УДК 541.115

ЭНЕРГИИ ДИССОЦИАЦИИ N-H-СВЯЗЕЙ В АРОМАТИЧЕСКИХ АМИНАХ (ОБЗОР)

© 2015 г. Е. Т. Денисов, Т. Г. Денисова

Институт проблем химической физики РАН, Черноголовка Московской обл. E-mail: det@icp.ac.ru Поступила в редакцию 15.06.2014 г.

В обзоре собраны и обсуждаются данные по энергиям диссоциации N-H-связей 108 ароматических аминов разнообразного строения. Дано краткое описание экспериментальных методов их определения и проведено сравнение результатов, полученных разными методами. Вычислены энергии стабилизации аминильных радикалов ΔE_{RS} разной структуры и проведено сравнение этой энергии строения с $\Delta E_{\rm RS}$ фениламинильных и феноксильных радикалов. Приведены значения $D_{\rm N-H}$, $\hat{D}_{\rm O-H}$ и D_{S-H} для серии гибридных антиоксидантов (19 соединений). Библиография – 42 ссылки.

Ключевые слова: ароматические амины, гибридные антиоксиданты, корреляционные уравнения, энергия диссоциации N-H-связи, энергия стабилизации радикала. DOI: 10.7868/S0028242115020070

Ароматические амины (АтН) широко используются в качестве антиоксидантов для стабилизации каучуков [1-4], смазочных материалов [5] и углеводородных топлив [6]. Они тормозят окисление, останавливая развитие цепного процесса по реакции с пероксильными радикалами [7-9]. Решающее влияние на эту реакцию оказывает энергия диссоциации N-H-связи амина (D_{N-H}): чем слабее эта связь, тем активнее АтН как антиоксидант. Число аминов с известной D_{N-H} , сравнительно, невелико (30) [10, 11]. В последнее время нам удалось, опираясь на новые экспериментальные данные, существенно расширить круг аминов с известной *D*_{N-H} [12, 13] и оценить ее для ряда гибридных антиоксидантов [14, 15]. В настоящем обзоре приведена полная сводка данных по D_{N-H} ароматических аминов, сравниваются ее значения, полученные разными методами, проводится сравнение влияния заместителей на стабилизацию аминильных, феноксильных и бензильных радикалов разного строения.

МЕТОДЫ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ ДИССОЦИАЦИИ N-H-СВЯЗЕЙ

Химическое равновесие со стабильным радикалом (СНЕ). В основе метода лежит изучение равновесия между стабильным феноксильным радикалом (например, 2,4,6-три-*трет*-бутилфеноксилом, ArO' и ароматическим амином типа [16–18]:

$$ArO' + AmH \implies ArOH + Am'$$
.

Равновесие характеризуется константой равновесия *K*₁ и устанавливается очень быстро [19], так что при концентрации ArOH порядка 10⁻³ моль л⁻¹ время релаксации составляет всего 10⁻⁴ с, в то время как длительность опыта составляет ~10³ с [16]. Константа равновесия позволяет вычислить энергию Гиббса и энтальпию равновесной реакции:

$$RT\ln K_1 = \Delta G = \Delta H - T\Delta S. \tag{1}$$

Поскольку изменение энтропии в реакциях такого типа мало [16–18], то можно принять

$$\Delta G = \Delta H = D_{\rm N-H} - D_{\rm O-H}, \qquad (2)$$

где $D_{\rm N-H}$ и $D_{\rm O-H}$ – энергии диссоциации связей при T = 298.15 K, они не включают в себя энергии нулевых колебаний этих связей, а вычислять D_{N-H} в ароматическом амине по уравнению:

$$D_{\rm N-H} = D_{\rm O-H} ({\rm ArOH}) - RT \ln K_1.$$
(3)

В экспериментах при разных температурах энтальпия реакции измерялась и по зависимости $\ln K_1$ от обратной температуры по уравнению [16]:

$$\Delta H = -RT^2 \, dn K_1 / dT. \tag{4}$$

Вычисленные таким образом значения ΔH оказались очень близкими к ΔH , вычисленными при условии $\Delta H = \Delta G$. Например, для равновесия ArO' с 4,4'-диметилдифениламином $\Delta H = -RT^2 \ln K_1/dT =$ $= 17.8 \pm 1.5$ кДж моль⁻¹, а $\Delta H = \Delta G = 17.5 \pm$ ± 0.5 кДж моль⁻¹ [16]. В качестве стабильных феноксильных радикалов использовались: 2,4,6-три*трет*-бутилфеноксил, $D_{O-H} = 339.9$ кДж моль⁻¹ и 2,6-ди-*трет*-бутил-4-метоксифеноксил, $D_{\Omega-H} =$

= 331.6 кДж моль⁻¹ [16–18]. Среднеквадратичная погрешность в определении D_{O-H} по константе равновесия K_1 составляет около 1 кДж моль⁻¹ [16–18].

В работе [16] кинетику расходования 2,4,6-три*трет*-бутил-феноксила в растворе CCl₄ изучали спектрофотометрически при 298 К. В этих условиях протекают следующие реакции:

ArO' + AmH
$$\implies$$
 ArOH + Am' (K_1),
Am' + Am' \implies Продукты (k_2).

Расходование ArO[•] в такой системе описывается следующим кинетическим уравнением:

$$\frac{c^{2}}{[\text{ArO'}]} + 2(c + c^{2}/b) \ln \frac{[\text{ArO'}]}{[\text{ArO'}] + b} + \frac{(b + c)^{2}}{[\text{ArO'}] + b} = 2K_{1}^{2}k_{2}b^{2}t,$$
(5)

где $b = [AmH]_0 - [ArO']_0$, $c = [ArOH]_0 + [ArO']_0$. Спрямляя кинетику расходования ArO' в координатах уравнения (5), вычисляли произведение констант K_1k_2 , а затем, с использованием данных по рекомбинации аминильных радикалов [20], вычисляли константу равновесия K_1 и по уравнению (3) вычисляли D_{N-H} . В работах [17, 18] для измерения K_1 использовался метод ЭПР, который позволял по ЭПР-спектрам феноксильного и аминильного радикалов оценивать константу равновесия по формуле:

$$K_1 = \frac{[\text{ArOH}]_0[\text{Am}']_{\infty}}{[\text{ArO'}]_{\infty}[\text{AmH}]_0}.$$
 (6)

Для дифениламина в [16] была получена $D_{\rm N-H}$ в опытах по равновесию между Ph₂NH и 2,4,6-три-*трет*бутилфенооксилом ($D_{\rm O-H} = 339.9$ кДж моль⁻¹), равная $D_{\rm N-H} = 364.7$ кДж моль⁻¹. Это значение практически совпало с $D_{\rm N-H} = 364.8$ кДж моль⁻¹, измеренной методом **РАС** (см. ниже), и была принята в справочнике [10] и в настоящей работе как реперная для всех методов измерения $\Delta D_{\rm N-H}$.

Кинетический метод пересекающихся парабол (MIP). В этом методе каждый класс радикальных реакций имеет свою комбинацию атомов в реакционном центре переходного состояния, например, N...H...O в реакции RO₂⁻ с AmH и N...H...C в реакции R⁻ с AmH. Кроме того, он характеризуется следующими параметрами: коэффициентами $b (b = b_{N-H})$ и $b_f (b_f = b_{O-H}$ или $b_{C-H})$, где $2b^2$ – силовая постоянная соответствующей связи, коэффициентом $\alpha = b/b_f$, удлинением r_e реагирующих связей N–H и O–H (или C–H) в переходном состоянии, параметром br_e , и предэкспоненциальным множителем A_0 (в расчете на одну N–H-связь). Индивидуальная реакция, кроме того, характеризуется классической энтальпией: $\Delta H_e = \Delta H + 0.5hN_A(v-v_f)$ (здесь N_A – число Авогадро, h – постоянная Планка, v – частота валентного колебания атакуемой связи N–H, v_f – частота валентного колебания образующейся связи O–H или C–H), энергией активации *E*, классическим потенциальным барьером: $E_e = E + 0.5N_Ahv - 0.5RT$, где *R* – газовая постоянная, и константой скорости $k = n_{N-H}A_0\exp(-E/RT)$, где n_{N-H} – число атакуемых связей в молекуле амина с одинаковой реакционной способностью [7, 10, 21–23]. Кинетические параметры, использованные для определения D_{N-H} (*T* = 298.15 K), приведены в [10].

