УДК 541.128

ТЕРМОДИНАМИЧЕСКОЕ И КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ РЕАКЦИИ ОКИСЛИТЕЛЬНОГО ДЕГИДРИРОВАНИЯ ЭТАНА В ЭТИЛЕН

© 2015 г. И. М. Герзелиев, А. М. Гюльмалиев, А. Ю. Попов, С. Н. Хаджиев

Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва E-mail: gerzeliev@ips.ac.ru Поступила в редакцию 24.10.2014 г.

Методами химической термодинамики проведен расчет равновесного состава продуктов реакции дегидрирования этана в этилен при разных количествах кислорода, подаваемых в реакционную среду. На примере квантово-химических расчетов энергии взаимодействия этана с диоксидом молибдена показано, что на энергетическом профиле потенциальной поверхности энергии вдоль координаты реакции дегидрирования этана абсолютному минимуму энергии соответствует комплекс MoO₂…H₂…C₂H₄.

Ключевые слова: этан, этилен, окислительное дегидрирование, термодинамика, квантово-химические расчеты.

DOI: 10.7868/S0028242115020094

В настоящее время в промышленности основное количество этилена получают методом пиролиза в трубчатых печах углеводородного сырья (этана, этан-пропан-бутановой смеси или фракции прямогонного бензина). Выход олефинов (этилен + пропилен) составляет 60–66%. Развитие процесса направлено в основном в сторону усовершенствования существующей технологии. Однако, несмотря на достигнутый прогресс, связанный с конструктивными изменениями расположения труб змеевика печи, разработкой эффективных закалочно-испарительных аппаратов, внедрения печей с коротким временем пребывания сырья в реакционной зоне, возможности этого процесса ограничены, особенно при использовании сырья, склонного к повышенному коксообразованию [1]. Необходимость расширения сырьевой базы, в частности вовлечение в переработку компонентов природного, попутного и нефтезаводского газов, требует вести поиск принципиально новых методов осуществления процесса.

Так, с середины прошлого столетия проводятся интенсивные исследования по разработке процессов каталитического дегидрирования низших алканов в соответствующие олефины. Применение катализатора позволяет увеличить степень превращения сырья по сравнению с традиционным пиролизом, повысить селективность процесса. Однако с точки зрения практического применения этот метод дегидрирования также не лишен недостатков, связанных, в частности, с интенсивным коксообразованием и необходимостью проведения окислительной регенерации.

Указанные недостатки устраняются при использовании в процессе окислителя. Применение окислителя при дегидрировании низших алканов имеет ряд потенциальных преимуществ: повышает производительность процесса пиролиза; позволяет обойти ограничения, накладываемые термодинамикой на состав продуктов и проводить процесс при более низких температурах за счет экзотермических реакций окисления непосредственно в зоне реакции; увеличивает время полезной работы катализатора в связи с возможным выгоранием кокса в процессе реакции [2, 3].

С учетом перспективности данного направления нами проведены сравнительные термодинамические расчеты равновесного состава продуктов термического и окислительного дегидрирования этана и квантово-химических расчетов энергии активации дегидрирования этана на активной металлической фазе катализатора — оксиде молибдена MoO₂.

Расчет равновесных концентраций компонентов реакции проводили в приближении к состоянию идеального газа [4, 5]. В табл. 1 приведены значения термодинамических функций: энтальпии ΔH , энтропии ΔS и свободной энергии Гиббса ΔG двух простых реакций:

$$C_2 H_6 = C_2 H_4 + H_2, \tag{1}$$

$$2C_2H_6 + O_2 = 2C_2H_4 + 2H_2O.$$
 (2)

Приведенные реакции интересны тем, что в реакции (1) в продуктах образуется водород, а в (2) – вода. Естественно, что с точки зрения получения чистого этилена вторая реакция предпочтительна.

