H)20(S)$ -стеран/C₂₉14 $\alpha(H)17\alpha(H)20(R)$ -стеран;

Значения параметров на основе которых рассчитана отражательная способность витринита приведены в табл. 3, а объяснение соответствующих сокращений приведено в легенде табл. 3.

Spearman тест	ľ	Pearson tect	r
Rc1	0.77	Rc1	0.81
Rc2	0.47	Rc2	0.57
Rc3	0.03	Rc3	0.18
Rc4	0.01	Rc4	0.16
Rc5	0.35	Rc5	0.32
Rc6	0.26	Rc6	0.31
Rc7	0.26	Rc7	0.31
Rc8	0.27	Rc8	0.31
Rc9	-0.06	Rc9	0.23
Rc10	-0.05	Rc10	0.18
Rc11	-0.01	Rc11	0.09
Rc12	-0.01	Rc12	0.10
Rc13	-0.15	Rc13	0.06
Rc14	0.59	Rc14	0.43
Rc15	0.59	Rc15	0.56
$\mathrm{C}_{29}\beta\beta(\mathrm{R})/\mathrm{C}_{29}(\beta\beta(\mathrm{R})+\alpha\alpha(\mathrm{R}))^*$	0.70	$C_{29}\beta\beta(R)/C_{29}(\beta\beta(R) + \alpha\alpha(R))^*$	0.69
$C_{29}\beta\beta(R)/C_{29}(\beta\beta(R) + \alpha\alpha(R))^{**}$	0.72	$C_{29}\beta\beta(R)/C_{29}(\beta\beta(R) + \alpha\alpha(R))^{**}$	0.71
$(C_{30}HH/C_{30}H) \times 10$	0.57	(C ₃₀ HH/C ₃₀ H) × 10	0.19

Таблица 5. Значения коэффициента корреляции (*r*) измеренного и рассчитанного индекса отражения витринита, согласно Spearman- и Pearson-тесту

Граничные значения *г* для степени достоверности (*p*) 99.9%, 99% и 95% составляют 0.55, 0.45 и 0.35, соответственно [26]. Статистически значимые корреляции (*p* > 99%) выделены жирным шрифтом. Расшифровка сокращений Rc1-Rc15 приведена в легенде табл. 4. $C_{29}\beta\beta(R)/C_{29}(\beta\beta(R) + \alpha\alpha(R))^* = C_{29}14\beta(H)17\beta(H)20(R)$ -стеран/ $C_{29}(14\beta(H)17\beta(H)20(R) + 14\alpha(H)17\alpha(H)20(R))$ -стераны, рассчитан на основе данных по ГЖХ-МС (молекулярный ион, 400 \rightarrow осколочный ион, *m*/*z* 217); $C_{29}\beta\beta(R)/C_{29}(\beta\beta(R) + \alpha\alpha(R))^{**}$ – рассчитан на основе данных по ГЖХ-МС ($C_{29}\beta\beta(R)$ стераны считались по *m*/*z* = 218, а $C_{29}\alpha\alpha(R)$ стераны считались по *m*/*z* = 217); (C_{30} HH/ C_{30} H) $\times 10 = (C(14a)$ -гомо-26-нор-17 α (H)-гопан/ C_{30} 17 α (H)21 β (H)-гопан) $\times 10$.

пределы отражения витринита и его пониженные значения. Показано также, что для рассчета отражательной способности витринита и определения степени термической зрелости ОВ нефтематеринских пород в гипертермальных бассейнах с высокой скоростью нагревания самыми достоверными являются геохимические параметры, рассчитанные по составу стеранов и метилдибензотиофенов, и как ожидалось, максимальная палеотемпература залегания. Впервые установлены линейное и логарифмическое уравнение связывающие отражетельную способность витринита со значениями стеранового параметра термической зрелости, $C_{29}\beta\beta(\mathbf{R})/C_{29}(\beta\beta(\mathbf{R}) + \alpha\alpha(\mathbf{R}))$, рассчитанного на основе данных по ГЖХ-МС-МС.

Работа выполнена при поддержке Министерства образования, науки и технологического развития Республики Сербии (грант № 176006).

ПРИЛОЖЕНИЕ

Предположенная структура C_{30} рано элюирущегося гопана ($C_{30}E$) соответствует 9,15-диметил-25,27-бисноргопану. 9,15-Диметил-25,27-бисноргопан получен органическим синтезом, имеет идентичный масс-спектр и время удерживания при ГЖХ-МС анализе с $C_{30}E$, идентифицированным в битумоидах и нефтях [20].

СПИСОК ЛИТЕРАТУРЫ

1. *Kostić A*. Thermal evolution of organic matter and petroleum generation modelling in the Pannonian Basin

(Serbia). UniCversity of Belgrade, Faculty of Mining & Geology, Belgrade, 2010. 150 p. (in Serbian with summary in English).