Энергия диссоциации связи Am_i —H в этом методе вычисляется с использованием экспериментальных констант скорости реакций $RO_2^{\cdot} + Am_iH$ (или $R^{\cdot} + Am_iH$) (k_i) и $RO_2^{\cdot} + Am_1H$ (или $R^{\cdot} + Am_1H$) (k_1) по уравнениям [21–23]:

$$\Delta E_{i} = E_{i} - E_{1} = RT \ln(n_{i} k_{1}/n_{1} k_{i}), \qquad (7)$$

$$\Delta D_i = 2br_e \alpha^{-2} \left\{ \sqrt{E_{e1} + \Delta E_i} - \sqrt{E_e} \right\} - \left(\alpha^{-2} - 1 \right) \Delta E_i, \quad (8)$$
$$D_{N-H} = D_1 + \Delta D_i. \quad (9)$$

Здесь классический потенциальный барьер E_{e1} характеризует реакцию амина, выбранного в качестве соединения сравнения с известной по своей прочности Am_1 —H-связи. В случае реакций разных по своей структуре аминильных радикалов с одной молекулой, например, Am_i^{\cdot} + RH или Am_i^{\cdot} + ROOH, разность энергий активации вычислялась по уравнению:

$$\Delta E_i = E_1 - E_i = RT \ln(n_1 k_i / n_i k_1),$$
(10)

где E_1 характеризует реакцию сравнения Am_1^{\cdot} + ROOH или Am_1^{\cdot} + RH. Для вычисления классического потенциального барьера реакции сравнения E_{e1} (уравнение (7)) использовались следующие уравнения **MIP** (для примера взята реакция RO_2^{\cdot} + Am_iH) [21–23]:

$$\Delta H_{\rm e} = D_{\rm N-H} - D_{\rm O-H} (\rm ROOH) + + 0.5 h N_{\rm A} (v_{\rm N-H} - v_{\rm O-H}),$$
(11)

$$\sqrt{E_{\rm e}} = B \left\{ 1 - \alpha \sqrt{1 - \frac{\Delta H_{\rm e}}{Bbr_{\rm e}}} \right\},\tag{12}$$

где $B = (br_e)/(1 - \alpha^2)$. Для реакций с энтальпией $\Delta H_e \ll (br_e)^2 (1 - \alpha^2)^{-1}$ барьер E_e вычисляется по уравнению:

$$\mathcal{Z}_{\rm e}^{1/2} = br_{\rm e}/(1+\alpha) + (\alpha/2br_{\rm e})\Delta H_{\rm e}.$$
 (13)

В качестве аминов с известной *D*_{N-H} (реперных) чаще всего использовались следующие два: дифе-

ниламин ($D_{\rm N-H} = 364.7$ кДж моль⁻¹) и 4,4'-диметоксидифениламин ($D_{\rm N-H} = 348.3 ~\rm kДж~ моль^{-1}$ Расчеты *D*_{N-H} для N,N'-дифенил-*n*-фенилендиа мина с этими реперными аминами по уравнени ям (7)-(9) показали, что оба расчета дают значени $D_{\rm N-H}$, различающиеся всего на 0.1 кДж моль⁻¹ при средней погрешности в определении D_{N-H} 2 кДж моль⁻¹ [14]. Из уравнений (7) и (8) следует, что параметры расчета D_{N-H} зависят от энтальпии реакции, которая, в свою очередь, зависит от $D_{\rm O-H}$ О-Н-связи образующегося гидропероксида. Специальные расчеты D_{N-H} (уравнения (7)-(9)) по результатам кинетических измерений реакций класса RO_2^{\cdot} + Am_iH показали, что значения D_{N-H} для одной связи можно вычислять по кинетическим данным реакций разных радикалов с выбранным амином [13].

Метод фотоакустической калориметрии (РАС). Фотоакустическая калориметрия представляет собой термодинамический метод определения энергий диссоциации связей в растворе. В основе метода лежат следующие физические принципы и приемы [24–26]. В реактор (кювету) вводится раствор фотоинициатора и реагента. Вспышкой лазера в ограниченном объеме реактора инициируется быстрая фотохимическая реакция, которая генерирует ударную волну. Последняя распространяется по жидкости со скоростью звука и фиксируется пьезодатчиком на стенке реактора. По амплитуде этой волны оценивается энтальпия реакции и вычисляется энергия диссоциации соответствующей связи. Этот метод был использован для оценки ЭДС О-Н-связи в фенолах [27, 28] и в таком же варианте для оценки ЭДС N–H-связи (T = 298.15 K) в анилинах и дифениламинах [29]. Фотоинициатором служил ди-трет-бутилпероксид. Вспышка лазера ($\lambda = 337$ нм) за короткое время порядка 10 нс вызывала диссоциацию пероксида с квантовым выходом $\Phi = 0.83$: Me₃COOCMe₃ \rightarrow 2 Me₃CO^{*}. Образовавшиеся трет-бутоксильные радикалы быстро вступали в реакцию с молекулами амина: $Me_3CO' + AmH \rightarrow Me_3COH + Am'$.

Выделившаяся теплота соответствовала энтальпии следующей брутто-реакции:

$$Me_3COOCMe_3 + 2AmH \rightarrow 2Me_3COH + 2Am$$

и вызывала ударную волну, которую фиксировали пьезодатчиком на стенке реактора. Сигнал датчика записывали на осциллографе. Проводилась серия опытов, результаты которых усреднялись. Важным условием в таких экспериментах было то, что время выделения тепла в фотохимической реакции должно быть существенно короче времени достижения датчика ударной волной. Среднеквадратичная погрешность в определении $D_{\rm N-H}$ оценивается в ±6 кДж моль-1 [29]. При оценке ЭДС N-H-связей в

ал (АОР). Теоретическая основа метода – следующий термохимический цикл [30-32].

газовой фазе авторы [29] учитывали энергию сольва-

$$AmH \rightleftharpoons Am^{-} + H^{+} \quad (pKa),$$

$$Am^{-} \rightleftharpoons Am^{\cdot} + e^{-} \quad (E_{ox}(AmH)),$$

$$H^{+} + e^{-} \rightleftharpoons H^{\cdot} \quad (E_{red}(H^{+})),$$

$$AmH \rightleftharpoons Am^{\cdot} + H^{\cdot} \quad (D_{N-H}) \quad (T = 298.15 \text{ K}).$$

В методе, разработанном Φ . Бордуэллом [30–32], константа кислотной диссоциации и окислительный потенциал измерялись в диметилсульфоксиде. Это позволяет, комбинируя оба измерения, вычислить D_{N-H} , используя уравнение [33]:

$$D_{\rm N-H} = 5.70 \Delta p K_{\rm a} + 96.48 \Delta E_{\rm ox} ({\rm AmH}) +$$

+ 305.3 (кДж моль⁻¹). (14)

Постоянная величина 305.3 кДж моль-1 соответствует $D_{\rm N-H}$ дифениламина в 364.7 кДж моль⁻¹ и анилина, равной 384.8 кДж моль-1. Среднеквадратичная погрешность в определении D_{N-H} оценивается в ± 6 кДж моль⁻¹ [32, 33].

Несколько иной вариант аналогичного метода разработан М. Джонсоном [34, 35]. Методом импульсного радиолиза в водном растворе из HN₃ ге-

нерируются радикалы N_3 : $HN_3 \iff N_3^- + H^+$,

 $HO' + N_3^- \rightarrow HO^- + N_3'$.