Как видно из табл. 1, по термодинамическим характеристикам эти реакции существенно отличаются. Значения энтальпии ΔH от температуры мало зависят, реакция (1) сильно эндотермична, а реакция (2) — экзотермична. Энергии Гиббса ΔG реакций существенно зависят от температуры. Реакция (1) благоприятно протекает при $T \ge 500^{\circ}$ С, а реакция (2) при любых температурах в рассмотренном температурном интервале. Тепловой эффект реакции (2) может быть использован для компенсации затрат энергии нагрева реакционной

среды. Анализ данных табл. 1 показывает, что реакция окислительной термодеструкции этана как по энергетическим характеристикам, так и по чистоте продуктов более предпочтительна, чем реакция прямой деструкции.

В реальности реакция дегидрирования этана сопровождается многими параллельными и последовательными процессами, что может существенно влиять на равновесный состав и на выход этилена. При высоких температурах возможно образование радикальных соединений. Для ответа на эти вопросы исследовали температурные зависимости равновесных концентраций продуктов реакций термического разложения этана:

$$C_2H_6 \rightarrow \{C, CH, CH_2, CH_3, CH_4, C_2H_2, C_2H_3, C_2H_4, C_2H_5, H, H_2\}$$
 (3)

и окислительного дегидрирования:

$$C_{2}H_{6} + nO_{2} \rightarrow \{C, CH, CH_{2}, CH_{3}, CH_{4}, C_{2}H_{2}, C_{2}H_{3}, C_{2}H_{4}, C_{2}H_{5}, C_{2}H_{6}, C_{2}H_{6}O, H_{2}O, O_{2}, H, H_{2}\}.$$
 (4)

Расчеты проводили при давлении 0.1 МПа и исходной концентрации этана, равной 1 моль, концентрацию кислорода (n) варьировали. Результаты расчета приведены на рис. 1. Как следует из расчетных данных в этих условиях без подачи кислорода (рис. 1а) максимальный выход этилена наблюдается в области температур 450-500°С и составляет ≈42 мас. %. В области температур 200-1000°С основным компонентом в продуктах является метан СН₄ концентрация которого составляет ≈60 мас. %. На рис. 16–1е приведены результаты расчетов равновесного состава продуктов реакции (4) при концентрациях кислорода (моль) n = 0.1. 0.2, 0.3, 0.4 и 0.5 соответственно. Видно, что с ростом концентрации кислорода в реакционной среде до n = 0.5 моль, выходы этилена и воды увеличиваются. С образованием воды реакция становится более экзотермичной и она идет в сторону образования этилена. При n = 0.5 моль выход этилена максимален и составляет 60 мас. %. Одновременно с ростом концентрации кислорода концентрация метана в равновесном составе снижается. Водород, в незначительных количествах, образуется при высоких температурах.

Особый интерес представляет исследование энергетических характеристик реакции (1). Для этого, по координате реакции рассмотрели состояния с экстремальными значениями энергий. Сюда входят две конформации этана: с минимальной энергией, когда атомы водорода наиболее удалены друг от друга (заторможенная конформация) и максимальной энергией, когда атомы водорода при разных атомах углерода наиболее приближены

НЕФТЕХИМИЯ том 55 № 2 2015

друг к другу (заслоненная конформация), а также активированный комплекс переходного состояния. Расчет электронной структуры заторможенной, заслоненной конформаций этана и энергии переходного состояния реакции (1) проводили квантово-химическим методом DFT B3LYP6-31G(d,p), основанном на сочетании метода Хартри–Фока и теории функционала плотности [6]. На рис. 2 приведены их оптимизированные структуры, значения межатомных расстояний (Å) и хартри–фоковская электронная энергия с учетом энергии нулевых колебаний E_0 .

В табл. 2 приведены их колебательные частоты в спектре инфракрасного поглощения.

Комплекс переходного состояния имеет одну единственную отрицательную частоту $\omega = -809.258 \text{ см}^{-1}$ с отличной от нуля интенсивностью, это означает, что состояние соответствует максимуму энергии на координате реакции.