- Peters K.E., Walters C.C., Moldowan J.M. The Biomarker Guide, V. 2: Biomarkers and Isotopes in the Petroleum Exploration and Earth History. Cambridge University Press, Cambridge, 2005. 1155 p.
- 3. *Sofer Z., Regan D.R., Muller D.S.* Sterane isomerization ratios of oils as maturity indicators and their use as an exploration tool, Neuquen Basin, Argentina. XII Geological Congress, Buenos Aires, Argentina 1993. Book of Proceedings. P. 407.
- Weiss H.M. Geochemische und petrographische Untersuchungen am organischen Material kretazischer Sedimentgesteine aus dem Deep Basin, Westkanada. Ph.D. Thesis, Technical University Aachen, 1985. 261 p.
- Radke M., Leythaeuser D., Teichmüller M. // Org. Geochemistry. 1984. V. 6. № 1. P. 423.
- Radke M., Willsch H., Welte D.H. // Org. Geochemistry. 1986. V. 10. № 1. P. 51.
- Radke M., Welte D.H. The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. In: Bjorøy, M. et al. (Eds.) Advances in Org. Geochemistry 1981. Wiley and Sons, Chichester, 1983. P. 504.
- 8. Boreham C.J., Crick I.H., Powel T.G. // Org. Geochemistry. 1988. V. 12. № 3. P. 289.
- 9. Chandra K., Mishra S., Samanta U., Gupta A., Mehrotra K.L. // Org. Geochemistry. 1994. V. 21. № 3–4. P. 313.
- 10. *Radke M.* // Marine and Petroleum Geology. 1988. V. 5. № 3. P. 224.
- Kvalheim O.M., Christy A.A., Telnaes N., Djorseth A. // Geochimica et Cosmochimica Acta. 1987. V. 51. № 7. P. 1883.
- 12. Dzou L.I.P., Noble R.A., Senftle J.T. // Org. Geochemistry. 1995. V. 23. № 7. P. 681.
- Mrkić S., Stojanović K., Kostić A., Nytoft H.P., Šajnović A. // Org. Geochemistry. 2011. V. 42. № 6. P. 655.
- 14. *Marović M., Djoković I., Pešić L., Radovanović S., Toljić M., Gerzina N.* Neotectonics and seismicity of the southern margin of the Pannonian basin in Serbia.

EGU Stephan Mueller Special Publication Series 3, 2002. P. 277.

- Воронецкая Н.Г., Головко Ю.А., Певнева Г.С., Головко А.К. // Геохимия. 2009. Т. 47. № 8. С. 890.
- 16. *Гордадзе Г.Н., Соломатина И.П.* // Нефтехимия. 1992. Т. 32. № 5. С. 426.
- 17. Tannenbaum E., Huizinga B.J., Kaplan I.R. // American Association of Petroleum Geologists Bulletin. 1986. V. 70. № 9. P. 1156.
- Trendel J.M., Graff R., Wehrung P., Albrecht P., Dessort D., Connan J. // J. Chem. Soc., Chem. Communications. 1993. № 5. P. 461.
- Nytoft H.P., Bojesen-Koefoed J.A. // Org. Geochemistry. 2001. V. 32. № 6. P. 841.
- Nytoft H.P., Lund K., Corleoné Jørgensen T.K., Thomsen V.J., Wendel Sørensen S., Lutnæs B.F., Kildahl-Andersen G., Johansen J.E. Identification of an early-eluting hopane series. Synthesis from hop-17(21)-enes and detection of intermediates in sediments. Book of Abstracts. The 23rd International Meeting on Organic Geochemistry, Torquay, England, 2007. P. 1017.
- Farrimond P., Telnæs N. // Org. Geochemistry. 1996. V. 25. № 3–4. P. 165.
- 22. Nytoft H.P., Lutnæs B.F., Johansen J.E. // Org. Geochemistry. 2006. V. 37. № 7. P. 772.
- 23. *Killops S.D., Howell V.J.* // Chem. Geology. 1991. V. 91. № 1. P. 65.
- 24. *Telnæs N., Isaksen G.H., Farrimond P. //* Org. Geochemistry. 1992. V. 18. № 6. P. 785.
- 25. Nytoft H.P., Kildahl-Andersen G., Samuel O.J. // Org. Geochemistry. 2010. V. 41. № 10. P. 1104.
- 26. *Петров А.А.* Углеводороды нефти. 1984. М.: Наука. 263 с.
- 27. Головко А.К. Нефтяные алкилароматические углеводороды: Дисс. ... докт. хим. наук: 02.00.13., Томск, 1997. 352 с.
- Killops S.D., Killops V. J. Introduction to Organic Geochemistry, 2nd Edition. Blackwell Publishing, Malden, USA, 2005. 393 p.
- 29. Chakhmakhchev A., Suzuki M., Takayama K. // Org. Geochemistry. 1997. V. 26. № 7–8. P. 483.
- 30. *Davis J.* Statistics and Data Analysis in Geology, 3rd Edition. John Wiley & Sons, Inc., N.-Y., 2002. 638 p.