A

Последние селективно отрывают электрон от амина по обратимой реакции:

$$\operatorname{ArNH}_2 + \operatorname{N}_3^{\bullet} \rightleftharpoons \operatorname{ArNH}_2^{\bullet +} + \operatorname{N}_3^{\bullet}$$

Спектрофотометрически измеряются константы скорости прямой и обратной реакции с переносом электрона и равновесная концентрация аминильного катион-радикала (ArN $H_2^{,+}$). За образованием аминильного катион-радикала следует его быстрая кислотная диссоциация: ArNH2+ 🖚 \Rightarrow ArNH' + H⁺.

Для измерения потенциала восстановления катион-радикала амина (ArN H_2^{++}) вводилось соединение сравнения (Ref[•](*n*)) и измерялась константа равновесия:

$$\operatorname{ArNH}_2 + \operatorname{Ref}^{(n)} \Longrightarrow \operatorname{ArNH}_2^{+} + \operatorname{Ref}^{(n-1)}$$

В качестве соединения сравнения использовали прометазин [10-(2-(диметиламино)пропил)фе-

И

нотиазин], 1,4-диметоксибензол, 1,2,4-триметоксибензол и N,N'-дифенил-*пара*-фенилендиамин. Были вычислены константа равновесия K_a и окислительный потенциал $E^0(\text{AmNH}_2^+/\text{ArNH}_2)$;

*D*_{N-Н} амина вычисляли по уравнению:

$$D_{\rm N-H} = 5.70 \Delta p K_{\rm a} + 96.48 \Delta E^{0} ({\rm ArNH}_{2}^{+}/{\rm AmH}) + (15) + 246.2 (кДж моль^{-1}),$$

где pK_a характеризует кислотную диссоциацию катион-радикала ArN H₂⁺⁺, а потенциал E^0 (ArN H₂⁺⁺/AmH) — разность потенциалов амина и катион-радикала. Постоянная величина 246.2 кДж моль⁻¹ соответствует D_{N-H} дифениламина (364.7 кДж моль⁻¹) и N–H-связи анилина (384.8 кДж моль⁻¹).

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ МЕТОДОВ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ ДИССОЦИАЦИИ N-H-СВЯЗЕЙ

В табл. 1 приведены результаты определения $D_{\rm N-H}$ 38 ароматических аминов строения ArNH₂ и ArMeNH, для которых $D_{\rm N-H}$ измерены тремя методами.

Наряду с $D_{\rm N-H}$ в табл. 1 приведены энергии стабилизации аминильных радикалов $\Delta E_{\rm RS}$, образующихся из замещенных анилинов. В применении к углеродцентрированным радикалам энергия стабилизации $E_{\rm RS}$ рассматривается как энтальпия реакции [37]:

$$R' + CH_4 \rightarrow RH + C'H_3$$

которая равна: $E_{\rm RS} = D_{\rm C-H}(\rm CH_4) - D_{\rm C-H}(\rm RH)$. По аналогии, энергия стабилизации аминильного радикала Amⁱ относительно образующегося из анилина радикала PhN[•]H ($\Delta E_{\rm RS}$), характеризовалась энтальпией реакции:

$$Am' + PhNH_2 \rightarrow AmH + PhN'H.$$

В этом случае $\Delta E_{\rm RS}$ равна:

$$\Delta E_{\rm RS} = D_{\rm N-H}(\rm PhNH_2) - D_{\rm N-H}(\rm Am_iH). \qquad (16)$$

Энергия стабилизации $\Delta E_{RS}(XC_6H_4N^{\cdot}H)$ коррелирует с σ^+ Брауна, корреляция описывается уравнением:

$$\Delta E_{\rm RS}({\rm XC}_6{\rm H}_4{\rm N}^{\cdot}{\rm H}) (\kappa \exists {\rm ж} {\rm моль}^{-1}) =$$

= 0.93 ± 0.83 - (19.45 ± 1.49) σ^+ (17)

и характеризуется коэффициентом корреляции r = 0.969 и среднеквадратичным отклонением SD = 2.95 кДж моль⁻¹. Величина $\Delta E_{RS}(XC_6H_4N^{\circ}H)$ хорошо коррелирует с энергией стабилизации фе-

ноксильных радикалов $\Delta E_{\rm RS}({\rm XC}_6{\rm H}_4{\rm O}^{\circ})$ для разнообразных *пара*-заместителей X ($\Delta E_{\rm RS}({\rm XC}_6{\rm H}_4{\rm O}^{\circ}) = D_{\rm O-H}({\rm PhOH}) - D_{\rm O-H}({\rm XC}_6{\rm H}_4{\rm OH}), D_{\rm O-H}$ см. в [23]). Корреляция характеризуется коэффициентом корреляции r = 0.994, среднеквадратичным отклонением SD = 1.26 кДж моль⁻¹ и описывается уравнением:

$$\Delta E_{\rm RS}({\rm XC}_6{\rm H}_4{\rm N}^{\,{}}{\rm H}) ({\rm K} {\rm Д} {\rm ж} {\rm моль}^{-1}) =$$

$$= 0.59 \pm 0.53 + \Delta E_{\rm RS}({\rm XC}_6{\rm H}_4{\rm O}^{\,{}}).$$
(18)

В эту корреляционную зависимость не включены такие электроотрицательные заместители, как X = Br, Ac, NO₂ и CF₃.

Энергии диссоциации D_{N-H} диариламинов приведены в табл. 2.

Среди замещенных дифениламинов есть моно- и бис-замещенные с известными значениями $D_{\rm N-H}$ (табл. 2). Целесообразно сравнить, как воздействуют на $D_{\rm N-H}$ и $\Delta E_{\rm RS}$ оба заместителя. Ниже в табл. 3 проведено такое сравнение ($\Delta E_{\rm RS}$ приведены в кДж моль⁻¹ в расчете на один заместитель).

Мы видим, что для всех *n*-замещенных дифениламинильных радикалов в пределах погрешности измерения выполняется *правило аддитивности*: два заместителя удваивают энергию стабилизации радикала по сравнению с одним заместителем, а именно:

$$0.5\Delta E_{\rm RS} [({\rm XC}_6{\rm H}_4)_2{\rm N}^{-}] = \Delta E_{\rm RS} ({\rm XC}_6{\rm H}_4{\rm N}^{-}{\rm Ph}).$$
 (19)

Это открывает возможность дополнить ряд дифениламинов с известной $D_{\rm N-H}$. Для $({\rm Me_2NC_6H_4})_2{\rm N}\cdot\Delta E_{\rm RS}({\rm Me_2N}) = 0.5~(364.7-338.3) = 13.2~{\rm KД}{\rm K}~{\rm Monb}^{-1}$ и $D_{\rm N-H}({\rm Me_2NC_6H_4NHPh}) = 364.7-13.2 = 351.5~{\rm K}{\rm J}{\rm K}~{\rm Monb}^{-1}$, для 4-Br-заместителя $\Delta E_{\rm RS} = 0.4~{\rm K}{\rm J}{\rm K}~{\rm Monb}^{-1}$ и, следовательно, $D_{\rm N-H}(4-{\rm BrC_6H_4NHPh}) = 364.7-0.4 = 364.3~{\rm K}{\rm J}{\rm K}~{\rm Monb}^{-1}$.