На рис. З представлен энергетический профиль потенциальной поверхности энергии вдоль координаты реакции дегидрирования этана. Величина энергии активации реакции термического дегирирования этана в этилен высокая и составляет $E_{\Sigma} = 108.81$ ккал/моль.

Для эффективного проведения процесса окислительного дегидрирования этана решающее значение имеет выбор активной каталитической фазы катализатора. На основе теоретических предпосылок можно предположить, что если в реакционную среду подавать определенное количество кислорода, активная каталитическая фаза будет в форме оксида. Оксид, в свою очередь, должен быть спо-

<i>T</i> , °C	$C_2H_6 = C_2H_4 + H_2$			$2C_2H_6 + O_2 = 2C_2H_4 + 2H_2O$		
	ΔH , ккал/моль	ΔS , кал/моль К	ΔG , ккал/моль	ΔH , ккал/моль	ΔS , кал/моль К	ΔG , ккал/моль
0	32.648	28.368	24.899	-50.183	35.912	-59.992
100	33.091	29.755	21.988	-49.768	37.216	-63.655
200	33.463	30.642	18.965	-49.474	37.920	-67.416
300	33.767	31.228	15.869	-49.297	38.264	-71.227
400	34.007	31.614	12.726	-49.230	38.373	-75.061
500	34.185	31.862	9.551	-49.265	38.326	-78.897
600	34.307	32.011	6.357	-49.387	38.179	-82.723
700	34.383	32.093	3.151	-49.572	37.978	-86.531
800	34.419	32.129	-0.060	-49.805	37.751	-90.318
900	34.421	32.131	-3.274	-50.071	37.514	-94.081
1000	34.394	32.109	-6.486	-50.360	37.278	-97.820

Таблица 1. Температурная зависимость термодинамических функций реакций $C_2H_6=C_2H_4+H_2$ и $2C_2H_6+O_2=$ $= 2C_2H_4 + 2H_2O$

собен к образованию координационных связей, чтобы связывать атомы водорода и тем самым снижать энергию активации этана. Таким свойством может обладать, например, диоксид молибдена MoO₂.

В табл. 3 приведены значения суммарной элек-

 $E_{\rm эл} + E_{\rm o}$ молекул и их комплексов образующихся при взаимодействии этана с МоО₂.

По данным табл. 3 энергетический баланс ΔE реакции образования комплексов следуютронной энергии и энергии нулевых колебаний ший:

$MoO_2 + H_2 \rightarrow [MoO_2 - H_2],$	$\Delta E_1 = 44.1$ ккал/моль,	(5)
--	--------------------------------	-----

$$C_2H_6 + MoO_2 \rightarrow [MoO_2 \cdots H_2 \cdots C_2H_4], \quad \Delta E_2 = -28.8 \text{ ккал/моль},$$
 (6)

$$MoO_2 + H_2 + C_2H_4 \rightarrow [MoO_2 - H_2 - C_2H_4], \Delta E_3 = -63.3 \, \text{ккал/моль},$$
 (7)

$$[MoO_2 \cdots C_2 H_6]_{a\pi} \rightarrow [MoO_2 \cdots C_2 H_6]^{\#}, \quad \Delta E_4 = 6.5 \text{ ккал/моль}, \tag{8}$$

$$[MoO_2 \cdots H_2 \cdots C_2 H_4] \rightarrow [MoO_2 \cdots C_2 H_6]^{\#}, \quad \Delta E_5 = 11.5 \text{ ккал/моль.}$$
 (9)

На рис. 4 приведен профиль потенциальной поверхности энергии вдоль координаты реакции взаимодействия этана с диоксидом молибдена, из которого следует, что при абсолютном минимуме энергии образуется устойчивый комплекс $[MoO_2 \cdots H_2 \cdots C_2 H_4].$

Энергия адсорбции этана на диоксиде молибдена $E_1 = 23.8$ ккал/моль, энергия активации адсорбированного комплекса $E_2 = 6.5$ ккал/моль, энергия устойчивого комплекса (при абсолютном минимуме энергии) $E_3 = 28.8$ ккал/моль, энергия разложения устойчивого комплекса на конечные продукты (MoO₂ + C₂H₄ + H₂) $E_4 = 63.3$ ккал/моль.