Данные, представленные в табл. 1 и 2, позволяют сравнить стабилизирующее действие заместителей на энергию стабилизации замещенных фениламинильных и дифениламинильных радикалов. Наблюдается хорошая линейная корреляция между $\Delta E_{\rm RS}({\rm XC}_6{\rm H}_4)_2{\rm N}^{\circ})$ и $\Delta E_{\rm RS}({\rm XC}_6{\rm H}_4{\rm N}^{\circ}{\rm H})$. Она характеризуется коэффициентом корреляции r = 0.990, среднеквадратичным отклонением SD = = 2.1 кДж моль⁻¹ и описывается уравнением:

$$\Delta E_{\rm RS}(({\rm XC}_6{\rm H}_4){\rm N}^{\bullet}) = 0.92 \pm 0.93 + + \Delta E_{\rm RS}({\rm XC}_6{\rm H}_4{\rm N}^{\bullet}{\rm H}).$$
(20)

Это позволяет оценивать $D_{N-H}(XC_6H_4NHPh)$ и $D_{N-H}((XC_6H_4)_2NH)$ через $D_{N-H}(Ph_2NH)$ и $\Delta E_{RS}(XC_6H_4N^{+}H)$:

Таблица 1. Энергии диссоциации N–H-связей (T = 298.15 K) ароматических аминов (ArNH₂ и ArMeNH), измеренные разными методами: **MIP**, **PAC**, **AOP** и энергии стабилизации $\Delta E_{\rm RS}$ аминильных ($\rm XC_6H_4N^{+}H$) и фенок-сильных ($\rm XC_6H_4O^{+}$) радикалов

Амин	D _{N-H} (МІР), кДж моль ⁻¹	<i>D</i> _{N-H} (АОР), кДж моль ⁻¹	$\Delta E_{\rm RS} ({\rm XC}_6 {\rm H}_4 {\rm N}^{ \bullet} {\rm H}),$ кДж моль ⁻¹	Δ <i>E</i> _{RS} (XC ₆ H ₄ O [•]), кДж моль ⁻¹
$PhNH_2(X=0)$	392.8 [36] 375.3 [29]*	384.8 [33] 384.8 [35]	0.0	0.0
	366.1 [29]*	383.5 [33]	5.4	7.4
Me – NH ₂	_	382.8 [35]	_	_
Me NH ₂	_	390.8 [34]	-5.5	9.0
Me Me Me Me MH_2	_	383.8 [35]	5.5	7.9
	372.9 [8]	376.8 [33]	11.0	22.4
Me ^{O-V} -NH ₂	_	376.8 [35]	_	_
Me-O NH ₂	_	391.5 [33]	-6.2	4.4
O-Me	_	382.8 [34]	2.5	14.5
H ₂ N-	_	371.8 [35]	24.0	46.8
F-V-NH2	382.0 [29]*	_	4.7	3.6
Cl-NH2	_	385.2 [33]	0.1	0.6
Cl NH ₂	_	386.0 [33]	-0.7	-0.8
	_	388.1 [33]	-2.8	9.2
Br-NH ₂	_	384.8 [33]	0.5	8.8
Br NH ₂	_	388.5 [33]	-3.2	_

Таблица 1. Продолжение

Амин	D _{N-Н} (МІР), кДж моль ⁻¹	D _{N-H} (AOP), кДж моль ⁻¹	$\Delta E_{\rm RS}$ (XC ₆ H ₄ N [•] H), кДж моль ⁻¹	Δ <i>E</i> _{RS} (XC ₆ H ₄ O [•]), кДж моль ⁻¹
	_	384.8 [35]	0.3	_
	_	396.9 [33]	-11.4	-20.8
	_	395.8 [35]	_	_
CN NH ₂	_	396.5 [33]	-11.2	_
NC NH ₂	_	392.3 [33]	-7.0	9.4
Me	_	392.7 [33]	-8.2	_
0 ^{NH} 2	—	390.8 [35]	_	_
ON NH 2	_	403.2 [33]	-15.7	-4.2
E.C.	_	402.4 [33]	-12.3	-9.2
	_	396.8 [35]	_	-
F ₃ C	_	399.0 [33]	-13.7	-16.7
NH ₂	_	401.8 [34]	-16.5	_
CF ₃ NH ₂	_	398.8 [34]	-13.5	_
F ₃ C ⁰ O [≤] S →NH ₂	_	399.0 [33]	-13.7	_
Me NH ₂	_	379.8 [34]	5.5	17.7
Me Me NH ₂	_	382.8 [34]	2.5	23.6

Таблица 1. Окончание

Амин	<i>D</i> _{N-Н} (МІР), кДж моль ⁻¹	<i>D</i> _{N-H} (АОР), кДж моль ⁻¹	$\Delta E_{\rm RS} ({\rm XC}_6 {\rm H}_4 {\rm N}^{ \bullet} {\rm H}),$ кДж моль ⁻¹	Δ <i>E</i> _{RS} (XC ₆ H ₄ O [•]), кДж моль ⁻¹
Me Me Me	_	389.8 [34]	-4.5	4.8
Me O-Me NH ₂	_	378.8 [34]	6.5	_
Me-O Me O-V-NH ₂	_	381.8 [34]	3.5	_
Me-O Me-O	_	394.8 [34]	-9.5	_
Cl-NH2	NO ₂ − −		-21.7	_
	_	398.2 [33]	-12.9	_
PhNHMe	377.8 [36]	372.2 [33]	13.1	_
Me N Me	371.6 [36]	_	13.7	_
Me N Me	Me N Me 376.5 [36]		8.8	_
MeO O N Me	385.6 [36]	_	-0.3	_
NH ₂	374.2 ± 1.4 [36]	_	11.1	-
NH ₂	378.6±1.1 [36]	_	6.7	_

* Измерено методом РАС.

ДЕНИСОВ, ДЕНИСОВА

Амин	<i>D</i> _{N-H} , (СНЕ), кДж моль ⁻¹	<i>D</i> _{N-H} , (МІР), кДж моль ⁻¹	<i>D</i> _{N-H} , (АОР), кДж моль ⁻¹
Ph ₂ NH	364.7 ± 0.5 [16]	364.7 [13], 373.2 [29]*	364.7 [33]
Me N Ph	_	_	362.2 [33]
Me N H	_	_	365.1 [33]
Me O N Ph	355.9±0.5 [16]	356.6±1.8[13]	356.8 [33]
Me N H Me Ne Ph	360.3 ± 0.5 [16]	362.0 [13]	_
Cl Ph N H	_	370.0 [13]	368.5 [33]
O ₂ N-V-N Ph	372.9 ± 0.5 [16]	374.3 ± 2.0 [13]	376.8 [33]
Me Ne Me	355.8 ± 1.7 [16],	359.0 ± 1.6 [13] 360.7 [29]*	_
Me Me Me Me	358.8 ± 0.5 [16]	358.7 ± 0.1 [13]	_
C ₈ H ₁₇	_	359.7 [13]	_
Me O Me	Среднее: 348.3 ± 0.3 [16], [17]	348.9 ± 2.0 [13]	350.9 [33]

Таблица 2. Энергии диссоциации N–H-связей (*T* = 298.15 K) диариламинов, измеренные методами CHE, MIP, PAC и AOP

Таблица 2. Окончание

Амин	$D_{ m N-H},$ (СНЕ), кДж моль $^{-1}$	<i>D</i> _{N-H} , (МІР), кДж моль ⁻¹	<i>D</i> _{N-H} , (АОР), кДж моль ⁻¹
Me Me Me	338.3 ± 1.2 [17]	_	_
Br N Br	364.2 ± 0.5 [16]	363.6±0.5 [13]	367.2 [33]
O ₂ N NO ₂	_	382.8 [13]	Ι
H	357.1±0.5 [16]	358.4 ± 1.3 [36]	Ι
H N N	362.9 ± 0.5 [16]	359.2 ± 1.3 [36]	_
H N N	360.2 ± 0.5 [16]	355.5 [8]	_
H N OMe	_	353.6 [12]	_
H N OPh	_	349.4 [36]	_

* Измерено методом РАС.

$$D_{\rm N-H}({\rm XC}_{6}{\rm H}_{4}{\rm N}{\rm H}{\rm Ph})(\kappa {\rm Д} {\rm ж} {\rm моль}^{-1}) =$$

= 364.2 - 0.59 $\Delta E_{\rm RS}({\rm XC}_{6}{\rm H}_{4}{\rm N}^{\cdot}{\rm H}),$ (21)

$$D_{N-H}((XC_6H_4)_2N - H)(кДж моль^{-1}) =$$

= 363.8 - 1.18 $\Delta E_{RS}(XC_6H_4N'H).$ (22)

НЕФТЕХИМИЯ том 55 № 2 2015

Корреляционная зависимость между энергией стабилизации 3,7-бис-замещенных фенотиазинов и $\Delta E_{RS}(XC_6H_4N^{\cdot}H)$ также носит линейный характер:

$$\Delta E_{\rm RS}(3,7-X_2C_{12}H_6SN') = -0.10 \pm 0.37 + (1.12 \pm 0.06)\Delta E_{\rm RS}(\rm XC_6H_4N'H).$$
(23)

Заместитель	4-Me	4,4'-Me	4-Me ₃ C	4,4'-Me ₃ C	4-MeO	4,4'-MeO	4-NO ₂	4,4'-NO ₂
$\Delta E_{\rm RS}$ (CHE)	—	4.4	4.4	3.0	8.8	8.2	-8.2	_
$\Delta E_{\rm RS} ({\rm MIP})$	_	2.8	2.7	3.0	8.1	7.9	-9.5	-9.0
$\Delta E_{\rm RS}$ (AOP)	2.5	2.0	_	_	7.9	6.9	-12.1	_
Среднее	2.7 =	± 0.9	3.3 ± 0.7		8.0 ± 0.6		-9.7 ± 1.5	

Таблица 3. Сопоставление энергий стабилизации диариламинильных радикалов ΔE_{RS} в расчете на один заместитель

Таблица 4. Сравнение энергий стабилизации в аминильных радикалах XN[•]H и XN[•]Ph

Х	Н	Ph	$1 - C_{10}H_7$	$2 - C_{10}H_7$	
$E_{\rm RS}({\rm XN}^{-}{\rm H}),$ кДж моль ^{-1}	0	67.4	78.0	74.1	
$\Delta E_{\rm RS}({\rm XN}^{\bullet}{\rm Ph}),$ кДж моль ⁻¹	0	20.6	26.9	26.1	

Корреляционное уравнение для оценки $D_{\rm N-H}$ в замещенных фенотиазинах имеет вид:

$$D_{N-H}(3,7-X_2C_{12}H_6SN-H) =$$

$$= 337.4 - 1.12\Delta E_{RS}(XC_6H_4N'H).$$
(24)

В стабилизирующем действии арильных заместителей в моно- и бис-ароматических аминильных радикалах аддитивности не наблюдается, как это видно из табл. 4.

Действительно, замена в фениламинильном радикале еще одного H на Ph стабилизирует дифениламинильный радикал не на 67.4, а всего на $20.6 \text{ кДж моль}^{-1}$. Точно также обстоит дело и в других случаях, представленных выше.

Энергии диссоциации *D*_{N-H} феназинов и гидрохинолинов приведены в табл. 5.

Значения D_{N-H} , полученные разными методами, хорошо согласуются друг с другом (среднее расхождение составляет всего ±1.0 кДж моль⁻¹).

В табл. 6 представлены D_{N-H} , полученные для серии двухатомных аминов (14 соединеий) по кинетическим данным методом **МІР** [13].

Как видно из данных, приведенных в табл. 6, *n*аминозаместители оказывают сильное стабилизирующее действие на соответствующие аминильные радикалы. В табл. 7 приведены $D_{\rm N-H}$ для ряда парафенилендиаминов и значения $\Delta E_{\rm RS}$ (радикал сравнения – фениламинильный радикал) для образующихся из них аминильных радикалов.

Как мы видим, энергия стабилизации для одного из них достигает 40 кДж моль⁻¹. Интересно отметить, что метильный радикал вызывает более сильную стабилизацию ($\Delta E_{\rm RS} = 36.4$ кДж моль⁻¹), чем фенильный ($\Delta E_{\rm RS} = 32.5$ кДж моль⁻¹). Еще слабее стабилизирует 2-нафтильный заместитель ($\Delta E_{\rm RS} = 30.7$ кДж моль⁻¹). Как видно из табл. 1–6, значения D_{N-H} , полученные разными методами, как правило, близки. Среднеквадратичное расхождение между ними составляет всего 1.5 ± 0.9 кДж моль⁻¹ и только для четырех аминов оно превышает 2 кДж моль⁻¹. Из значений D_{N-H} , представленных в табл. 1–4, результаты сильно расходятся только для двух аминов. Первое: $D_{N-H} = 392.8$ кДж моль⁻¹ для анилина (**МІР**, табл. 1) представляется сильно завышенным; по-видимому, это обусловлено тем, что образующийся из такого амина аминильный радикал очень активен и поэтому быстро вступает в обратную реакцию с гидропероксидом. Это снижает эмпирическую константу скорости реакции

 RO_{2}^{2} + AmH и завышает вычисляемую по уравнениям (6)–(8) величину D_{N-H} . Второе: значение $D_{N-H} = 442.9 \text{ кДж моль}^{-1}$ в фенотиазине (**AOP**, табл. 3), видимо. также завышено; оно выше значений D_{N-H} , определенных другими методами.

КВАНТОВО-ХИМИЧЕСКИЕ РАСЧЕТЫ ЭНЕРГИИ ДИССОЦИАЦИИ СВЯЗЕЙ

В последние годы для оценки энергий диссоциации связей все чаще используются квантово-химические методы расчета. В применении к ароматическим аминам эти методы были использованы в работах [17, 39, 40]. В [17] для расчета использовался метод функционала плотности с оптимизацией геометрии и вибрационных частот полуэмпирическим методом AM1. Были вычислены D_{N-H} для анилина и серии замещенных анилинов, а также для ряда замещенных дифениламинов и фенотиазинов. В работе [39] расчет был выполнен для серии замещенных анилинов с использованием GAUSSIAN-98 и метода UB3LYP/6-311++g**//UB3LYP/6-311+g* и ROMP2/6-311+g*//6-311+g*. В [40] для расчета *D*_{N-H} в замещенных анилинах использовались пакеты программ GAMESS-US и GAUSSIAN-98.

100

Таблица 5. Энергии диссоциации N–H-связей (*T* = 298.15 K) феназинов и гидрохинолинов, измеренные методами: **СНЕ**, **МІР**, **РАС** и **АОР**

Антиоксидант	$D_{ m N-H}$ (CHE), кДж моль ⁻¹	<i>D</i> _{N−H} (МІР), кДж моль ⁻¹	$D_{ m N-H}$ (АОР), кДж моль ⁻¹
S N H	337.5±1.2[18]	337.5 [13]	342.9 [33]
	328.7 ± 1.2 [18]	326.5 [13]	332.0 [33]
Se N H	342.1 ± 1.2 [18]	344.1 [13]	_
	350.5 ± 1.2 [18]	_	_
S Me H Me	330.8 ± 1.2 [18]	_	_
Me ₃ C S CMe ₃	332.5 ± 1.2 [18]	335.5 [13]	_
Me ^O Ne ^N H	324.5 ± 1.2 [18]	324.2 [13]	_
Cl S Cl	339.6 ± 1.2 [18]	341.0 [13]	_
$ \begin{array}{c c} S \\ NO_2 H \\ NO_2 \end{array} $	344.6±1.2[18]		_

ДЕНИСОВ, ДЕНИСОВА

Таблица 5. Окончание

Антиоксидант	<i>D</i> _{N-H} (CHE), кДж моль ⁻¹	$D_{ m N-H}$ (MIP), кДж моль ⁻¹	<i>D</i> _{N−H} (АОР), кДж моль ⁻¹
Me N Me H H	_	355.9 [13, 38]	_
Me Me Me Me	_	383.3 [13, 38]	_
Me Me Me H H	_	375.5 [13, 38]	_
N H	_	383.1 [13, 38]	_
Me Me Me Me	_	380.6 [13, 38]	_
EtO N H H	_	348.2 [13, 38]	_
EtO Me Me Me H	_	345.3 [13, 38]	_