Структуры с оптимизированной геометрией, заряды на атомах и длины связей (Å) комплексов: $[MoO_2···H_2], [MoO_2···H_2···C_2H_4]$ и $[MoO_2···C_2H_6]^{#}$ приведены на рис. 5.

В комплексе [МоО2…Н2] длины связей Мо-О и Мо-Н практически равны. В комплексе $[MoO_2 ···H_2 ···C_2H_4]$ (рис. 56) группа $MoO_2 ···H_2$ проявляется как единая молекула, а структура C₂H₄ близка к структуре изолированной молекулы этилена. Отметим, что разность энергий переходного состояния $[MoO_2 + C_2H_6]^{\#}$ (рис. 5в) и устойчивого комплекса [МоО₂…H₂…C₂H₄] (5б) небольшая

Рис. 1. Температурная зависимость равновесных концентраций продуктов реакции термодеструкции 1 моль этана, при различной концентрации кислорода в реакционной среде (моль): n = 0 (a), 0.1 (б); 0.2 (в), 0.3 (г), 0.4 (д), 0.5 (е).

НЕФТЕХИМИЯ том 55 № 2 2015

Рис. 2. Структуры с оптимизацией геометрии заторможенной заслоненной конформаций этана и комплекса переходного состояния.

Рис. 3. Энергетический профиль потенциальной поверхности энергии вдоль координаты реакции дегидрирования этана (ккал/моль): $\Delta E_1 = 2.55$; $E_{\Sigma} = 108.81$; $\Delta E_2 = 75.68$; $\Delta E_p = 33.12$ (32.74) ккал/моль.

Таблица 2. Частоты колебаний и интенсивности заторможенной, заслоненной конформаций и комплекса переходного состояния этана

Заторможенная конформация		Заслоненная	конформация	Переходное состояние	
частота колебания, см ⁻¹	интенсивность, км/моль	частота колебания, см ⁻¹	интенсивность, км/моль	частота колебания, см ⁻¹	интенсивность, км/моль
313.6165	0	-304.544	0	-809.258	14.3268
827.8069	4.6361	902.9162	4.3078	39.905	3.2002
827.8071	4.6347	903.3375	4.3028	62.0359	19.2855
1005.652	0	1001.538	0	204.7779	8.7
1225.956	0	1177.012	0	512.6964	2.0389
1225.959	0	1177.512	0	517.8326	1.6176
1418.189	0.1418	1416.616	0.0935	961.4495	21.8334
1440.561	0	1457.969	0.0001	1072.662	43.7279
1516.868	0.0001	1516.945	0.0001	1142.147	6.3494
1516.869	0.0001	1517.274	0	1274.535	15.3262
1521.536	6.8786	1525.577	8.1796	1283.22	9.3561
1521.538	6.8808	1526.095	8.1832	1386.527	18.5486
3042.498	0	3052.086	60.1492	1553.026	5.7883
3043.633	57.6786	3058.694	0.0008	2262.353	13.0528
3097.877	0	3108.758	0.0001	2973.999	89.5135
3097.878	0	3109.1	0.0006	3008.628	70.4558
3121.787	70.5516	3129.552	59.3335	3113.835	27.3522
3121.789	70.5438	3129.849	59.323	4366.971	120.0511

Таблица 3. Энергия молекул и их комплексов: электронная $(E_{3\pi})$, нулевых колебаний (E_0)