ЭНЕРГИИ ДИССОЦИАЦИИ N-H-СВЯЗЕЙ

Амин		<i>Т</i> , К	$k_i,$ л моль ⁻¹ с ⁻¹	Δ <i>Е</i> _{<i>i</i>} , кДж моль ⁻¹	Δ <i>D</i> _i , кДж моль ⁻¹	$D_{ m N-H},$ кДж моль ⁻¹
H ₂ N-V-NH ₂	PhMeCHO ₂ PhRCHO ₂	333 338	$\begin{array}{c} 1.0\times10^6\\ 7.5\times10^5\end{array}$	-2.8 -1.8	-6.0 -3.7	358.6 360.9
	$D_{\rm N-H} = 359$	9.8 ± 1	.1	ļ	I	I
$H \sim H$	PhRCHO ₂	338	2.5×10^{6}	-7.1	-15.7	348.9
	PhRCHO ₂	338	$3.3 imes 10^6$	-9.8	-22.4	342.4
Me N - N - N Me	PhMeCHO ₂	333	1.7×10^6	-6.2	-13.7	351.0
	PhRCHO ₂	338	$1.9 imes 10^6$	-6.3	-13.9	350.8
	цикло-C ₆ H ₉ O ₂	333	$8.6 imes 10^5$	-4.3	-9.4	355.3
Ph_N_N_N_Ph	PhRCHO ₂	303	1.17×10^{6}	-6.4	-14.2	350.4
11 11	$PhMe_2CO_2$	333	2.19 × 10 ⁵	-3.9	-8.1	356.6
	$D_{\rm N-H} = 352$	2.8 ± 2	.6	I	I	1
Ph H N Me Me	PhMe ₂ CO ₂	333	6.31 × 10 ⁵	-6.9	-14.5	350.2*
$Ph \underbrace{N}_{H} Ph \underbrace{N}_{H} Ph$	R ₃ CO ₂	398	5.92×10^{4}	4.1	8.0	372.7
$\begin{array}{c} C_{7}H_{15} \\ N \end{array} \xrightarrow{Me} \\ H \end{array} \xrightarrow{Me} \\ C_{7}H_{15} \\ C_{7}H_{15} \end{array}$	R ₃ CO ₂	398	5.01×10^{4}	4.6	9.0	373.7
Et O-V-N H	R ₃ CO ₂	398	2.49×10^{5}	-0.7	-1.3	363.3
Me H Me N H Me Me	PhMeCHO ₂	333	4.5×10^{6}	-8.9	-20.0	344.6

Таблица 6. Исходные константы скорости реакции (k_i) и вычисленные методом **MIP** по уравнениям (6)–(8) значения D_{N-H} (T = 298.15 K) для ароматических диаминов [12]

Амин	RO ₂	<i>T</i> , K	$k_i,$ л моль ⁻¹ с ⁻¹	$\Delta E_i,$ кДж моль $^{-1}$	Δ <i>D</i> _i , кДж моль ⁻¹	<i>D</i> _{N-H} , кДж моль ⁻¹
$\begin{array}{c} H \\ H \\ Ph \end{array} \rightarrow \begin{array}{c} H \\ H \\ H \\ H \end{array} \rightarrow \begin{array}{c} H \\ H \\ H \\ H \end{array} \rightarrow \begin{array}{c} H \\ H \\ H \\ H \end{array} \rightarrow \begin{array}{c} H \\ H \\ H \\ H \\ H \\ H \\ H \end{array} \rightarrow \begin{array}{c} H \\ H $	PhMe ₂ CO ₂	298	1.8×10^{5}	-5.4	-11.3	353.4
H H H	цикло- С ₆ H ₉ O ₂	333	1.07×10^{6}	-4.9	-10.7	-353.9
	$PhMe_2CO_2$	333	$2.75 imes 10^5$	-4.6	-9.4	355.2
	$D_{\rm N-H} = 354$	$.6 \pm 0.$.7			
	R ₃ CO ₂	398	1.24×10^5	1.4	2.8	367.4
$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	цикло- С ₆ H ₉ O ₂	333	$1.1 imes 10^6$	-5.0	-10.9	353.7
$H \\ Ph \\ N \\ H \\ Ph \\ H$	PhMe ₂ CO ₂	333	6.6×10^{2}	-1.4	-2.4	384.2
	PhMe ₂ CO ₂	333	6.0 × 10 ³	-7.5	-13.7	372.9
$\begin{array}{c c} H & Me & Me & H \\ I & N & N & N \\ Ph' & N & N & N \end{array}$	PhMeCHO ₂	343	1.28 × 10 ⁵	1.6	3.3	367.9

Результаты расчетов в сопоставлении с экспериментальными данными представлены в табл. 8.

Как видно из табл. 8, расчетные $D_{\rm N-H}$ во многих случаях близки к экспериментальным ($\Delta D_{\rm N-H}$ отличаются от эмпирических не более чем на 5 кДж моль⁻¹). Для анилинов с заместителями: 2-Ме, 2-MeO, 4-MeO и 3-CF₃ это различие, однако, достигает 7 кДж моль⁻¹. Наблюдается линейная корреляция между $\Delta D_{\rm N-H}$ и функцией σ^+ Брауна [17].

ЭНЕРГИИ ДИССОЦИАЦИИ N–H, O–H И S–H-СВЯЗЕЙ В ГИБРИДНЫХ АНТИОКСИДАНТАХ

Бифункциональные антиоксиданты, в частности, аминофенолы обладают высокой реакционной способностью в радикальных реакциях и используются на практике для стабилизации каучуков и нефтепродуктов [13]. В последнее время гибридные антиоксиданты находят все возрастающее применение как лекарственные препараты

НЕФТЕХИМИЯ том 55 № 2 2015

104

ЭНЕРГИИ ДИССОЦИАЦИИ N–H-СВЯЗЕЙ

Заместитель R в R Н К К К К К К К К К К К К К К К К К К	Н	Me	Ph	2-C ₁₀ H ₇	4-C ₆ H ₄ CHMe ₂
$D_{ m N-H}$, кДж моль $^{-1}$	359.8	348.9	352.8	354.6	344.6
$\Delta E_{ m RS}$, кДж моль $^{-1}$	25.5	36.4	32.5	30.7	40.7

Таблица 7. Энергии стабилизации, вызванные заместителем R в диариламинильных радикалах

для лечения разнообразных заболеваний [41]. Механизм их тормозящего действия более сложен, чем монофункциональных антиоксидантов, т.к. в обрыве цепей окисления принимают участие обе функциональные группы, и из одной молекулы такого ингибитора образуются и принимают участие в радикальных реакциях два разных промежуточных радикала: феноксильный и аминильный. Определение такой важной энергетической характеристики молекулы, как энергия диссоциации реагирующей связи, для таких соединений представляет собой сложную задачу. Дело в том, что аминофенол имеет две разные по своей природе, но реакционноспособные связи: О-Н и N-H, а все существующие методы определения энергий диссоциации связей применимы только для соединений с одной или несколькими эквиреакционными связями. Величины $D_{\rm N-H}$ и $D_{\rm O-H}$ в гибридном ингибиторе отличаются от $D_{\rm N-H}$ и $D_{\rm O-H}$ в аналогичных по строению монофукциональных соединениях из-за взаимного влияния этих групп. Поэтому решение поставленной задачи (оценка индивидуальных связей в гибридном антиоксиданте) требует особых подходов.

В работе [14] для оценки *D*_{N-H} и *D*_{O-H} в аминофенолах и гидроксихинолинах использован метод MIP в сочетании с кинетическими данными по реакциям пероксильных радикалов с аминофенолами и их алкилзамещенными аналогами. Принималась во внимание следующая закономерность. Введение еще одной группы ОН в молекулу фенола в параположении снижает D_{O-H} на 17 ± 2 кДж моль⁻¹: в феноле $C_6H_5OH D_{O-H} = 369.0 \text{ кДж моль}^{-1}$, а в гидрохиноне $D_{O-H} = 352.0 \text{ кДж моль}^{-1}$ [23]. Такое же снижение $D_{\rm O-H}$ в феноле вызывает и метоксильная группа в *napa*-положении: $\Delta D_{O-H} = D_{O-H}(C_6H_5OH) - D_{O-H}(C_6H_5OH)$ $-D_{O-H}$ (MeOC₆H₄OH) = 16.5 кДж моль⁻¹, ΔD_{O-H} = = 16.6 кДж моль⁻¹ (метод **CHE**), ΔD_{O-H} = = 16.3 кДж моль⁻¹ (метод пиролиза замещенных анизолов) [23]. Поэтому было принято: $D_{\rm N-H}$ (HOArAmH) = $D_{\rm N-H}$ (ROArAmH), что позволило представить $k(RO_2^{\cdot} + HOArAmH)$ как сумму: $k_{\Sigma} = k_{\text{O-H}}(\text{RO}_2^{\dagger} + \text{H-OArAmH}) + k_{\text{N-H}}(\text{RO}_2^{\dagger} + \text{H-OArAmH})$ + HOArAm-H), и, приняв $k(RO_2 + H-OArAmH) +$

+ $k_{\rm N-H}$ (RO₂ + ROArAm–H), вычислить $D_{\rm O-H}$ и $D_{\rm N-H}$ в гибридном антиоксиданте, используя метод **MIP**. В случае гидроксибензимидазолов использован аналогичный прием: индентификация $k_{\rm O-H}$ и $k_{\rm N-H}$ проведена при предположении:

 $k_{O-H}(RO_{2} + HOArAmH) = k_{O-H}(RO_{2} + HOArAmR).$ Результаты представлены в табл. 9.

Полученные данные (D_{N-H}) дают возможность оценить энергию стабилизации аминильного радикала $\Delta E_{RS} = \Delta D_{N-H}$, которую вносит гидроксильная группа. Ниже в табл. 10 приведено сравнение D_{N-H} в аминах и гидроксиаминах:

Как мы видим, у дифениламинов энергия стабилизации аминильного радикала, которую вызывает гидроксильная группа, составляет 8.8 кДж моль⁻¹, у гидрированных 6-гидроксихинолинов эта энергия составляет 29.5 \pm 0.7 кДж моль⁻¹.

Серосодержащие антиоксиданты (аминосульфиды) также широко применяются для стабилизации углеводородных топлив и масел [5, 6]. Они обладают комбинированным механизмом антиокислительного действия. С одной стороны, своими N–H- и S–H-связями они реагируют с пероксильными радикалами и обрывают цепи, а с другой, их сульфогруппы разрушают гидропероксиды и, таким образом, снижают скорость генерирования радикалов в окисляющейся системе [7, 9, 10]. Кроме того, продукты их превращения создают на поверхности металла пленку, обладающую антикоррозионными свойствами [5].

В работе [15] была проведена оценка $D_{\rm N-H}$, и $D_{\rm S-H}$ в гибридных серосодержащих антиоксидантах. Для таких ингибиторов имеется очень мало данных по энергиям диссоциации, значения $D_{\rm N-H}$ и $D_{\rm S-H}$ приведены в табл. 9. Вообще говоря, RO² могут реагировать как с N–H-, так и S–H-группами аминотиолов. Однако, из сравнения констант скорости реакций RO² с последними двумя соединениями следует, что реакция RO² с HSR протекает намного медленнее, чем RO² с AmH. Вычисленные по кинетическим данным, $D_{\rm N-H}$ варьируют в диапазоне 366–371 кДж моль⁻¹, среднеквадратичная величина для $D_{\rm N-H}$ в соединени-

Амин	B3LYP [17], кДж моль ⁻¹	B3LYP [39], кДж моль ⁻¹	MP2 [39], кДж моль ^{—1}	B3LYP [40], кДж моль ⁻¹	Опыт
PhNH ₂	382.8 (0.0)	382.4 (0.0)	382.4 (0.0)	385.8 (0.0)	385.3 (0.0)
Me – NH ₂	374.9 (-7.9)	380.3 (-2.1)	378.2 (-4.2)	379.0 (-6.8)	379.8 (-5.5)
Me O-NH ₂	365.6 (-17.2)	366.1 (-16.3)	369.0 (-13.4)	368.6 (-17.2)	374.8 (-10.5)
H ₂ N-V-NH ₂	359.4 (-23.4)	357.3 (-25.1)	364.0 (-18.4)	359.5 (-26.3)	359.8 (-25.5)
Me O-NH ₂	_	390.8 (8.4)	389.9 (7.5)	_	391.7 (6.4)
F ₃ C-NH ₂	395.8 (13.0)	_	_	396.8 (11.0)	399.6 (14.3)
NC-	395.8 (13.0)	392.4 (10.0)	392.4 (10.0)	398.3 (12.5)	396.3 (11.0)
O ₂ N-V-NH ₂	402.5 (19.7)	399.6 (17.2)	393.3 (10.9)	403.2 (17.4)	403.2 (17.9)
F-	_	377.4 (-5.0)	378.6 (-3.8)	381.3 (-4.5)	381.5 (-3.8)
Cl-NH2	_	380.3 (-2.1)	382.4 (0.0)	383.7 (-2.1)	385.2 (-0.1)
Ph ₂ NH	355.2 (0.0)	_	_	_	364.7 (0.0)
Me N h	347.3 (-7.9)	_	_	_	358.2 (-6.5)
MeN H	335.1 (-20.1)	_	_	_	349.4 (-15.3)
S N H	320.5 (0.0)	_	_	_	340.5 (0.0)

Таблица 8. Результаты квантово-химического расчета D_{N-H} (T = 298.15 K) ароматических аминов, в скобках указана разность $\Delta D_{N-H} = \Delta D_{N-H}$ ($XC_6H_4NH_2$) – ΔD_{N-H} (PhNH₂) в кДж моль⁻¹

Антиоксивант	<i>D</i> _{О-Н} ,	D _{N-H} ,	Authoroutout	D _{O-H} ,	D _{N-H} ,
Антиоксидант	кДж моль ⁻¹		Антиоксидант	кДж моль ^{−1}	
	338.8 339.3	355.9 [14] 253.4 [42]	H N Me	351.3	362.6 [14]
	335.4	353.6 [14]	H = N $H = N $ $H = N$	346.7	357.3 [14]
H'O Me N Me H	338.0	348.2 [14]	$H \xrightarrow{Me}_{Me} N \xrightarrow{N}_{Me} Me$	347.7	358.7 [14]
$H^{O} H^{Me}$	329.7	383.3 [14]		368.4	356.4 [14]
H Me O Me N Me H	324.4	345.3 [14]	H N Me	362.6	351.3 [14]
Me Me Me Me Me H	329.4	380.6 [14]	Me H Me N H	357.3	346.7 [14]
	356.4	368.4 [14]	$Me \\ H \\ Me \\ Me \\ H$	358.7	347.7 [14]

Таблица 9. Значения $D_{\rm O-H}$ и $D_{\rm N-H}$ (T = 298.15 K) для аминофенолов, гидрокси-гидрохинолинов, 5-гидроксибензимидазолов и $D_{\rm S-H}$ и $D_{\rm N-H}$ для аминотиолов, **МІР**

Таблица 9. Окончание

Антиоксилант	$D_{\rm S-H},$	$D_{\rm N-H},$	Антиоксилант	$D_{\mathrm{S-H}},$	$D_{\rm N-H},$
типиокендини	кДж моль ⁻¹		типиокондант	кДж моль ^{−1}	
H N Me SH	360.0	366.4 [15]	H SH O SH	360.0	369.1 [15]
N SH Bu	360.0	370.6 [15]	H Bu N O S-Bu	_	369.3 [15]
M N SH	360.0	366.0 [15]	_	_	_

Таблица 10. Сравнение D_{N-H} (T = 298.15 K) в аминах и соответствующих гидроксиаминах

AmH	Ph ₂ NH	2-C ₁₀ H ₇ NHPh	Me Me Me H H	Me Me Me H H
$D_{\rm N-H}$, кДж моль ⁻¹	364.7	362.4	377.0	375.5
HOAmH	H _O	H.O.	HO HO N HO HO HO HO HO HO HO HO HO HO HO HO HO	HO N HO N HO H
$D_{ m N-H}$, кДж моль $^{-1}$	355.9	353.6	348.2	345.3
$\Delta D_{\mathrm{N-H}}$, кДж моль $^{-1}$	8.8	8.8	28.8	30.2

ях, представленных в табл. 9, равна 368.3 \pm \pm 1.8 кДж моль⁻¹. Это значение близко к значению $D_{\rm N-H}$, приведенному в табл. 1 для ближайшего аналога этих соединений, а именно N-метиланилина ($D_{\rm N-H} = 372.2$ и 377.8 кДж моль⁻¹).