Молекулы	$E_{\mathfrak{II}}$, a.e.	$E_{\Im \pi} + E_{o}$, a.e.	<i>Е</i> о, ккал/моль			
MoO ₂	-4108.6275804	-4108.622347	3.28375			
C_2H_6	-79.4006389	-79.324806	47.58606			
C_2H_4	-78.1610489	-78.109394	32.41420			
H_2	-1.170611	-1.160425	6.39173			
Комплексы						
$[MoO_2 \cdots H_2]$	-4109.8727516	-4109.853052	12.36191			
$[MoO_2 \cdots C_2H_6]_{ad}$	-4188.0660874	-4187.985021	50.86962			
$[MoO_2 \cdots C_2 H_6]^{\#}$	-4188.0516279	-4187.974648	48.30551			
$[MoO_2 \cdots H_2 \cdots C_2 H_4]$	-4188.0684051	-4187.992999	47.31816			

НЕФТЕХИМИЯ том 55 № 2 2015

Рис. 4. Профиль потенциальной поверхности энергии вдоль координаты реакции взаимодействия этана с диоксидом молибдена (ккал/моль).

Рис. 5. Оптимизированные геометрии комплексов, заряды на атомах и длины связей (Å): $a - [MoO_2 \cdots H_2], 6 - [MoO_2 \cdots C_2H_4]$ и $B - [MoO_2 \cdots C_2H_6]^{\#}$.

(11.5 ккал/моль), однако, как видно из рис. 5, структуры у них отличаются сильно.

На рис. 6 приведены изображения плотности верхних занятых молекулярных орбиталей устойчивых комплексов [$MoO_2\cdots H_2\cdots C_2H_4$] и [$MoO_2\cdots H_2$], а так же значения их потенциалов ионизации и сродство к электрону (по теореме Купманса). Видно, что как по характеру распределения плотности верхней занятой орбитали на атомах и на связях, так и по числовым значениям, их орбитальне энергии (потенциалы ионизации по теореме Купманса) существенно отличаются. Эти разности означают, что в комплексе этилен еще находится во взаимодействии с [$MoO_2\cdots H_2$].

Таким образом, на основе проведенных теоретических исследований можно сделать следующие выводы. Реакция дегидрирования этана с окислителем имеет большее преимущество, чем без окислителя: протекает эффективно, с выделением большого количество тепла при относительно низких температурах, а водород связывается в виде H_2O ; этан имеет высокую энергию активации дегидрирования ($E_a = 108.81$ ккал/моль), поэтому реакцию образования этилена необходимо проводить в присутствии катализаторов, которые стабильны в окислительной среде и способны связывать водород с образованием устойчивых комплексов; по теоретическим оценкам диоксид молибдена и идентичные ему по свойствам соединения могут быть эффективными катализаторами в процессе окислительной дегидрирования этана в этилен.

Рис. 6. Потенциалы ионизации, сродство к электрону (по теореме Купманса) и изображения верхних занятых молекулярных орбиталей устойчивых комплексов: а – [MoO₂…H₂…C₂H₄] и б – [MoO₂…H₂].

Работа проведена при финансовой поддержке Министерства образования и науки Российской Федерации (Соглашение № 14.607.21.0054, уникальный идентификатор прикладных научных исследований RFMEFI60714X0054).

СПИСОК ЛИТЕРАТУРЫ

- 1. Мухина Т.Н., Баранов Н.Л., Бабаш С.Е. и др. Пиролиз углеводородного сырья. М: Химия, 1987. 240 с.
- 2. Арутюнов В.С., Магомедов Р.Н. // Успехи химии. 2012. Т. 81. № 9. С. 790.
- 3. *Кустов Л.М., Кучеров А.В., Финашина Е.Д.* // Журн. физ. химии. 2013. Т. 87. № 3. С. 357.
- 4. *Сталл Д., Вестрам Э., Зинке Г.* Химическая термодинамика органических соединений. М.: Мир, 1971. С. 807.
- 5. HSC Chemistry 6. http://www.hsc!chemistry.net/.
- 6. Becke A.D. // J. Chem. Phys. 1993. V. 98. № 2. P. 1372.