Таким образом, современный массив ароматических аминов, охарактеризованных $D_{\rm N-H}$, охватывает 89 соединений. Разные методы оценки $D_{\rm N-H}$, как правило, дают их согласованные значения. Тем не менее, для ряда аминов целесообразна дополнительная проверка значений $D_{\rm N-H}$. Важным достижением является оценка энергий диссоциации разных связей (N-H и O-H, N-H и S-H) в гибридных антиоксидантах (19 соединений). Это

открывает возможность оценивать парциальные константы скорости реакций как радикалов с этими связями, так и реакций промежуточных радикалов ингибиторов с самими антиоксидантами и на этой основе строить детальную кинетическую картину процесса ингибирования. Полученные в настоящем обзоре корреляционные соотношения позволяют расширить число аминов, охарактеризованных $D_{\rm N-H}$. Особого внимания заслуживают корреляционные соотношения между энергиями стабилизации фениламинильных радикалов и аминильных радикалов разных классов. В связи с интенсивным развитием квантово-химических методов важную перспективу в предсказании аминов с низкими значениями $D_{\rm N-H}$ представляет сочетание квантово-химических расчетов с экспериментальными методами.

Работа поддержана грантом в рамках программы № 1 "Теоретическое и экспериментальное изучение природы химической связи и механизмов важнейших химических реакций и процессов" ОХНМ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Фойгт И*. Стабилизация синтетических полимеров против действия света и тепла. Л.: Химия, 1972. 544 с.
- 2. Денисов Е.Т. Окисление и деструкция карбоцепных полимеров. Ленинград: Химия, 1990. 288 с.
- Пиотровский К.Б., Тарасова З.Б. Старение и стабилизация синтетических каучуков и вулканизаторов. М.: Химия, 1980.
- 4. Pospišil J. // Adv. Polym. Sci. 1995. V. 124. P. 87.
- 5. *Кулиев А.М.* Химия и технология присадок к маслам и топливам. М.: Химия, 1985. 358 с.
- 6. Денисов Е.Т., Ковалев Г.И. Окисление и стабилизация реактивных топлив. М.: Химия. 1983. 272 с.
- Denisov E.T., Afanas'ev I.B. Oxidation and Antioxidants in Organic Chemistry and Biology. Boca Raton, FL: CRC Press. Taylor and Francis Group, 2005. 981 p.
- Howard J.A. // Absolute rate constants for reactions of oxyl radicals. In Advances in Free Radical Chemistry. / Ed. Williams G.H. London: Logos Press, 1972. V. 4. P. 49.
- Denisov E.T., Azatyan V.V. Inhibition of Chain Reactions, London, Gordon and Breach Sci. Publishers, 2000. 337 p.
- Denisov E.T., Denisova T.G. Handbook of Antioxidants. Bond Dissociation Energies, Rate Constants, Activation Energies and Enthalpies of Reactions. Boca Raton, FL: CRC Press, 2000. 289 p.
- Luo Y.R. Handbook of Bond Dissociation Energies in Organic Compounds. Boca Raton, FL: CRC Press, 2003. 380 p.
- 12. Денисов Е.Т., Денисова Т.Г. // Кинетика и катализ. 2014. Т. 55. № 1. С. 30
- 13. *Денисов Е.Т., Денисова Т.Г. //* Журн. физ. хим. 2014. Т. 88. № 4. С. 629.
- 14. *Денисов Е.Т., Денисова Т.Г. //* Кинетика и катализ 2013. Т. 54. № 6. С. 717.
- Денисов Е.Т., Денисова Т.Г. // Нефтехимия. 2014. Т. 54. № 2. С. 146. // Petrol. Chemistry. 2014. V. 54. № 2. Р. 142.
- 16. *Варламов В.Т., Денисов Е.Т. //* Изв. АН СССР. Сер. хим. 1990. № 4. С. 743.
- Pratt D.A., DiLabio G.A., Valgimigli L., Pedulli G.F., Ingold K.U. // J. Am. Chem. Soc. 2002. V. 124. P. 11085.

- Lucarini M., Pedrielli P., Pedulli G.F., Valgimigli L., Gigmes D., Tordo P. // J. Am. Chem. Soc. 1999. V. 121. 11546.
- Варламов В.Т., Денисов Н.Н., Надточенко В.А., Марченко Е.П., Петров И.В., Плеханова Л.Г. // Кинетика и катализ. 1994. Т. 35. С. 838.
- 20. Ефремкина Е.А., Худяков И.В., Денисов Е.Т. // Хим. физика. 1987. Т. 6. С. 1289.
- 21. Денисов Е.Т. // Успехи химии. 1997. Т. 66. С. 953.
- 22. Денисов Е.Т. // Кинетика и катализ. 1995. Т. 36. С. 381.
- Denisov E.T., Denisova T.G. In: Application of Thermodynamics to Biological and Materials Science / Ed. Mizutani T. Rijeka, Croatia: INTECH, 2011. P. 405.
- 24. Rothberg L.J., Simon J.D., Bernstein M., Peters K.S. // J. Am. Chem. Soc. 1983. V. 105. P. 3664.
- 25. Simon J.D., Peters K.S. // J. Am. Chem. Soc. 1983. V. 105. P. 5156.
- 26. *Grabowski J.J., Simon J.D., Peters K.S.* // J. Am. Chem. Soc. 1984. V. 106. P. 4615.
- Wayner D.D.M., Lusztyk E., Page D., Ingold K.U., Mulder P., Laarhoven L.J.J., Aldrich H.S. // J. Am. Chem. Soc. 1995. V. 117. P. 8737.
- 28. Wayner D.D.M., Lusztyk E., Ingold K.U., Mulder P. // J. Org. Chem. 1996. V. 61. P. 6430.
- 29. MacFaul P.A., Wayner D.D.M., Ingold K.U. // J. Org. Chem. 1997. V. 62. P. 3413.
- Bordwell F.G., Bausch M. // J. Am. Chem. Soc. 1986.
 V. 108. P. 1979.
- 31. Bordwell F.G., Cheng J.-P., Ji G.-Z., Satish A., Zhang X. // J. Am. Chem. Soc. 1991. V. 113. P. 9790.
- Bordwell F.G., Cheng J.-P. // J. Am. Chem. Soc. 1991. V. 113. P. 1736.
- Bordwell F.G., Zhang X.M., Cheng J.-P. // J. Org. Chem. 1993. V. 58. P. 6410.
- 34. Jonsson M., Lind J., Merenyi G., Eriksen T.E. // J. Chem. Soc. Trans. 2. 1995. P. 61.
- 35. Jonsson M., Lind J., Eriksen T.E., Merenyi G. // J. Am. Chem. Soc. 1994. V. 116. P. 1423.
- Denisov E.T., Denisova T.G., Trepalin S.V., Drozdova T.I. // Data Base of Oxidation and Antioxidants in Organic Chemistry. Boca Raton, FL: CRC Press. Taylor and Francis Group, 2005.
- Henry D.J., Parkinson C.J., Mayer P.M., Radom L. // J. Phys. Chem. A. 2001. V. 105. P. 6750.
- Русина И.Ф. Дисс. соиск. уч. ст. кандидата хим. наук. М.: Институт химической физики РАН. 2011. 137 с.
- Song K.-Sh., Liu L., Guo Q.-X. // J. Org. Chem. 2003. V. 68. P. 262.
- 40. Gomes J.R.B., Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V. // J. Phys. Chem. A. 2004. V. 108. P. 2119.
- 41. Burlakova E.B., Molochkina E.M., Nikiforov G.A. // Polym. Resear. J. 2008. V.1. № 3. P. 361.
- 42. Варламов В.Т. // Изв АН. Сер. хим. 2004. № 2. С. 293.